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This review summarizes the roles of CAFs in forming a “cancerized” fibrotic stroma

favorable to tumor initiation and dissemination, in particular highlighting the functions

of the extracellular matrix component hyaluronan (HA) in these processes. The structural

complexity of the tumor and its host microenvironment is now well appreciated to be

an important contributing factor to malignant progression and resistance-to-therapy.

There are multiple components of this complexity, which include an extensive remodeling

of the extracellular matrix (ECM) and associated biomechanical changes in tumor

stroma. Tumor stroma is often fibrotic and rich in fibrillar type I collagen and hyaluronan

(HA). Cancer-associated fibroblasts (CAFs) are a major source of this fibrotic ECM.

CAFs organize collagen fibrils and these biomechanical alterations provide highways

for invading carcinoma cells either under the guidance of CAFs or following their

epithelial to mesenchymal transition (EMT). The increased HA metabolism of a tumor

microenvironment instructs carcinoma initiation and dissemination by performingmultiple

functions. The key effects of HA reviewed here are its role in activating CAFs in

pre-malignant and malignant stroma, and facilitating invasion by promoting motility of

both CAFs and tumor cells, thus facilitating their invasion. Circulating CAFs (cCAFs) also

form heterotypic clusters with circulating tumor cells (CTC), which are considered to be

pre-cursors of metastatic colonies. cCAFs are likely required for extravasation of tumors

cells and to form a metastatic niche suitable for new tumor colony growth. Therapeutic

interventions designed to target both HA and CAFs in order to limit tumor spread and

increase response to current therapies are discussed.

Keywords: hyaluronan, cancer-associated fibroblasts, migration, tumor microenvironment, tumor initiation,

circulating cancer-associated fibroblasts, metastasis

INTRODUCTION

Historically, cancers have been studied as diseases whose initiation and progression are caused by
the mutation of key oncogenic “driver” genes, loss of suppressor genes and increasing mutational
load resulting in genomic instability, immortalization, unrestrained growth and acquisition of
colonizing potential (Hanahan and Weinberg, 2011; Garraway and Lander, 2013; Tomasetti et al.,
2013; Vogelstein et al., 2013). More recent studies predict this concept of cancer initiation and
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progression is incomplete. Most genetic changes that are
hallmarks of epithelial cancer are already present in pre-
malignant lesions that rarely progress to frank cancer. For
example, ultra-deep sequencing of 74 cancer genes in small
biopsies of normal aged and sun-exposed human skin reveal
a high mutation burden in most key drivers of cutaneous
squamous cell carcinoma (Martincorena et al., 2015). These were
estimated to be present in over a quarter of the keratinocytes in
an epidermis that maintained its normal tissue architecture and
physiological functions. A similar paradigm has been observed
in other tissues. Endometriosis is a benign inflammatory lesion
that is cancer-like in its local invasion and resistance to apoptosis
but rarely transforms. Exome sequencing shows that over a
quarter of these benign lesions harbor oncogenic driver gene
mutations confined to the epithelial compartment that do
not result in tumors (Anglesio et al., 2017). These clinical
findings are remarkably consistent with experimental studies
showing that the tumor phenotype is plastic. Tumor cells can
be reverted into a normal growth state while retaining a highly
mutated genome by blocking signaling pathways commonly
activated by tumor microenvironment (Illmensee and Mintz,
1976; Hall et al., 1995; Wang et al., 2002; Kenny and Bissell,
2003; Postovit et al., 2008; Bizzarri et al., 2011; Northey et al.,
2017).

Clues as to the factors required for a mutant genome to
either manifest as a transformed phenotype or be restrained
into apparent normalcy were initially provided by pioneering
studies. The classic studies of B. Mintz brought initial attention
to the plasticity of the mutant tumor phenotype and the
key role of microenvironments in maintaining transformation
(Illmensee and Mintz, 1976). Teratocarcinoma cells, injected
into blastocysts, unexpectedly participated in normal tissue
development rather than forming tumors. In another key report,
chick embryos injected with an oncogenic virus only developed
tumors at wound sites even though the viral genome was
expressed in unwounded tissues (Dolberg et al., 1985). These
original results predicted that while oncogenic insults (e.g.,
mutations, oncogenic viruses) are a first step toward initiation
of cancer, the status of host microenvironment is critical
and rate-limiting for disease initiation and progression. These
predictions have fueled a synergistic interest in characterizing
the properties of “cancerized” host tissue that collaborate with
mutant epithelial cells to produce tumors, and drive progression
and metastasis, as well as targeting these properties with novel
therapeutics designed to manage this aspect of the disease
(Radisky et al., 2007; Karn et al., 2015; Werb and Lu, 2015;
Luo et al., 2016; Turley et al., 2016; Bridelance et al., 2017;
Ghosh et al., 2017; Hutchenreuther and Leask, 2017; Zhan et al.,
2017).

