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Here we present a theoretical and mathematical perspective on the process of aging. We

extend the concepts of physical space and time to an abstract, mathematically-defined

space, which we associate with a concept of “biological space-time” in which biological

dynamics may be represented. We hypothesize that biological dynamics, represented

as trajectories in biological space-time, may be used to model and study different rates

of biological aging. As a consequence of this hypothesis, we show how dilation or

contraction of time analogous to relativistic corrections of physical time resulting from

accelerated or decelerated biological dynamics may be used to study precipitous or

protracted aging. We show specific examples of how these principles may be used to

model different rates of aging, with an emphasis on cancer in aging. We discuss how

this theory may be tested or falsified, as well as novel concepts and implications of this

theory that may improve our interpretation of biological aging.
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1. INTRODUCTION

The connection between one’s chronological age and biological age is something that we all
perceive. In a sense, it is the difference between the age you “feel” and the age you are. Some
people look “young” for their age, while some become frail earlier than others (Ness et al., 2013).
Molecular “clocks” and markers of “biological age" can change throughout one’s lifetime. In some
cases, the rate of change of a person’s biological age is greater than the rate of change of their
chronological age. For instance, some cancers have been shown to increase biological aging, which
can be described as an increase in the speed of biological clocks (Horvath, 2013).

From a mathematical perspective, biological dynamics as they relate to aging are frequently
modeled as periodic or oscillating “clocks” describing, for example, circadian rhythms (Klerman
and Hilaire, 2007). When studied in isolation, biological clocks can be described and predicted
with periodic functions, which may speed up, slow down, or even stop and start over the course
of a persons’ lifetime. The more complex case of multiple integrated biological clocks can be
modeled with coupled oscillators and dynamical systems theory (Shiju and Sriram, 2017). However,
a fundamental assumption of these approaches is that the rate of change of these biological clocks
are measured with respect to a linear passage of time and that the rate is independent from the
biological space in which the biological clocks operate.

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2018.00055
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2018.00055&domain=pdf&date_stamp=2018-05-29
https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dmaestrini@coh.org
mailto:rrockne@coh.org
https://doi.org/10.3389/fcell.2018.00055
https://www.frontiersin.org/articles/10.3389/fcell.2018.00055/full
http://loop.frontiersin.org/people/503129/overview
http://loop.frontiersin.org/people/525076/overview
http://loop.frontiersin.org/people/559012/overview
http://loop.frontiersin.org/people/98029/overview
http://loop.frontiersin.org/people/542070/overview
http://loop.frontiersin.org/people/466832/overview
http://loop.frontiersin.org/people/525073/overview
http://loop.frontiersin.org/people/35033/overview
http://loop.frontiersin.org/people/525075/overview
http://loop.frontiersin.org/people/84767/overview


Maestrini et al. Aging in a Relativistic Biological Space-Time

Here we investigate a mathematical model of biological space-
time which includes the effects of time dilation and contraction
resulting from accelerated or decelerated biological clocks, which
may provide a new theoretical foundation and perspective on
rates of aging. The principle assumption of our model is that a
dynamic biological process may be represented as the motion
of a (massless) point along a trajectory on a manifold. We then
investigate the consequence of time dilation and contraction in
terms of accelerating or decelerating motion of the point along
the trajectory, and relate these concepts to rates of biological
aging, with a particular focus on aging in cancer. In particular,
we put forth the hypothesis that a biological space-time may
be used to model aging from an arbitrary biological viewpoint
relative to a common frame of reference. A consequence of
this hypothesis is that precipitous (faster than chronological
time) or protracted (slower) aging may be modeled as relativistic
corrections of dilation or contraction of time along the trajectory
on the manifold in which the biological aging process occurs.

To the best of our knowledge, only a few groups have proposed
similar concepts. Bailly and colleagues (Bailly et al., 2011; Longo
and Montévil, 2014) have proposed a mathematical definition
of “biological time" as a means to model biological rhythms
and periodic biological processes. However, they do not define
a biological “space" nor include the possibility of the dilation
or contraction of time. Systems biology pioneer Denis Noble
has proposed a theory of biological relativity, which asserts that
there is no “privileged level of causation" in biology (Noble,
2012). Nobel’s theory contends that biological processes occur
on many scales in space and in time, and that these scales are
coupled to each other and should not be separated; that no
single scale is responsible for the dynamics of the whole. Noble’s
theory implicitly couples space and time, but does not include a
definition of biological space or concept of dilation or contraction
of time. Consequently, our work is among the first to introduce
both the mathematical interpretation and specific concept of a
relativistic biological space-time to be used to study rates of
biological aging.

This manuscript is structured as follows: first we describe the
mathematical objects which we use to define biological space-
time. After defining the meaning of relativistic dynamics in
this context, we show how relativistic corrections of dilation
and contraction of time can be used to model precipitous
or protracted aging. We then show examples of how these
principles may be used to model aspects of the aging process
with a particular emphasis on aging in cancer. We discuss the
implications of this theory, including criteria that may be used to
test or falsify the theory and suggest novel biological quantities
that may improve our interpretation of biological aging.

2. BIOLOGICAL SPACE-TIME

Biology, and biological processes, are measured and observed in
our conventional notion and understanding of physical space.
Cells, tissues, and organisms move and change in a physical space
that we can measure with length and time scales in conventional
units. However, we may also consider the functional, or

phenotype space in which biological processes can be represented
as locations in the space. We refer to movement in a biological
space as a sequence of locations in the space that form a
trajectory. These general concepts have been used to characterize
biological states such as hematopoietic differentiation, where
2- or 3-dimensional representations of biological space are
constructed with dimension reduction techniques applied to
high-dimensional single cell RNA-sequencing data (Mojtahedi
et al., 2016; Nestorowa et al., 2016; Rizvi et al., 2017). The idea of
the relativity of aging is to apply the special relativity machinery
to provide a rigorously defined mathematical framework to
represent biological dynamics as trajectories on manifolds
moving at different acceleration rates relative to a common frame
of reference. In other words, the difference in aging between two
different people will be explained in terms of different dynamics
in biological space-time.

