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Collagen is the major component of extracellular matrix. Collagen cross-link and

deposition depend on lysyl hydroxylation, which is catalyzed by procollagen-lysine,

2-oxoglutarate 5-dioxygenase (PLOD). Aberrant lysyl hydroxylation and collagen

cross-link contributes to the progression of many collagen-related diseases, such as

fibrosis and cancer. Three lysyl hydroxylases (LH1, LH2, and LH3) are identified, encoded

by PLOD1, PLOD2, and PLOD3 genes. Expression of PLODs is regulated by multiple

cytokines, transcription factors and microRNAs. Dysregulation of PLODs promotes

cancer progression andmetastasis, suggesting that targeting PLODs is potential strategy

for cancer treatment. Here, we summarize the recent progress in the investigation of

function and regulation of PLODs in normal tissue development and disease progression,

especially in cancer.

Keywords: collagen, extracellular matrix, lysyl hydroxylation, procollagen-lysine 2-oxoglutarate 5-dioxygenase,
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INTRODUCTION

Collagen is one of the major components of extracellular matrix. The collagen-cell interaction
induces biochemical and biophysical signals, which is essentially for normal tissue function and
cancer progression (Egeblad et al., 2010; Xiong and Xu, 2016). The collagen family contains 28
members (Heino, 2007) and can be divided into two groups: fibrillar collagen (type I, II, III, V,
XI) and non-fibrillar collagen (type IV, VIII, X, IX, XII, XIV, XV, XVIII, XIX, XXI). Collagen is
the most abundant protein in our body, and presents in both normal tissues and cancer. Type
I collagen, the most common type fibrillar, has been identified in many tissues, including skin,
tendon, vascular ligature and bone; while type II collagen is the main collagenous component of
cartilage. Non-fibrillar type IV collagen is required for basement membrane formation (Paulsson,
1992). Cell-collagen interaction induces cellular signaling via integrin [included α1β1 (Tulla et al.,
2001; Hamaia et al., 2012), α2β1 (Tulla et al., 2001; Carafoli et al., 2013), α10β1 (Camper et al., 1998)
and α11β1 (Tiger et al., 2001; Hamaia et al., 2012)], discoidin domain receptors (Leitinger, 2003,
2011) and Leukocyte-Associated Immunoglobulin-Like Receptor-1 (Rygiel et al., 2011; Kim et al.,
2017). Collagen regulates tumor progression by modulating cancer cell migration, invasion (Xiong
et al., 2014), proliferation (Pollard, 2004), survival (Cheon et al., 2014) and metastasis (Oudin et al.,
2016; Sun et al., 2016).

All collagen is composed of a triple helix, and the most common motif of the triple helix
sequence is Gly-X-Y (X and Y represent proline or hydroxyproline) (Albaugh et al., 2017). Collagen
is synthesized in the rough endoplasmic reticulum (ER) as a precursor (Nimni, 1983). After peptide
bond formation, proline and lysyl hydroxylation is catalyzed by prolyl 4-hydroxylase (P4H) and
procollagen-lysine,2-oxoglutarate 5-dioxygenase (PLOD). The hydroxylation of lysyl residues is
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one of the critical steps of collagens biosynthesis. It usually occurs
in the Y position of the repeating Gly-X-Y motif (Barnes et al.,
1974; Valtavaara et al., 1998). Three PLODs (PLOD1, PLOD2 and
PLOD3) has been identified, catalyzing the lysyl hydroxylation to
hydroxylysine (Hausmann, 1967; Rhoads and Udenfriend, 1968;
Kivirikko Ki, 1998; Rautavuoma et al., 2004).