Host stroma is a complex mixture of phenotypically
heterogeneous endothelial cells, pericytes, immune cells and
fibroblasts. Normally, each of these cell types are required for
tissue homeostasis, and contribute to the maintenance of tissue
architecture and physiologically appropriate tissue functions.
The collective paracrine signaling networks that sustain these
functions have highly effective tumor-suppressor activity. Gene
expression analyses have shown that the stroma surrounding

tumors is altered from normal stroma, has lost its tumor
suppressing activity and participates in rather than limits tumor
initiation, growth and spread (Campisi, 1998; Dumont and
Arteaga, 2002; Barsky and Karlin, 2006; Coppé et al., 2010;
Bissell and Hines, 2011; Hinds and Pietruska, 2017). Expression
differences in normal vs. cancer stroma have been mined to
identify signatures that add independent prognostic information
to classical epithelial biomarkers (Berdiel-Acer et al., 2014;
Bedognetti et al., 2015; Nannini et al., 2015; Winslow et al.,
2015; Colangelo et al., 2017; Petitprez et al., 2017). These
unbiased analyses together with experimental evidence predict
the critical importance of neovascularization, inflammation,
immune tolerance and fibroblast activation in creating a
“cancerized” microenvironment. In this review, we focus upon
the roles of carcinoma-associated fibroblasts (CAFs), also known
as tumor-associated fibroblasts (TAFs), in creating a remodeling
extracellular matrix that drives tumor initiation and mediates
tumor cell spread. We concentrate on the tissue polysaccharide,
hyaluronan (HA), as a key contributing ECM component
in stromal fibrosis and tumor progression. We conclude by
reviewing current experimental interventions targeting both
stroma ECM and/or CAF functions that may ultimately limit
tumor spread and improve current therapies.

STROMAL EXTRACELLULAR MATRIX IN
CARCINOMA INITIATION AND
PROGRESSION

It is now well-accepted that carcinomas behave like wounds,
which force the host tumor microenvironment into a constant
state of fibrotic repair (Dvorak, 1986). As with wound repair,
carcinoma-associated stromal tissues undergo dynamic changes
in cellular composition and extensive remodeling of extracellular
matrix (ECM) as they progress. A particular feature of stromal
ECM in cancers particularly pancreatic, prostate, lung and
esophageal is its highly fibrotic structure that significantly
impacts on progression, metastasis and response-to-therapy
(Keely, 2011; Tung et al., 2015; Werb and Lu, 2015; Jiang
et al., 2017). Although less well-studied, evidence suggests that
chronic inflammation and pro-fibrotic changes in host stroma
precede and instruct primary tumor initiation or formation of
metastatic colonies by creating a microenvironment or niche
favorable for transformation and growth. As examples, in healthy
individuals with BRCA1 mutations that are at risk for breast
cancer, stromal fibroblasts exhibit a CAF-like activation state
(Etzold et al., 2016). Similarly healthy individuals with Li
Fraumeni syndrome who bear germ line mutations in TP53
and are at an elevated risk of cancer exhibit “cancerization”
of their stromal tissues (Pantziarka, 2015). In a mouse model
of colon tumor initiation, both a chronically inflamed and
fibrotic stroma are an essential pre-requisite for tumor initiation
(Sasaki et al., 2014; Tanabe et al., 2016). There has therefore
been an intense effort to understand the dynamic changes
in stromal ECM composition to identify the changes that
impact on cancer progression, metastasis and resistance to
therapies.
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BIOMECHANICAL PROPERTIES OF
TUMOR-ASSOCIATED STROMA