2.1. A Manifold M and Submanifolds Mi
In order to provide a conceptual picture of our mathematical
framework, we imagine the space related to a biological process
identified by the index i to be a smooth manifoldMi. A manifold
is a mathematical object that is locally, but not necessarily
globally, Euclidean. The canonical example of a manifold is the
Earth: locally flat, globally round. If a point on Earth represents
an unique locus, a point on Mi represents a unique possible
configuration or a state of a biological process. The evolution of
the biological process in time, is then represented by a collection
of points which form a curve, or trajectory, on the manifoldMi.
If the biological process does not change in time, the trajectory
degenerates to a point, with the consequent lack of motion in the
biological space. We then identify the i-th biological space-time
manifold by mathematically combining the time component and
the spatial components of the i-th biological process.

Given a subset Ui of a topological space (i.e., a set in which at
each point it is possible to associate a neighborhood) Mi, a di-
dimensional chart is an injective (one-to-one) function ϕi :Ui ⊂

Mi −→ R
di . A point qi on Mi is identified by a set of di

spatial coordinates (q1i , q
2
i , . . . q

di
i ). An atlas on Mi is the set

Ai =

{

ϕi,α :Ui,α −→ R
di
}

for some finite values of the index α,

where the union Ui,1 ∪ Ui,2 ∪ . . . is the whole spaceMi. A space
Mi equipped with an atlas Ai is a di-dimensional differential
manifold. For a more detailed discussion see (Tu, 2011).

A trajectory, or curve, γi onMi is a smooth map:

γi : Ii ⊂ R
+ −→ Mi

t 7−−−−→ γi(t) = qi(t) = (q1i (t), q
2
i (t), . . . , , q

di
i (t)). (1)

Here t ∈ Ii ⊂ R
+ is a parameter that is interpreted as the time

variable associated to the manifold Mi. The curve γi represents
the time evolution of the i-th biological process starting from
its beginning to its end (Figure 1). If the point qi(t) does not
change for all t ∈ Ii ⊂ R

+, the trajectory degenerates to a point.
We stress the fact that the variable t is a parameter by which is
possible to parametrize the curve γi(t).

Given the manifold R
+, we now define the i-th biological

space-time manifold Mi as the (di + 1)-dimensional Lorentzian
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FIGURE 1 | The trajectory γi on the manifold Mi represents the evolution of the i-th biological process which starts at qi (ai ) and ends at qi (bi ), where ai , bi ∈ R
+ . The

atlas Ai provides the connection with the Euclidean space R
2 identified by the two unit vectors ex and ey .

manifold given by the Cartesian product (the set of all ordered
pairs) (see Tu, 2011):

Mi = R
+ ×Mi=

{

(t, qi(t))|t ∈ R
+, qi(t) ∈ Mi

}

. (2)

A point Qi on the resulting manifold Mi is then identified by a

set of di + 1 coordinates (t, q1i (t), q
2
i (t), . . . , q

di
i (t)). The invariant

square of an infinitesimal line element between the pointsQi and
Qi + dQi, referred to as space-time interval, is then evaluated by:

ds2i =

di∑

µ,ν=0

gi,µνdQ
µ
i dQ

ν
i , (3)

where gi,µν is the metric tensor of the i-th biological
manifold whose entries are functions of the local coordinates,
(t, q1i (t), q

2
i (t), . . . , q

di
i (t)). Since the metric tensor is an intrinsic

property of the manifold, its provides information on the
geometry of the manifold and vice-versa. It is therefore a key
quantity which characterizes the biological space-time and it can
be evaluated once the structure of the manifold is known or
hypothesized.What we emphasize is that the notion of distance is
not necessarily the usual Euclidean distance and therefore, when
dealing with biological processes, distances can be measured only
once the entries of the metric tensor are known.

Since a large number of biological processes take place in
the body of an individual, we assume the existence of several
manifolds which may be indexed Mi and associated with
individual or aggregate biological processes. We then consider all
such biological processes by constructing the following manifold:

M = M1×M2×· · ·×MN , dim(M) =

N
∑

i=1

di = m. (4)

A point q on M is then identified by the set of coordinates
(q1, q2, . . . , qN) where each qi ∈ Mi, i = 1, 2, . . . ,N and it

represents a possible configuration, or state, in which the human
body can be found. Following the definition given by Equation
(1), a trajectory Ŵ onM is a smooth map:

Ŵ : I ⊂ R
+ −→ M

t 7−−−−→ γ (t) = q(t) = (q1(t), q2(t), . . . , qN(t)), (5)

where t ∈ I ⊂ R
+ is a parameter that is interpreted as the

time variable associated to the manifold M and the curve Ŵ

represents the entire life of a person from its birth, to its death.
The connection between the curve Ŵ on M and the curve γi
on Mi will be clarified later, when the projection map will be
introduced.

In analogy with Equation (2), the biological space-time M for
all biological processes occurring in a body of an individual is
then defined by them+1-dimensional Lorentzianmanifold given
by:

M = R
+ ×M=

{

(t, q(t))|t ∈ R
+, q(t) ∈ M

}

. (6)

We consider the Cartesian product M = R
+ × M instead of

M = M1 × M2 × · · · × MN because in the latter case it is
unclear how all time variables, one per each submanifoldMi, will
combine together and define the time on the resulting manifold
M. A point Q on the manifold M is then identified by a set of
coordinates as follows:

Q = (

∈R
+

︷︸︸︷

t , q11, q
2
1, . . . q

d1
1

︸ ︷︷ ︸

∈M1

, q12, q
2
2, . . . q

d2
2

︸ ︷︷ ︸

∈M2

, . . . , q1N , q
2
N , . . . q

dN
N

︸ ︷︷ ︸

∈MN

).