Hydroxylysine residue is critical for the formation of
covalent cross-links and collagen glycosylation (Valtavaara
et al., 1998). PLODs catalyze hydroxylation of lysine (Lys)
intracellularly before collagen is secreted, and then lysyl
oxidase (LOX) binds to hydroxylysine (Hyl) residues in
the extracellular collagen fibers and induces the cross-link
formation (Saito and Marumo, 2010). This enzyme dependent
collagen crosslinking stabilizes newly formed collagen fibers
and enhances the stiffness of the matrix. During collagen
maturation, the hydroxylysine residues in the helix region are
often modified by the O-linked glycosylation. These reactions
are catalyzed by hydroxylysine galactosyltransferase (GT) and
galactosylhydroxylysine -glucosyltransferase (GGT) (Shinkai
and Yonemasu, 1979; Yamauchi and Sricholpech, 2012). The
enzymatic activities of GT and GGT are found in multifunctional
PLOD3, but not in PLOD1 and PLOD2 (Heikkinen et al., 2000).
Mutations of the human PLOD3 gene lead to congenital disorders
affecting connective tissues of various organs (Salo et al., 2008),
suggesting that GGT activity of PLOD3 is crucial for the normal
function of collagen.

The mutation or overexpression of PLODs has been detected
in many human diseases. The kyphoscoliotic type of Ehlers-
Danlos syndrome (EDS type VIA) is due to a mutation in the
PLOD1 gene (Rohrbach et al., 2011; Zahed-Cheikh et al., 2017).
The reduction of PLOD3 protein at the basement membrane
is associated with recessive dystrophic epidermolysis bullosa
(RDEB) progression (Watt et al., 2015). The overexpression
of PLOD2 is detected in many types of cancer. Therefore,
investigating the function and the regulation of PLODs in
normal organ development and disease progression may identify
potential targets for the treatment of collagen-related diseases.

Structure of PLODs
Proteins in the PLOD family are highly homologous; the
overall identity in protein sequences among PLOD1, 2 and 3
is 47% (Valtavaara et al., 1998). PLOD protein has binding
sites for cofactor Fe2+ and L-ascorbate. It also contains 26
amino acid signal peptide and a Prolyl 4-hydroxylase alpha
subunit homologs domain (Figure 1). PLOD1 gene locates on

Abbreviations: PLOD, procollagen-lysine,2-oxoglutarate 5-dioxygenase; LH,
lysyl hydroxylases; EDS, Ehlers-Danlos syndrome; RDEB, recessive dystrophic
epidermolysis bullosa; BMD, bone mineral density; GT, galactosyltransferase;
GGT, galactosylhydroxylysine -glucosyltransferase; BS, Bruck Syndrome; bAVM,
brain arteriovenous malformations; HIF-1α, hypoxia-inducible factor-1α; EMT,
Epithelial-Mesenchymal Transition; HIF-1, hypoxia-inducible factor 1; ACHP,
2-Amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-(4-piperidinyl)−3
pyridinecarbonitrile; BMP-2, bone morphogenetic protein-2; AT-MSCs, adipose
tissue-derived mesenchymal stem cells; ESCC, esophageal squamous-cell
carcinoma; HCC, hepatocellular carcinoma; HLCCs, hydroxylysine aldehyde–
derived collagen cross-links; NSCLC, non-small-cell lung cancer; ER, endoplasmic
reticulum; CAFs, Cancer associated fibroblasts; ECM, extracellular matrix; 3D,
three-dimensional.

chromosome 1p36 (Tasker et al., 2006) and is composed by 19
exons (Giunta et al., 2005). Collagen hydroxylation catalyzed by
PLOD1 is crucial for bone mineral density (BMD) and bone
quality (Tasker et al., 2006). PLOD2 gene is at chromosome 3q23-
q24 (Szpirer et al., 1997) and also contains 19 exons. Two splice
variants (LH2a and LH2b) have been identified in the PLOD2
gene; LH2b differs from LH2a by incorporating the small exon
13A (Valtavaara, 1999). PLOD2 plays a key role in formation
of stabilized collagen cross-links (Gilkes et al., 2013a). PLOD3
gene is localized to chromosome 7q36 (Hautala et al., 1992;
Szpirer et al., 1997; Valtavaara et al., 1998), and PLOD3 activity
is important for the biosynthesis of type IV and VI collagen
(Rautavuoma et al., 2004; Sipilä et al., 2007). PLOD1 and PLOD3
hydroxylate lysyl residues in the collagen triple helix, whereas
PLOD2 (LH2b) hydroxylate lysyl residues in the telopeptides
of collagen (Valtavaara, 1999). PLOD3 has glycosylation activity
that induces either monosaccharide or disaccharide attaching to
collagen hydroxylysines (Valtavaara, 1999).