A major ECM component of all fibrotic stroma is type I
collagen, which provides structural and biochemical cues to
cells within the stroma (Keely, 2011; Tung et al., 2015; Werb
and Lu, 2015; Jiang et al., 2017) (Figure 1). A notable property
of “cancerized” stroma is the accumulation of type I collagen
fibrils in the stroma that are extensively crosslinked by lysyl
oxidase (LOX) and tissue transglutaminase (TG2) (Perryman
and Erler, 2014; Lee et al., 2016). Collagen crosslinking confers
proteolytic resistance to the fibrils and increases stroma stiffness,
which promotes tumor cell migration, invasion and proliferation.
Tumor-associated collagen signatures categorized by increased
collagen density and orientation of mature collagen fibers parallel
to or perpendicular to the tumor boundary offer prognostic
information (Mellone et al., 2016). Orientation of the fibrils is
the result of a process of prolonged mechano-signaling mediated
by integrin/cytoskeletal linkages, activation of downstream
adhesion pathway signaling components particularly focal
adhesion kinase (FAK), phosphorylation of myosin light chain
kinase and activation of Rho-Kinase (Schedin and Keely, 2011;
Boyle and Samuel, 2016). Oriented collagen fibrils are an
ominous biomarker of tumor cell invasion, metastasis and poor
outcome (Schedin and Keely, 2011; Tung et al., 2015). In
experimental models, non-transformed epithelial cell adhesion to
stiff collagen matrices results in elevated activation of oncogenic
pathways and increased expression of growth-promoting genes,
emphasizing that the mechanical property of stiffness contributes
to carcinoma progression (Paszek et al., 2005; Provenzano and
Keely, 2011; Ray et al., 2017). Carcinoma cells cultured on stiff
collagen gels grow as colonies with discrete boundaries, whereas
the same cells cultured in oriented collagen gels of equal stiffness
invade along these collagen fibers (Provenzano and Keely, 2011).
These in vitro observations have been confirmed in vivo using
multiphoton laser scanning microscopy and second harmonic
generation imaging of live ex-vivo tumors (Provenzano and
Keely, 2011). While fibrillar collagen is a major component of
fibrotic stroma, many additional prognostic ECM factors impact
the biological and biomechanical properties of tumor-associated
stroma. One of these is HA, whose elevated accumulation in
the tumor microenvironment contributes to cancer initiation,
progression and therapy resistance (Karousou et al., 2014;
Chanmee et al., 2016; Sato et al., 2016; Turley et al., 2016; Binder
et al., 2017; Bourguignon et al., 2017; Safdar et al., 2017). These
properties as they relate to tumor initiation and dissemination
are discussed in the following sections below.

CANCER-ASSOCIATED FIBROBLASTS

Cancer-associated fibroblasts (CAF) are the primary cell type
in “cancerized” stroma and are a major source of ECM
as well as cytokines/growth factors that impact upon both
tumor susceptibility/initiation and progression (Kalluri, 2016;
Liu et al., 2017; Santi et al., 2017; Yamauchi et al., 2018).
CAFs are a heterogeneous mixture of multiple resident

FIGURE 1 | Progression-Associated Fibrosis in Cancerized Stroma:

Deregulated synthesis and deposition of ECM components, including HA and

type I collagen, leads to tumor-associated fibrosis. HA, a major polysaccharide

of provisional wound matrices, contributes to cancer initiation, progression

and resistance-to-therapy. CAF activation sustains increased collagen

synthesis, structurally oriented by fibroblast contractile forces. These provide

structural and biochemical cues to enhance mechano-signaling for carcinoma

motility and invasion.

fibroblast subtypes and infiltrated circulating mesenchymal
cells. Understanding the origin and nature of the fibroblasts
that drive oncogenic initiation and progression has been
hampered by a paucity of CAF-specific markers and thus their
origin remains controversial. Mesenchymal stem cells (MSCs)
and resident fibroblast progenitors of CAFs are recruited by
chemokines/cytokines and growth factors to specific sites and
ECM components at these sites activate these cells into CAFs
(Mishra et al., 2008; Shinagawa et al., 2010; Mi et al., 2011). For
example, knockdown of the HA receptor CD44 in MSCs blocks
both their ability to be recruited to the tumor site, and their
tumor promoting functions (Spaeth et al., 2013) Recent studies
have identified CAF properties that are distinct from activation of
normal fibroblasts responding-to-wounding. For example, CAFs
activation status appears to be irreversible while wound repair
fibroblasts activation is both reversible and dependent on wound-
induced signaling. The secretome, ECM remodeling and tumor
promoting properties of CAFs and injury-activated fibroblasts
also differ (Kalluri, 2016).

CAFs are most commonly identified by their expression of
fibroblast activation protein (FAP) and alpha smooth muscle
actin (∂-SMA), however, additional markers including platelet
derived growth factor receptor b (PDGFRB), fibroblast specific
protein (FSP) and vimentin (VIM), all of whose expression in
tumor stroma have, like ∂-SMA, been linked to poor outcome
of many cancers, can also be expressed in CAFs (Jacob et al.,
2012; Folgueira et al., 2013; Paulsson and Micke, 2014; Han
et al., 2015; Peiris-Pagès et al., 2015; Corvigno et al., 2016;
Gascard and Tlsty, 2016; Kuzet and Gaggioli, 2016; Hammer
et al., 2017; Tao et al., 2017; von Ahrens et al., 2017). The roles of
CAFs as promoters of tumor initiation, progression, epithelial to
mesenchymal transition, stemness, tumor invasion, angiogenesis,
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metastasis and drug resistance are well established (Kalluri
and Zeisberg, 2006; Shekhar et al., 2007; Straussman et al.,
2012) Experimentally, CAFs exhibit activity in all Hallmarks of
Cancer categories (Salo et al., 2014; Tommelein et al., 2015;
Attieh and Vignjevic, 2016; Mezawa and Orimo, 2016). Many
studies of CAF participation in tumorigenesis have viewed their
role as a reactive process that is a consequence of signals
originating in the epithelial tumor, which results in a permissive
environment for tumor cells to grow. A number of studies have
demonstrated a more instructive role for CAFs in the initiation
and dissemination of tumors. These studies have stimulated
interest in the development of therapies that target CAFs and
other stromal components of the tumor stroma. These CAF
properties are reviewed here.