(7)
The idea for which time flows at different rates for different
biological processes is now mathematically modeled by
introducing a set of projection maps 5i such that:

5i : R
+ ×M −→ R

+ ×Mi

Q 7−−→ Qi = 5i(Q) = (τi(t) = ti,πi(q) = qi), (8)
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where the spatial part πi :M −→ Mi is the canonical projection
map which maps the curve Ŵ on M onto the curve γi on Mi

while the temporal part τi : R
+ −→ R

+ provides the connection
between the time t on the manifold M and the time ti on the i-th
manifold Mi (Figure 2).

We emphasize that the relationship between t and ti is not
necessary linear. In fact, in the next section we will show that
the time measured in a particular manifold depends upon the
acceleration of the particle along a trajectory and it will produce
a non-linear relation between t and ti.

2.1.1. Example: Decomposing the Torus
We now provide a simple example which can be easily visualized
in a three-dimensional space. We consider a manifold, the torus
embedded in the three dimensional space R

3, which can be
decomposed into two circles, the two submanifolds. In this
particular example, this is the only possible decomposition (Tu,
2011).

The torus, embedded in R
3, is defined by the following set of

equations:








x(θ ,φ) = (R+ r cos θ) cosφ

y(θ ,φ) = (R+ r cos θ) sinφ

z(θ ,φ) = r sinφ

(9)

and is decomposed into the two submanifolds S11 and S
1
2 given by:

S11 =
{

reiθ : θ ∈ [0, 2π)
}

, S12 =
{

Reiφ : φ ∈ [0, 2π)
}

, (10)

where, θ identifies the poloidal direction (along the orange
vertical circle in Figure 2), φ identifies the toroidal direction
(along the blue horizontal circle in Figure 2), R the major
radius (distance from the center of the torus), and r < R is
the minor radius of the torus (radius of the tube). These two

circles can represent two submanifolds related to two different
biological processes, and their Cartesian product produces the
torus. Therefore, the two biological space-times associated to this
particular example, and hence to these two biological processes,
will be given M1 = R

+ × S11 and M2 = R
+ × S12. A trajectory Ŵ

on the torus, identified by the equations:









x(t) = (R+ r cos(2πnt)) cos(2πmt)

y(t) = (R+ r cos(2πnt)) sin(2πmt)

z(t) = r sin(2πmt)

(11)

where t ∈ R
+, is then decomposed onto two trajectories:

s1(t) =
{

re2πnit : t ∈ [0, 1) ⊂ R
+
}

,

s2(t) =
{

Re2πmit
: t ∈ [0, 1) ⊂ R

+
}

, (12)

where n and m are the winding numbers associated with
the poloidal and toroidal directions, respectively. The two
submanifolds (two circles) have two different trajectories defined
by Equation (12). However, when their Cartesian product is
considered, the resulting manifold (the torus) has a single unique
trajectory on it defined by Equation (11). In this particular
example, the magnitude of the velocity and the acceleration of
the projected motion on the two submanifolds are given by:

{

v1 = 2nπr

v2 = 2mπR
and

{

a1 = 4n2π2r

a2 = 4m2π2R
(13)

which implies a2 > a1 for the same value of n and m.
The position, the velocity and the acceleration on the torus
are projected onto the two subspaces in which the dynamics
are identified by different values for the position, velocity and

FIGURE 2 | A torus is shown as an example of a possible biological space-time manifold that may be decomposed into submanifolds. The time R
+ is represented by

the vertical arrows. The torus is decomposed into the two circles (submanifolds) M1 = S11 and M2 = S12. The point Q0 at time t0 is mapped onto the points Q1,0 and

Q2,0 while the point Q1 at time t1 is mapped onto the points Q1,1 and Q2,1 in the two space-time submanifolds M1 = R
+ × S11 and M2 = R

+ × S12. The

trajectory on the torus is then mapped onto two different trajectories on the two circles from the initial point (green circle) to the final point (red circle).
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acceleration. If in Equation (11) we set m = 0, the trajectory
reduces to a circle around the poloidal direction. In this case,
Equation (13) become:

{

v1 = 2nπr

v2 = 0
and

{

a1 = 4n2π2r

a2 = 0
(14)

This example shows that there can be motion on the torus and
on one submanifold, but an absence of motion on the other
submanifold.

The example of the torus illustrates how trajectories
on submanifolds (e.g., representations of different biological
dynamics) with different accelerations may be combined and
interpreted as a single trajectory on a larger manifold, and vice
versa. It must be noted that in this decomposition, the time t
in the submanifolds is a parameter along the curve and not the
biological time. In fact, as we will see in the next section, because
the accelerations in the two submanifolds are different we expect
time to flow at different rates in each submanifold.

3. DILATION AND CONTRACTION OF TIME

The fact that the Maxwell’s equations are invariant under
the Lorentz transformation implies that any inertial observer
will measure light moving at the same constant speed c.
Moreover, the Lorentz transformations define an invariant
quantity, called proper time, which represents a space-time
interval which assumes the same value for any inertial (non-
accelerating) observer. In physics, the presence of fundamental
equations such Maxwell’s equations, helps us in understanding
the type of coordinate transformations that leave the equations
unchanged and can be used to define invariant quantities.
Here, we deal with a biological space-time for which the
existence of fundamental equations, coordinate transformations,
and corresponding invariant quantities, are unknown.

Although many investigators have posed the question of
whether or not governing laws exist in biology (Ruse, 1970;
Brandon, 1997; Wagner, 2017), we contend this question has
yet to be conclusively answered. Rather, we believe a more
fundamental question is to investigate the nature of the space-
time in which any biological phenomenon occurs. In the context
of Special Relativity, it has been shown by Levy-Leblond (1976)
that if the space is homogeneous and isotropic, the Lorentz
transformations are characterized by a parameter with the
dimensions of a velocity which is an intrinsic property of the
space. Moreover, the meaning of this parameter is related to
the maximum velocity at which information can travel or be
transmitted (Brunner et al., 2004) and this velocity turns out to
be the speed of light c.

3.1. Biological Invariants and Information
Although information in the context of biological processes can
not be easily defined (Gatenby and Frieden, 2007), it can be
related to the efficiency in the conversion of energy into order
(Frieden and Gatenby, 2011). In our biological context, assuming
our biological space-time to be homogeneous and isotropic, there
will be a parameter analogous to c, denoted by c̃, which can

be related to the rate of conversion of energy into order. We
stress the fact that, although we are not sure about the meaning
of information in this particular context, we assume that the
meaning of c̃ is to provide an upper limit for the information to
be transmitted. This upper limit is what we believe is an invariant
quantity in the biological space-time.

As described in section 2.1, a point q ∈ M defines the state
of a biological process. In what follows we assume the manifold
to be a flat plane and to be constructed such that two points q(t)
and q(t + dt) represent the information of the system at time t
and t + dt, respectively (see Figure 3). The existence of a value
c̃ defines a circular region �, centered at q(t) with boundary
∂� given by the circumference with radius r = c̃dt, such that
||q(t)− q(t + dt)|| < c̃dt. In other words, the value of c̃ defines a
front of information which propagates in time along themanifold
(see Figure 3). In the case of a generic manifoldM, we will have
a generic region � bounded by a curve ∂� which will depend
on the geometry of the manifold. In this case the distance can
be evaluated once the metric tensor gµν is known. Moreover, the
existence of such a parameter defines the non-relativistic and the
relativistic limits in this context. The former occurs for velocities
v << c̃ while the latter occurs for velocities v ∼ c̃ (see Figure 3,
top and bottom left). In analogy with the Special Relativity case,
we refer to relativistic corrections, as those corrections which
need to be made in order to correctly describe and characterize
the dynamics of the moving particle with velocity v ∼ c̃. We want
to clarify the fact that at this stage we do not have a procedure to
build a manifold for a given biological process, rather, we assume
the existence of the manifold.

3.2. Special Relativity and Biological
Processes
Special relativity is universally recognized as a theory which
describes properties of the ordinary space-time in which physical
phenomena occur. In the case of a biological process, unlike the
physical phenomenon, the biological space-time is not known
a priori and it needs to be mathematically constructed. In this
section we assume the existence of such a space and we consider
the motion of two frames of reference whose coordinates are
related by a set of coordinate transformations. In particular
we investigate the dilation and contraction of biological time
resulting from accelerated motions. This approach is used to
model and to explore different rates of aging.

As shown by Levy-Leblond (1976), Lorentz transformations
are the only set of transformations of coordinates in a
homogeneous and isotropic space which also preserve the group
structure and the causality condition. Therefore, assuming our
space to be homogeneous and isotropic, we assume their validity
also in a biological space-time. In this case, instead of the speed of
light c, the Lorentz transformations will depend on the biological
invariant c̃.

We consider two frames of reference S and S′ in the flat
Minkowski (the space given by considering the time component
and the ordinary three-dimensional space) space-time M4 =

R × R
3. In general, the motion of a particle is along a curvilinear

trajectory, and the two frames of reference can be in a relative
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FIGURE 3 | Top left. Representation of the information front ∂� propagating at speed v = c̃ from the center of the disk � on the flat plane M. The distance traveled

by a point in the interval of time dt is given by ||q(t+ dt)− q(t)|| and it will be always less than c̃dt (dashed yellow line), where c̃ is the maximum speed of information.

Bottom left. The analogous of the relativistic corrections are needed if we want to fully characterize the dynamics of a particle which is moving at speed v ∼ c̃ Right.

In the case of a generic manifold M the information front ∂� will be the boundary of a region �.

motion like the one represented in Figure 4 on the left. However,
for simplicity, we assume a relative motion with a constant
relative velocity v along the x-direction.We denote with (t, x, y, z)
and (t′, x′, y′, z′) an event recorded by S and S′, respectively. These
two events are linked by the Lorentz transformations

x′ = γ (x− vt), y′ = y, z′ = z, t′ = γ

(

t −
vx

c̃2

)

,

γ =
1

√

1− v2/c̃2
, (15)

where γ > 1 is the Lorentz factor and c̃ is the biological invariant
previously introduced. It is straightforward to show that these
transformations leave invariant the space-time interval dτ 2 =

c̃2dt2 − dx2 − dy2 − dz2 which we will call biological proper
time. The invariance of the biological proper time will lead, also
for biological systems, to the well known phenomenon of time
dilation:

dt′ = γ dt. (16)

The time interval dt′ measured from an observer in motion
is dilated by the factor γ and we say that a moving clock runs
slower. It has to be remarked that this effect is reciprocal when
both frames of reference are inertial (there is a relative motion
at constant speed between them). In that case, no preferred
frame of reference exists and each observer can argue that the
other one is moving. For this reason, we do consider accelerating
frames of reference in which this ambiguity is solved. We now
consider the particular case in which a point is moving along a
straight line oriented along the x-axis with a constant acceleration
a′x (Figure 4 on the right). We assume S′ to be located at the
position of the particle and therefore, its velocity is the same
as the velocity of the particle and it increases in time. In this
particular situation, it can be shown, (see Appendix A), that the
time t′ of the accelerated particle, and hence in the accelerated

frame of reference, is given by:

t′ =
c̃

a′x
arcsinh

(
a′xt

c̃

)

. (17)

This equation tells us howmuch time t′ elapses in the accelerated
frame of reference S′, in terms of the time t elapsed in the
inertial frame of reference S. This function represents the time
component τi(t) of the projectionmap5i introduced in Equation
(8). In the case of an accelerating frame of reference, the
phenomenon of time dilation is not reciprocal and the observer
in the frame of reference S′ who experiences the constant
acceleration cannot argue that the other observer is moving and
he is still. Therefore, the time t′ of the accelerating frame of
reference measured from the observer at rest in the frame of
reference S appears to run slower according to Equation (17). In
what follows we will apply this idea to few biological processes
always assuming that the time dilation is described by Equation
(17).

3.3. Biological Age
Many markers have been used to define biological age. In our
modeling framework, biological time is defined as the rate
at which biological processes take place, as measured against
chronological time. Therefore, our model characterizes one’s
biological age by the degree of dilation or contraction of time
resulting from the acceleration or deceleration of biological
processes that are associated with biological age.