CAFS AND TUMOR INITIATION

In general, fibroblasts in normal stroma have tumor-suppressing
properties (Bhowmick et al., 2004; Augsten, 2014; Klein, 2014;
Rhee et al., 2015; Kubo et al., 2016; Lin and Lin, 2017; Mangge
et al., 2017). However, when normal fibroblasts are activated (e.g.,
into myofibroblasts) or become senescent they lose these tumor-
suppressing functions and under appropriate conditions convert
into tumor-promoting and/or initiating CAFs. Experimentally,
such cells can facilitate conversion of pre-malignant epithelial
cells into tumors. An early example of this was provided by
evidence that irradiated fibroblasts increase the incidence of
tumors arising from pre-malignant mammary epithelial cells
(Bhowmick et al., 2004; Ji et al., 2017). A number of more
recent studies using experimental models provide direct evidence
for the ability of CAFs to drive the initiation of cancer (Sasaki
et al., 2014). Thus, loss or reduction of a notch effector (CSL) in
stromal fibroblasts is sufficient for CAF activation and induction
of keratinocyte tumors. Conversely, CCR5 blockade of fibroblast
activation in colon tissue of a mouse model of colitis-associated
carcinogenesis strongly reduces tumor initiation even though
inflammation/colitis is still present. In experimental models,
senescent fibroblasts have also been shown to enhance cancers
including ovarian and keratinocyte transformation (Lawrenson
et al., 2010).

Clinically, CAF-like fibroblast-induced stromal ECM changes
have been reported to precede tumor formation and these early
changes in ECM provide prognostic information that permit
risk stratification. For example, high mammographic density is
a strong risk factor in breast cancer (DeFilippis et al., 2012;
Ghosh et al., 2017; Vinnicombe, 2017). Clinical features of this
condition, which precede detectable tumor formation, include
adipocyte loss and high ECM production. This condition has
been linked to expression loss of the mesenchymal differentiation
regulator CD36 in stromal fibroblasts, which phenocopies the
clinical features of high mammographic density breast tissue.
In clinical samples, CAFs exhibit loss of CD36 expression.
(DeFilippis et al., 2012) and this in breast cancer tissue is strongly
associated with poor outcome. Other examples include evidence
that primary dermal fibroblasts exhibit a CAF-like state with
a germ-line BRCA1 epi-mutation (Etzold et al., 2016). These

fibroblasts stimulate rather than suppress epithelial proliferation
and migration, express CAF markers including ACTA2, FAP,
PDPN, and TNC, and are highly proliferative and migratory
relative to normal counterparts from other patients. In early
stage breast cancer, high stromal Heat Shock Factor 1 (HSF1)
activation is associated with poor outcome and experimental
data show that HSF1 expression is elevated/activated and
results in potent enabling of malignancy (Scherz-Shouval et al.,
2014). Genetic loci have been also identified that affect stromal
properties and control mammary tumor susceptibility. These
include genes that affect TGFß signaling (Zhang P. et al., 2015).
Consistent with these findings, fibroblast-specific deletion of
TGFßIIR in a transgenic mouse model results in repression
of tumor suppressing functions of fibroblasts and a rapid
development of aggressive prostate cancer (Li et al., 2012). HA
is one ECM factor that is regulated by TGFß (Heldin et al., 2014)
that is linked to tumor susceptibility, initiation and progression
of many cancers and will be focused upon here.

STROMAL HYALURONAN IS LINKED TO
TUMOR SUSCEPTIBILITY AND CAF
ACTIVATION

HA is a simple extracellular matrix polysaccharide that a wealth
of experimental approaches has demonstrated is an instructive
factor in cancer initiation and progression (Heldin et al., 2014;
Tolg et al., 2014; Zhang C. et al., 2015; Chanmee et al.,
2016; Turley et al., 2016; Bohaumilitzky et al., 2017; Senbanjo
and Chellaiah, 2017; Shih et al., 2017; Wight, 2017; Wong
et al., 2017). For example, blocking HA synthesis (Itano et al.,
2008; Hamada et al., 2017; Ikuta et al., 2017) or ablating the
HA-binding function of one of its receptors RHAMM (gene
name HMMR) (Hall et al., 1995), which has been strongly
linked to tumorigenesis (Tolg et al., 2014; Turley et al., 2016),
attenuates the transformed phenotype. Clinical analyses show
that elevated HA accumulation in either the stroma or tumor
parenchyma of many cancers is linked to tumor aggression
and poor outcome (Sironen et al., 2011; McAtee et al., 2014;
Chanmee et al., 2016; Sato et al., 2016; Turley et al., 2016;
Bourguignon et al., 2017; Wu et al., 2017). Unexpectedly,
HA has also recently been implicated as a stromal tumor-
suppressing factor (Tian et al., 2013; Fisher, 2015; Triggs-
Raine and Natowicz, 2015; Bohaumilitzky et al., 2017). These
opposing effects are not well-understood but have been linked
to differences in its metabolism and in particular the regulation
of HA polymer size (Simpson and Lokeshwar, 2008; Tian
et al., 2013; Khaldoyanidi et al., 2014; Tolg et al., 2014;
Litwiniuk et al., 2016; Turley et al., 2016; Fouladi-Nashta et al.,
2017).