One marker of biological age is the methlyation state
of the genome, composed of varying degrees of hyper- or
hypomethlyated states (Bocklandt et al., 2011; Horvath, 2013).
The “epigenome" is a component of gene regulation and has
been proposed to contain information relevant to the overall
state of the biological system (Jenkinson et al., 2017). Linear age-
related epigenetic drift has been associated with cancer incidence
(Curtius et al., 2016), and statistical methods have been proposed
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FIGURE 4 | On the left) The particle (purple dot) is moving along a trajectory with velocity u and acceleration a. On the right) The frame of reference S′ is moving at

constant velocity v away from S: the components of the velocity and the acceleration of the particle in these two frames of references are related by Equations (A.1)

and (A.2).

to identify deviation from time linearity in epigenetic aging,
althoughwithout a theoretical rationale to describe—or predict—
the nature of the non-linearity (Snir et al., 2016).

In order to explain the process of changing methylation states
with age, and the use of methylation state as a surrogate marker of
biological age with our model, we first consider the trajectory on
a manifold which describes the methylation process of a living
person and we assume that this trajectory is mapped onto a
straight line in theMinkowski space.We now consider one frame
of reference S at rest in the origin of the trajectory and one frame
of reference S′ that is moving at constant acceleration a′x for
which the time t′ is given by Equation (17). We then assume that
the frame of reference slows down to an acceleration a′′x < a′x for
which the time is t′′ and it is given by Equation (17). We define
the rate of methylation dM/dt′ and dM/dt′′ when the frame of
reference moves with acceleration equal to a′x and a

′′
x , respectively

and we have:

dM

dt′
=

dM

dt

dt

dt′
,

dM

dt′′
=

dM

dt

dt

dt′′
. (18)

If a′x > a′′x it can be shown that dt′/dt < dt′′/dt, and therefore,
we conclude that:

dM

dt′
>

dM

dt′′
. (19)

The slowing down of the rate of demethylation is therefore
interpreted as a decelerating frame of reference. We note that
this model does not assume any specific functional form for
the methylation trajectory. In fact, during the lifetime of a
person, Equation (18) permits the acceleration or deceleration
of age-related changes to the methylation state, which can be
accentuated or modified in the context of cancer.

4. EXAMPLES OF SPACE-TIME DYNAMICS
IN BIOLOGY

In this section we connect our model to different rates of aging
between individuals, and discuss examples of precipitous or
protracted aging within an individual.

4.1. Aging
We define aging as the functional and structural decline of an
organism, resulting in an increasing risk of disease, impairment
and mortality over time. At the molecular and cellular level
several hallmarks of aging have been proposed to define common
characteristics of aging in mammals (López-Otín et al., 2013).
These hallmarks include: genomic instability, telomere attrition,
epigenetic alterations, loss of proteostasis, altered nutrient-
sensing, mitochondrial dysfunction, cellular senescence, stem cell
exhaustion and altered cell-cell communication. These processes
are interdependent and influenced by cell microenvironmental
cues.

Ultimately, the rate of age-related decline varies depending
on how genetic variation, environmental exposure and lifestyle
factors impact these mechanisms. Consequently, age, when
measured chronologically, is often not a reliable indicator of the
body’s rate of decline or physiological breakdown. Over the years,
the idea of quantifying the “biological age" based on biomarkers
for cellular and systemic changes that accompany the aging
process have been explored (Levine, 2013), although without a
rigorous mathematical treatment of biological age. Major efforts
have been made to dissect the individual contribution of each of
these hallmarks and factors on aging, but the major challenge
remains how to determine how their interconnectedness as a
whole impacts the aging dynamics. Here we connect concepts in
our mathematical model to biological and chronological aging.
We note that for the sake of clarity, we will refer to aging
as precipitous (faster than chronological aging) or protracted
(slower) in order to clearly associate the terms “accelerated" and
“decelerated" to quantities in our modeling framework.

As we derived in the previous section, an unambiguous time
dilation effect requires an accelerating frame of reference. We
now imagine a range of accelerations representing a distribution
within a population between the values amin and amax (green
region in Figure 5 on the left). The dashed and dotted curves
corresponds to Equation (17) by using the values amin and amax,
respectively. Any acceleration within this range will correspond
to a curve in the green region. An interval of time 1t on the x-
axes corresponds to a reduced interval of time 1t′ on the y-axis
and therefore, the ticking of the second clock is slowed down. The
existence of a distribution, or range of values of acceleration is
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FIGURE 5 | On the left) For an accelerating frame of reference a time interval 1t = 1 corresponds to shorter 1t′ with an consequent dilation of time. The green region

represents a distribution of accelerations associated with an average range of accelerations that is used as a common reference for accelerated and decelerated

processes. Smaller values of the acceleration are related to time contraction (pink region, a′x < a′
min

) while large values are associated with time dilation (blue region,

a′x > a′max ). On the right) In the mental illustration of the lifetime of Bob, a deceleration will bend Bob’s trajectory (black line with red diamonds markers) out of the

green region with a corresponding contraction of time.

necessary to capture both features of time dilation, (green region
in Figure 5 on the left) and time contraction, when the value of
the acceleration is less than amin (pink region). Moreover, values
of the acceleration much larger than amax can be used to define
the arrest of biological time such as in a hibernating state or
cryogenic freezing (blue region). The case of zero acceleration
is given by Equation (16) and is not considered in this model
context.

4.1.1. Alice and Bob
We illustrate the contraction and dilation of time in biological
space-time (i.e., on a submanifold) and how they can be
related to the presence of a disease, we consider the following
thought experiment involving Alice and Bob, two individuals
with different rates of aging. For simplicity, we assume that their
dynamics occur on a flat torus T 2 defined as the Cartesian R

2

plane under the identifications (x, y) ∼ (x+ 2π , y) ∼ (x, y+ 2π).
The opposite edges x, x + 2π and y, y + 2π of the domain are
identified and therefore, they must be interpreted as the same
point (see red and blue edges in Figure 6). In other words, the
trajectory that comes out from the right edge of the plane, will
come in from the left edge and the same applies from the upper
and lower part of the plane. In this case, the manifold is trivially
mapped into R

2 with the identity map, and hence the dynamics
on the manifold corresponds to the dynamics in the Minkowski
space-time.

The point on the manifold corresponding to the birth of Alice
and Bob is indicated in Figure 6 by the green circle in which we
assume to place a frame of reference S identified by the three unit
vectors (ex, ey, ez). The dynamics of Alice is represented by the
motion of a purple point in which we imagine to place a frame
of reference S′A. We also assume that the point is moving along
a straight line with constant acceleration given by a′A = a′Ae

′
x.

The same conditions apply to Bob, but in this case the frame
of reference is S′B and the particle is moving with a constant
acceleration a′B = a′Be

′
x (see Figure 6).

We now can apply the results obtained in the previous section
to infer that the time in S′A and S′B are given by Equation (17):

t′A =
c̃

a′A
arcsinh

(
a′At

c̃

)

, t′B =
c̃

a′B
arcsinh

(
a′Bt

c̃

)

. (20)

Assuming the acceleration of Alice to lie within the range

[amin, amax], her proper time t′A lies in the green region (see
Figure 5 on the right). On the other hand, Bob’s frame of
reference is moving with acceleration a′B < a′A and its proper
time t′B > t′A deviates from the green region toward an older
biological age in the pink region. With respect to Alice, Bob is
moving with a slower acceleration and hence, his clock is running
faster, resulting in a time contraction with respect to Alice’s clock.
If instead we assume a′B > a′A, Bob’s proper time t′B will be larger
than t′A and it deviates from the green toward the blue region. In
this case Bob’s clock will run slowwith a consequent more evident
effect of time dilation. Therefore, different rates of aging could
be generally compared between individuals by determining their
accelerations as compared to a frame of reference at rest.

We now consider only Bob and we assume his frame
of reference S′B to have an acceleration a′1 within the range
[a′min, a

′
max]. Suddenly, his acceleration is decreasing to the value

a′2 and we therefore want to know what will happen to its proper
time t′. In particular we hypothesize the acceleration to change as
follows:

a′B =







a′1 t < t1
α + β cos(π(t1 − t)/(t2 − t1)) t1 ≤ t ≤ t2
a′2 t > t2
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FIGURE 6 | The flat torus T 2 in which the dynamics of Alice (S′
A
) and Bob (S′

B
) occur along the straight dotted line. The green and the purple dots represent their

birth and their actual position on the manifold. The effect of time dilation is more evident for Alice whose frame of reference moves at higher acceleration.

where α = (a′1+a′2)/2 and β = (a′1−a′2)/2. By solving Equations
(A.5) and (17) we obtain the time t′ for the decelerating frame of
reference shown in Figure 5 on the right: the line marked with
green circles and the line with violet squared markers represent
the trajectory corresponding to the accelerations a′1 and a′2,
respectively. However, due to the deceleration, the line marked
with red diamonds will not follow the line with the green circles
but it will move outside the green region. The deceleration of
Bob’s frame of reference is reflected to a contraction of time while
a larger time dilation is a consequence of a frame of reference with
an increasing acceleration.

4.2. Cancer as Inducer of Precipitous Aging
Major pathologies, such as cancer, diabetes, cardiovascular
disorders and neurodegenerative diseases have an impact on
aging. Cancer and chemotherapy in particular are known to
accelerate the aging process (Alfano et al., 2017). As described
above, aging involves multiple complex changes at molecular and
cellular level that lead to decline in physiologic reserve capacity
across virtually all organ systems (Seals et al., 2016). In cancer,
accumulation of cellular damage aggravates the hallmarks of
aging and accelerates aging. In cancer patients, the trajectory
of decline worsens not only because of the direct physiologic
insult inflicted by cancer, but also because of the injuries induced
by anti-cancer therapies, such as chemotherapy or radiation, to
systems that maintain physiologic reserves (Koelwyn et al., 2012;
Hurria et al., 2016). In this context, there is a dose-dependent
effect, whereby the more intensive the treatment of cancer or
more vulnerable and frail the physiologic state, the steeper the
decline in physiologic reserves (Henderson et al., 2014; Kohanski
et al., 2016). Below, we use these two variables, intensity of
therapy and frailty, to illustrate our model of accelerated aging.

It is not surprising that the two cancer populations most
affected by precipitous aging caused by cancer are survivors of

childhood cancer who are typically exposed to intensive multi-
agent therapy at a young age (Henderson et al., 2014; Ness
et al., 2015) and adult patients who undergo hematopoietic cell
transplantation (HCT) for refractory hematologic malignancies
(Arora et al., 2016). These two scenarios can be explained by
our model as follows. The early onset of advanced biological
age in childhood cancers corresponds to a rapid contraction
of time that deviates away from the green region, similar to
Bob’s modified trajectory, but with an earlier onset (see Figure 5
on the right). The case of allogeneic HCT, in which case the
transplanted cells come from another person, corresponds to a
discontinuity in biological space-time. The recipient’s trajectory
on the hematopoietic manifold and/or the biological age is reset
to that of the donor. If the biological ages of the donor and
recipient of the HCT do not agree, the recipient will experience
an abrupt and persistent change in the rate of biological aging
corresponding to the discontinuity in both biological space and
time.