HA is composed of repeating disaccharide units of N-
acetylglucosamine and ß-glucuronic acid linked together by
three highly homologous synthases (HAS1,2,3). These are
most frequently located at the plasma membrane and the
growing HA polymer is extruded directly into the extracellular
space through pores in the plasma membrane formed by
synthase oligomerization (Weigel, 2015) (e.g., Figure 2).
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FIGURE 2 | Hyaluronan is a simple polysaccharide produced by cell membrane synthases. (A) Micrograph showing membrane localized hyaluronan synthase 2 in

fibroblasts. (B) Hyaluronan synthase has multiple transmembrane domains that cluster to form pores in the cell membrane. UDP-sugars bind to the protein

cytoplasmic face and growing polymer is extruded through the pore to the extracellular space.

Evolving evidence indicates that the biological effects of HA
are primarily determined by size rather than conformational
changes typically required for protein activation. In general, large
HA polymers, which are mainly present in homeostatic tissues,
are immunologically quiescent and contribute to enforcing
cell survival and homeostasis. HA fragments (e.g., <100–
200 kDa), which are generated by reactive oxygen/nitrogen
species (ROS/RNS) and hyaluronidases produced during
tissue stress, repair and chronic disease, are pro-inflammatory
and pro-fibrotic (Simpson and Lokeshwar, 2008; Gaudet and
Popovich, 2014; Cyphert et al., 2015; Sherman et al., 2015;
Gaggar and Weathington, 2016; Maytin, 2016; Turley et al.,
2016; Bohaumilitzky et al., 2017; Cowman, 2017; Frevert et al.,
2017; Kavasi et al., 2017; Wight et al., 2017; Wu et al., 2017;
Avenoso et al., 2018a,b) (Figure 3). The precise effect of specific
sizes of HA fragments on immune and mesenchymal cells on
such functions as gene expression appears to be cell-context and
stimulus-specific, and is currently controversial (Cowman, 2017;
Weigel, 2017; Weigel and Baggenstoss, 2017). HA fragment
accumulation in quiescent homeostatic tissues is low. In contrast
remodeling and diseased tissues such as cancers often contain
an elevated level of HA (e.g., Teder et al., 2002; Koyama
et al., 2007; Li et al., 2011; Tolg et al., 2017), clear evidence of
fragmentation, and overexpression of HAS, hyaluronidases and
HA receptors.

The tumor-resistance properties of high molecular weight
HA were originally identified in the tumor resistant naked mole
rat and resistance of fibroblasts to oncogenic transformation
was shown to depend upon production of large HA polymers
(Tian et al., 2013). Naked mole rat tissues contain larger HA
polymers and less detectable fragmentation than tissues of the
more tumor-susceptible mouse. HA-mediated tumor resistance
of the naked mole rat is attributed to the ability of high molecular
weight HA to hyper-sensitize cells to contact inhibition and
induce p16 (ink4a) locus expression with consequent cell cycle
arrest (Tian et al., 2015). Consistent with this explanation,
HA overproduction has also been shown by other groups

to regulate contact inhibition and adhesion in cultured non-
malignant cells (Itano et al., 2008). Others have shown that
excess production of HA by itself does not promote an
aggressive tumor phenotype and can even be tumor-suppressing
by blocking G1-S transition in the cell cycle (Bharadwaj et al.,
2011). Similarly, exposure of tumor cells to hyaluronidases
alone (e.g., HYAL1 or PH-20) can be growth-suppressing
(Simpson and Lokeshwar, 2008) and increase response of
tumor cells to therapy (Wong et al., 2017). Thus, high HA
production combined with an increased capacity for polymer
fragmentation appears to be responsible for oncogenic effects of
this polysaccharide.

A number of studies using mouse models also predict that
elevated HA production, primarily by fibroblasts, pre-disposes
epithelial cells to tumor initiation. Examples include evidence
that an HA-rich stroma precedes increased mammary tumor
formation in transgenic mice expressing both MMTV-driven
HAS2 and a c-neu proto-oncogene. HAS2/c-neu mice tumors
notably produce higher levels of both high molecular weight
and fragmented HA than the c-neu mice (Koyama et al., 2007).
Using p38MAPK knock-in mice and tumor xenografts, others
have shown thatMAPK-driven HAS2 expression and consequent
HA production by fibroblasts is required for their activation into
CAFs and for loss of their tumor suppressing properties resulting
in a pro-tumor niche and increased lung colonization (Brichkina
et al., 2016). These studies suggest that the tumor suppressing
effects of either HA or processing enzymes alone are converted
into a pro-tumor stimulus when HA processing into fragments
is enhanced and sustained by elevated expression of one or
more HAS genes, and hyaluronidases, often HYAL1. Additional
studies predict that the pro-tumor functions of HA also depend
upon the display of specific receptors, notably the injury-related
HA receptor, RHAMM (gene name HMMR), which activates
oncogenic signaling pathways (Tolg et al., 2014; Misra et al.,
2015; Nikitovic et al., 2015; Schwertfeger et al., 2015). In a
pre-malignant stroma, these genes are expressed by CAF-like
fibroblasts.
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FIGURE 3 | Hyaluronan is a large polymer during tissue homeostasis and fragmented in wounds and tumors. In homeostasis, large hyaluronan polymers are

decorated by proteins/proteoglycans, which contribute to normal tissue architecture. (A) Cartoon of a virgin mouse mammary gland. (B) Cartoon of a mouse

mammary tumor (Blue, mammary tumor cells). During wounding, fragmented hyaluronan polymers produced by ROS/hyaluronidases activate fibroblasts and attract

immune cells, which contribute to the loss of tissue architecture.

CAFS AND TUMOR DISSEMNATION

CAFs play a significant role in tumor dissemination by
inducing an invasive phenotype in tumor cells, promoting motile
phenotypes and remodeling the ECM. Invasion is achieved in
part by CAF-driven EMT and consequent cell migration driven
by factors such as TGF-B, HGF, and CXCL12/SDF-1(Kalluri,
2016). Paladin-expressing CAF create “tunnels” in the ECM
which cancer cells migrate through (Brentnall, 2012). Under
CAF guidance, tumor cells also migrate and invade as groups
in the absence of apparent EMT. This collective migration
and invasion is driven by heterotypic E-cadherin/N-cadherin
interactions between tumor cells and CAFs (Labernadie et al.,
2017) that results in a mechanically active adhesion. CAF-
mediated ECM remodeling occurs as a result of secretion of
collagen, proteases, and in particular, matrix metalloproteinases.
ECM remodeling provides a microenvironment that further
supports tumor cell migration and dissemination. Interestingly,
CAFs from different breast cancer molecular subtypes including
Luminal A, Her2-like, and triple negative/basal-like exhibit
subtype-specific differences in stromal gene expression (Tchou
et al., 2012), microRNA expression and secretory profiles (Shah
et al., 2015). Furthermore, CAFs from more aggressive cancers
induce more aggressive breast cancer cell phenotypes than CAFs
from more indolent cancers (Shah et al., 2015).

Circulating tumor cell (CTC) clusters were originally
described in the 1970’s and are now considered to be pre-
cursors of metastatic colonies. In mouse breast cancer models,
circulating tumor cell clusters exhibit higher metastatic capacity
compared with individual or single CTCs (Aceto et al., 2014).
Additionally, polyclonal breast cancer metastases have been
suggested to arise from circulating tumor cell clusters composed
of Keratin 14+ cells (Cheung et al., 2016). Quantification of

these CTC clusters in breast cancer patients show that their
presence correlates with reduced progression-free survival and
poor outcome (Cheung et al., 2016; Jansson et al., 2016; Mu
et al., 2016; Wang et al., 2017). Collective migration of tumor
cell clusters into the circulation appears to offer a tumor cell
survival advantage compared to entry of single tumor cells into
the vasculature. CAFs are not only present in primary and
metastatic tumor stroma but have recently been shown to occur
in the circulation either as individual CAFs, part of CTC clusters
or as CAF clusters. Circulating CAFs (cCAFs) likely contribute
to CAFs found in pre-metastatic and metastatic niches. Mouse
metastasis models suggest that circulating CAFs can exit either
with groups of cancer cells or by themselves. In these models, the
presence of CAFs from the primary TME promotes metastatic
seeding and growth (Duda et al., 2010), likely by helping to
create a suitable growth and survival microenvironmental niche
for tumor cells and to aid in avoidance of immune surveillance.
Additionally, since CAFs are present in pre-metastatic niches
prior to the appearance of tumor cells, circulating CAFs likely
also play a role in establishing or preparing a niche suitable
for future tumor cell colonization. In a pilot study, cCAFs were
detected in the blood from patient with Stage IV (metastatic)
breast cancer but not from patients with Stage I disease with
no evidence of relapse, while CTCs were detected in both
patient samples (Ao et al., 2015). Furthermore, CTCs and cCAFs
circulate in co-clusters in patient blood, and like CTCs, cCAFs
can also cluster with each other (Figure 4). Jones and colleagues
also found circulating CK-/CD45/VIM+ fibroblast-like cells in
metastatic prostate cancer patient blood (Jones et al., 2013).
The development of techniques for isolating circulating CAFs
from mouse models of human breast cancer xenografts and
mammary tumor susceptibility will greatly aid in characterizing
both the origin and contribution of circulating CAFs to successful
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FIGURE 4 | Circulating cCAF/circulating tumor cell (CTC) clusters and cCAF

clusters in breast cancer patient blood. (A) cCAF/CTC co-cluster and

(B) cCAF cluster. Red: FAP, Green: CK. From Ao et al. (2015).