Frailty, characterized by a cluster of measurements of physical
states, is the best described measure of aging in a population,
and identifies individuals who are highly vulnerable to adverse
health outcomes and premature mortality. Although frailty is
not a perfect corollary with biological age, it is a measure of
abnormal aging at a population level. In long-term survivors of
childhood cancer [median age 33 years (range 18–50 years)],
the prevalence of frailty (Rockwood and Mitnitski, 2011) has
been shown to be comparable to that reported among adults
greater than 65 years of age (Ness et al., 2013). Comparable
high rates have been reported in adult survivors of HCT (Arora
et al., 2016). In fact, frail HCT recipients have a three-fold
increased risk of subsequent mortality compared with the non-
frail counterparts, (Arora et al., 2016) which is similar to
the downstream consequences of frailty seen in the general
population such as adverse health outcomes (Rockwood and
Mitnitski, 2011), and early mortality (Fried et al., 2001; Hogan
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et al., 2003). From the lens of our model, frailty can be associated
with a biological age and therefore defined as a threshold in time
(t′
f
) so that the onset of frailty in the cancer population (tc, t

′
f
)

will appear sooner relative to the general population (tg , t
′
f
) where

tc < tg .

4.2.1. Chronic Inflammation
The normal process of aging is associated with chronic low
grade inflammation and with cumulative oxidative stress,
independently of disease. Inflammation and oxidative stress are
critical responses in host defense and injury repair and are
essential for normal body functions. However, with advanced age
there is a loss of sensitivity in the injury-repair cycle leading
to persistent chronic inflammation, and a natural decline in
the endogenous anti-oxidant capacity leading to cumulative
oxidative stress (Mittal et al., 2014). These two process are
interdependent, and contribute to the hallmarks of aging,
influencing telomere length, mitochondrial function, epigenetics
and stem cell self-renewal.

Chronic inflammation and oxidative stress are also common
underlying factors of age-associated diseases. Inflammation,
particularly chronic low-grade inflammation, has been found
to contribute to the initiation and progression of multiple
age-related pathologies such as type II Diabetes, Alzheimer’s
disease, cardiovascular disease and cancer (Mantovani et al.,
2008). In addition, chronic diseases, and in particular cancer,
elicit and promote an inflammatory tumor microenvironment
that increases cancer fitness. Therefore, chronic inflammation
has been suggested to underlie and accelerate biological aging
(Fougère et al., 2017), in particular when associated with disease.
The concept of “inflamm-aging,” inflammation-associated aging,
can be used to provide a systemic perspective of biological aging
in the human population (Franceschi et al., 2007).

On the level of tissue homeostasis, the best characterized
example is hematopoietic aging associated with chronic
inflammatory signaling in the bone marrow microenvironment.
In fact, the “age" of a young hematopoietic stem cell can
be “reprogrammed" when transplanted into an aged or
inflammatory environment (Kovtonyuk et al., 2016), highlighting
the impact of "inflamm-aging" and the plasticity of molecular
clocks. Aging is associated with clonal hematopoiesis and
accumulation of mutations in hematopoietic progenitors
(Steensma et al., 2015), likely due to the underlying inflammation
in the aged bone marrow niche. Indeed, an inflamed bone
marrow can induce pre-leukemic conditions in mice similar
to those occurring in elderly patients (Wang et al., 2014;
Dong et al., 2016). Our model can be applied to measure how
microenvironmental cues, such as inflammation, impact aging
of hematopoietic cells.

4.3. Protracted Aging
In contrast to precipitous biological aging which corresponds to
the contraction of biological time, protracted aging corresponds
to the dilation of biological time. This can be illustrated by
prolonged periods of near zero biological activity, for instance
in freezing conditions or hibernation which is part of a
continuum of biological and metabolic states (van Breukelen and
Martin, 2015). How can this situation be explained in a relativistic

framework? We imagine a cryogenic-manifold mapped onto a
Minkowski space. If in this space the frame of reference is
moving with a high acceleration in the direction of motion
then the interval of time in its frame of reference tends to
zero: a frozen cell corresponds to a frame of reference moving
at very large acceleration relative to its unfrozen state on this
particular biological manifold. Figure 5 shows the limiting case
of a near perfectly frozen (cryogenic) biological process (blue
region), which would correspond to an extreme dilation of time,
or equivalently, a very large relativistic correction.

5. DISCUSSION

Here we have investigated a mathematical model of biological
aging. We define a biological space-time by mathematically
combining manifolds and submanifolds, and apply the principles
of relativity to compare different rates of biological aging.
We illustrate the concepts of precipitous and protracted aging
as relativistic corrections of biological time with a mental
illustration comparing the lifespans of two individuals, Bob
and Alice. This analogy provides a framework to compare the
rates of aging between individuals by determining their rate of
acceleration as compared to a common frame of reference.

A critical component of our theory is the construction of
“biological space-time,” hence a submanifold that represents a
biological process. Following the work of (Levy-Leblond, 1976)
we believe that the “biological space-time" should have the
properties of being homogeneous and isotropic. If we also require
that the transformations between frames of reference in this
space preserve the group composition law and causality, the
transformations are characterized by a parameter c̃, that has
the dimensions of a velocity, which is an intrinsic property of
the space (Levy-Leblond, 1976). In analogy with the case of the
Lorentz transformation for which this parameter is the speed of
light c and it represents the upper limit for the information to be
transmitted (Brunner et al., 2004), we believe that c̃ represents the
maximum speed at which information can be transmitted in the
biological space-time. However, it might be possible that a space
which satisfies the above constraints can not be built and hence,
our theory would not apply.

On the other hand, given our ability to determine the value of
c̃ and to represent dynamics along a trajectory on a manifold, our
theory can be falsified or verified by considering the following
cases. The first case occurs if the particle on the manifold
moves with a constant velocity v. In this case, no accelerations
are present and hence our theory based on accelerations does
not apply. The second case takes place if the particle has an
acceleration but its velocity v << c̃. The particle is in a
non-relativistic regime and hence, relativistic corrections are
not needed. On the other hand, if accelerations are present
and if v ∼ c̃, we are in the relativistic regime and hence,
relativistic corrections must be taken into account if we want to
properly describe the dynamics on the manifold. We note that
we construct this theory with the intention of using it to better
understand biological aging. We therefore postulate that a c̃may
exist—or be assumed—on the same scale of observed velocities
from human aging data so that we may use the theory to better
study the data.
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Once the submanifolds are constructed, then it is always
possible to combine them considering their Cartesian product
defined by Equation (4). Given our ability to construct these
submanifolds, the comparison between the dynamics along
different trajectories can be done if and only if they do belong
to the same submanifold. So for example, if we are interested
in comparing different rates of aging of two individuals with
respect to the methylation status, we will need to construct
the methylation status manifold, evaluate the trajectories of
their methylation status in time, and analyze the dynamics
on each of them. In particular, the comparison between the
accelerations along both trajectories may help in understanding
the difference between the rate of aging of the two individuals.
In this sense, the importance is the different dynamics along
each trajectory and not the fact that there are two different
trajectories.