metastasis. Recent evidence suggests that at least a portion of
CTCs are tumor cells transitioning between the epithelial and
mesenchymal state (Yu et al., 2013) that possess stem cell-like
properties and phenotypically plasticity (May et al., 2011).
Functional characterization of these circulating cells/clusters will
clarify the mechanisms of tumor cell dissemination and likely
identify potential therapeutic targets for metastatic disease.

HYALURONAN AND TUMOR
DISSEMINATION

A CAF property that appears to be critical to cancer cell invasion
is their active motility and tropism toward tumor cells (e.g.,
Costea et al., 2013; Berdiel-Acer et al., 2014). These properties
culminate in close physical heterotypic contact (Marusyk et al.,
2016; Labernadie et al., 2017). Clinically, close proximity of
CAFs to tumor cells is linked to poor outcome and resistance
to therapy and supports migration and invasion of tumor cells
by several mechanisms (Marusyk et al., 2016). HA is one CAF-
produced ECM factor that appears to play a key role in these
critical autocrine and paracrine migratory interactions of CAFs
and tumor cells. Thus, highly motile CAF subtypes produce and
rely upon HA for their motogenic properties (Costea et al., 2013)
and ability to promote migration of tumor cells. We and others
(e.g., Hamilton et al., 2007; Mele et al., 2017; Shigeeda et al.,
2017) have also reported that highly aggressive breast cancer
cells that have undergone EMT develop a CAF-like autocrine
production of HA to sustain their high motility rates. Such
tumor cells are able to invade independently from CAFs (Turley
et al., 2016). Intriguingly, we have shown using fluorescent HA-
probes that HA-binding to breast cancer cells and to activated
fibroblasts is heterogeneous (Veiseh et al., 2014, 2015). FACS-
sorted tumor cell subsets that bind high levels of HA are
more motile, invasive and metastatic than subsets that bind
low or no probe. A concept that emerges from these studies
is that CAF subsets not only utilize HA to migrate close to
tumor cells but that their autocrine production of HA also
stimulates the migration of the HA binding tumor subpopulation
(Figure 5). Expression of HA receptors CD44 and RHAMM is
required for migration of these tumor cells, and we predict that

these receptors also mediate HA-dependent, highly motile CAF
subsets.

The role of HA and its receptors in circulating CAFs and
tumor cells is currently understudied. However, several studies
have reported that circulating tumor cells from cancer patients
express the HA receptor CD44 (Grillet et al., 2017) and can be
captured from circulation by adhering to HA, a process that
is mediated by HA receptors (Xu et al., 2017). Interestingly,
circulating cells with this dual phenotype are EpCAM- and are
therefore distinct form the more commonly studied EpCAM+

circulating tumor cells (Mirza et al., 2017). EpCAM-/CD44+ cells
may represent tumor cells that have undergone EMT and/or are
circulating cancer stem cells (cCSCs). Circulating cells isolated
from lung adenocarcinoma patients that had higher levels of
markers such as RHAMM (HMMR) had shorter survival times
(Man et al., 2014). CAFs also express CD44 and this CD44 plays
important roles in CAF function. These collective results predict
a critical importance of HA production and HA receptor display
in cCAFs and CTCs to successful metastases.

TARGETING STROMA AND CAFS

Targeting key genetic or epigenetic alterations in tumors and/or
the use of immune checkpoint inhibitors has significantly
improved cancer therapy (Jiang et al., 2017). While these
advances are encouraging, they are currently either effective in
a minority of cancer patients, have significant pro-tumor side-
effects or lack long-term durability. Thus, new approaches are
necessary to expand the number of patients who will benefit
clinically from chemotherapy and targeted therapy. Targeting
the fibrotic stroma is emerging as a potentially key approach
necessary to achieving therapeutic efficacy. This is particularly
true for pancreatic cancer, which typically progresses with an
extensive fibrotic stroma that can account for over 80% of
the tumor volume (Yu and Tannock, 2012; Tan et al., 2015).
Therapies that target the fibrotic stroma, including HA, are
being developed and entering clinical trials (Provenzano and
Hingorani, 2013; Jiang et al., 2017; Kumari et al., 2017).

High interstitial pressures in the fibrotic stroma of pancreatic
cancers, which results from high production of collagen and
HA, causes the collapse of the stromal vasculature in pancreatic
cancers and impedes exposure of tumor cells to chemo- and
immune therapies (Yu and Tannock, 2012). Multiple approaches
to target fibrotic stroma are therefore being tested to overcome
these delivery issues. One successful strategy is targeting HA.
Systemic administration of a recombinant sperm hyaluronidase
(PEGPH20), degrades hyaluronan in pancreatic cancer stroma
(Provenzano and Hingorani, 2013). This destruction decreases
interstitial fluid pressure, increases vasculature patency and
improves the delivery of gemcitabine. Importantly, these
hyaluronidase-mediated changes both decrease tumor volume
and increase animal survival in experimental models of
pancreatic cancer. PEGPH20 is now in phase III clinical trials
for pancreatic cancer (Doherty et al., 2018). An alternative to
the use of recombinant hyaluronidase has been of HA synthesis
inhibitors (e.g., 4-methylumbelliferone), which also inhibits

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 May 2018 | Volume 6 | Article 48

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


McCarthy et al. Hyaluronan, Cancer-Associated Fibroblasts and Malignant Progression

FIGURE 5 | Hyaluronan promotes CAFs motility toward tumor cells and tumor cell motility. CAF subsets produce hyaluronan as a motogenic stimulus for migrating

toward tumor cells. Hyaluronan binds to tumor cell subsets via hyaluronan receptors (RHAMM and CD44) contributing to the migration and invasion of CAF-guided

tumor cells.

tumor growth and could be used in alone or in combination
with hyaluronidase to improve therapeutic response (Kudo et al.,
2017).

CAF-targeted therapies are also being developed to blunt
their fibrosis-activated signaling. For example, a selective FAK
inhibitor (VS-4718) targets hyperactive FAK in stromal CAFs.
This inhibitor reduces fibrosis, decreases the number of tumor-
infiltrating immuno-suppressive cells and results in survival
doubling in mouse models of pancreatic ductal adenocarcinoma
(Jiang et al., 2016, 2017). Inhibiting FAK activation also increases
responsiveness to chemotherapy and immune checkpoint
inhibitors with resulting improved outcome. These pre-clinical
successes have led to phase 1 clinical trials using this FAK
inhibitor in combination with immune checkpoint inhibitors
(Jiang et al., 2017). While FAK hyper-activation is a key feature
of mechano-signaling in CAFs and provides a proof-of-concept
for targeting the microenvironment, stromal immune cells also
utilize FAK or the related PYK-2 for survival (Jiang et al.,
2017). Off target effects of VS-4718 could contribute to immune-
suppression and therefore compromise its effective utility in
humans (Jiang et al., 2016).

Active investigations are also underway to target CAF survival
in the fibrotic stroma. In contrast to carcinoma cells, CAFs are
genetically normal cells that have been co-opted and modified
by cancer cells into a state of constitutive activation. CAFs
therefore have a less plastic genome than tumor cells limiting
their ability to rapidly modify their genome but making them
an attractive candidate for stable responses to targeted therapy.
CAFs uniquely express FAP, which plays important roles in
CAF function (Lai et al., 2012; Koczorowska et al., 2016). In
vivo administration of a FAP enzyme inhibitor, Talabostat, in
tumor-bearingmice results in tumor regression and upregulation
of specific chemokines and cytokines that induce an anti-
tumor immune response (Cunningham, 2007). Talabostat is
well tolerated in healthy volunteers in both Phase I and II
clinical trials but does not result in therapeutic benefit. A

CAF-directed, anti-human FAP antibody, sibrotuzumab (Fischer
et al., 2012), exhibits specificity and activity in preclinical mouse
models (Fischer et al., 2012), and was well tolerated in early
Phase I/II clinical trials (Hofheinz et al., 2003; Scott et al.,
2003) but has failed to show therapeutic activity in patients
with metastatic disease. FAP-targeted chimeric antigen receptor
(CAR) T cells reduce ECM, vessel density, and growth of several
types of human cancer xenografts and murine pancreatic cancers
when introduced into mice by adoptive transfer (Wang et al.,
2014; Lo et al., 2015). This technology has not yet entered
clinical trials. FAP may be useful for targeting therapies to
CAFs. Potentially the development of therapies that impede
CAF survival/function in the circulation or their ability to
migrate/enter the circulation (e.g., HA/RHAMM) may be a more
promising approach.

In conclusion, despite recent advances in targeted therapies,
metastases, recurrence and relapse remain as major clinical
obstacles to successful cancer treatment. Carcinoma cell
epigenetic and genetic heterogeneity are important factors that
limit therapeutic efficacy. However, a wealth of studies has now
demonstrated that tumor-associated fibrotic stroma is also a
major contributing factor to therapeutic failure. The success of
new approaches to targeting tumor cells will in the future likely
have to include agents that compromise the pro-tumorigenic
fibrotic ECM.
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