Other groups have proposed a framework for biological
time to explain biological rhythms and other oscillating or
biological processes that repeat periodically (Bailly et al., 2011).
Our biological space-time model is more general, and is aimed
towards explaining non-linear biological phenomena that are
not necessarily periodic or oscillating, although these can be
considered special cases of more generalized trajectories. In
complement to Noble’s hypothesis that there exists no privileged
level of causation in biology (Noble, 2012), we suggest that the
multiple scales of biology may be interpreted as trajectories on
distinct manifolds that may be combined and coupled to each
other. Although generalizations of relativity and space-time have
been proposed, here we adapt these mathematical structures
in order to interpret trajectories on manifolds to represent
biological processes (O’Neill, 1983). We want to note that, as
described in section 2.1.1, there can be submanifolds in which the
velocity and the acceleration are identically zero. However, this
does not imply an absence of motion on the other submanifolds
(the other circle S12) or on the principal manifold (the torus). In
this case, it will be impossible to draw any conclusion about the
possible difference between chronological and biological time for
the process that takes place in the manifold in which the velocity,
and hence the acceleration, is zero.

A novel concept which naturally follows from our approach
is the notion of force in a biological context. A biological force
may be a generalization of a physical force in a biological context
which changes the dynamics of a particle on a manifold. We
may hypothesize then, that accelerated dynamics on themanifold
may be the effect of biological forces acting on the particle.
For example, cancer and chemotherapy may be interpreted as
forces which combine and have a resultant which may change the
dynamics of the point on a manifold with a consequent impact
on the rate of aging.

The shape of the manifolds which characterize biological
space-time also affect our notion of distance, which requires
the knowledge of the metric tensor of the manifold. Although
a manifold is defined to be locally Euclidean, two biological
processes or objects that are sufficiently different from each other
(in space-time) may not be measured by using the conventional
definition of Euclidean distance. The degree to which we must
redefine our notion of a metric in the biological space-time may

also affect our ability to interpret long-time dynamical behaviors
of biological systems and whether or not relativistic corrections
are required in order to properly analyze these dynamics.
We therefore hypothesize that the underlying geometry of the
manifold, or equivalently, the elements and structure of the
metric tensor, may provide valuable insights into the biological
process.

6. SUMMARY

In summary, we have proposed a mathematical framework and
criteria that may be used to define and construct a biological
space-time. We use this as a tool to model and study different
rates of biological aging based on the concept of relativistic
corrections of time due to the acceleration or deceleration of
biological dynamics relative to a common frame of reference. We
discuss some examples of biological processes that illustrate these
concepts, provide criteria that may be used to test or falsify the
theory, and discuss implications and novel hypotheses that are
generated by this model.
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APPENDIX A

By differentiating Equation (15) we obtain the transformations
for the velocity

u′x =
dx′

dt′
=

dx− vdt

dt − vdx/c̃2
=

ux − v

1− vux/c̃2
,

u′y =
dy′

dt′
=

uy

1− vux/c̃2
,

u′z =
dz′

dt′
=

uz

1− vux/c̃2
. (A.1)

where ux = dx/dt, ux = dx/dt and ux = dx/dt are the velocities
along the corresponding direction. An additional differentiation
leads to the transformations of the acceleration

a′x =
du′x
dt′

=
du′x
dt

dt

dt′
=

ax
(

1− vux/c̃
2
)

+ (ux − v)
(

vax/c̃
2
)

γ (1− vux/c̃2)3

=
ax(1− v2/c2)

γ (1− vux/c̃2)3
=

ax

γ 3(1− vux/c̃2)3

a′y =
ay

γ 2(1− vux/c̃2)2
−

uyvax/c̃
2

γ (1− vux/c̃2)3
,

a′z =
az

γ 2(1− vux/c̃2)2
−

uyvax/c̃
2

γ (1− vux/c̃2)3
, (A.2)

where we have evaluated dt′/dt by considering the last of
Equation (15) and we used the definition of the Lorentz factor
γ . The sets of Equation (A.1) and (A.2) provide the connection
between the velocity and the acceleration of an object measured
by an observer in S and another observer in S′. We now consider
the particular case in which a point is moving along a straight
line oriented along the x-axis with a constant acceleration a′x

(Figure 4 on the right).We assume S′ to be located at the position
of the particle and therefore, its velocity is the same as the velocity
of the particle and it increases in time. Hence, by setting v = ux
the x-component of the acceleration a′x becomes

a′x =
ax

γ 3(1− u2x/c̃
2)3

=
ax(1− u2x/c̃

2)3/2

(1− u2x/c̃
2)3

=
ax

(1− u2x/c̃
2)3/2

,

(A.3)
and the acceleration in S is given by

ax = a′x(1− u2x/c̃
2)3/2. (A.4)

By integrating the above equation with respect to time and by
imposing v(0) = 0 we obtain the velocity

ux =
a′xt

√

1+ a
′2
x t

2/c̃2
. (A.5)

By integrating once again with respect to time and by setting
x(0) = c̃2/a′x we obtain the position

x(t) =
c̃2

a′x

√

1+
a′2x t

2

c̃2
. (A.6)

The time t′ of the accelerated particle, and hence in the
accelerated frame of reference, is given by integrating
Equation (16)

t′ =

∫ t

0

√

1− u2x(s)/c̃
2ds =

∫ t

0

ds
√

1+ (a′xs/c̃)
2

=
c̃

a′x
arcsinh

(
a′xt

c̃

)

. (A.7)
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