Regulation of PLOD Expression
PLOD expression is mainly regulated at the transcription level.
A number of cytokines, signaling pathways, and microRNAs
have been identified to be involved in transcriptional regulation
of PLODs (Table 1). PLOD2 is induced by hypoxia-inducible
factor-1α (HIF-1α) under hypoxia condition, which in turn
enhance hypoxia-induced Epithelial-Mesenchymal Transition
(EMT) phenotypes in glioma cells (Song et al., 2017) and breast
cancer cells (Gilkes et al., 2013b). In addition, hypoxia-inducible
factor 1 (HIF-1) also activates transcription of PLOD1 in breast
cancer cells; however, function PLOD2 is more important for
HIF-1-induced cancer progression (Gilkes et al., 2013b). PLOD2
is also directly regulated by miR-26a-5p and miR-26b-5p, and
PLOD2 expression is a potential prognostic marker for patients
with bladder cancer (Miyamoto et al., 2016) and renal cell
carcinoma (Kurozumi et al., 2016). TGF-β signaling is another
important regulator of PLOD2 expression (Remst et al., 2014).
SP1 and SMAD3, as downstream targets of TGF-β signaling,
recruit histone modifying enzymes to the PLOD2 promoter
region and induced PLOD2 transcription (Gjaltema et al., 2015).
In addition, transcription factor E2Fs (Hollern et al., 2014) and
FOXA1 (Du et al., 2017) have been identified as regulators of
PLOD2 during cancer progression (Figure 2).

Regulation of PLOD1 and PLOD3 expression is not well-
investigated compared to PLOD2. Differential display analysis
identified PLOD1 as a potential target gene of TNFα in human
chondrocyte-like cells (Ah-Kim et al., 2000). Using chromatin
immunoprecipitation and luciferase reporter assay, Hjalt showed
that PITX2 directly regulates PLOD1 expression by binding to
the promoter region. Inactivation of this pathway may cause
the Rieger syndrome (Hjalt et al., 2001). One report show
that miR-663a reduces PLOD3 expression by targeting to 3’-
UTR of PLOD3 mRNA, subsequently reducing extracellular
accumulation of type IV collagen (Amodio et al., 2016).

ACHP (2-Amino-6-[2-(cyclopropylmethoxy)-6-
hydroxyphenyl]-4-(4-piperidinyl)−3 pyridinecarbonitrile),
a selective inhibitor of IκB kinase, suppresses expression of
all three PLOD genes in dermal fibroblasts, but not in lung
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FIGURE 1 | The structure of PLOD proteins. (A) PLOD1; (B) PLOD2; (C) PLOD3.

TABLE 1 | The regulation of PLODs.

PLODs Regulated by Tissues or cell lines Results

PLOD1 ACHP Dermal fibroblasts Suppression

BMP-2 AT-MSCs Early upregulated, later downregulated

TGF-β AT-MSCs Early upregulated, later downregulated

HIF-1α Hypoxic breast cancer cells Upregulated

PITX2 A variety of tissues Upregulated

PLOD2 ACHP Dermal fibroblasts Suppression

HIF-1α Glioma cell, hypoxic breast cancer cells Upregulated

miR-26a-5p and miR-26b-5p Bladder cancer, renal cell carcinoma Upregulated

TGF-β Human synovial fibroblasts Upregulated

E2Fs NSCLC, Mouse Model of Metastatic Breast Cancer Upregulated

FOXA1 NSCLC Upregulated

ER complex of resident chaperones Dermal fibroblast Upregulated the activity

PLOD3 ACHP Dermal fibroblasts Suppression

BMP-2 AT-MSCs Downregulated

TGF-beta1 AT-MSCs Downregulated

miR-663a Human hepatoma Huh7 cells, Hek 293 cells and Hela cells Downregulated

fibroblasts (Mia and Bank, 2015). Therefore, activation of NF-kB
pathway may induce PLOD expression in certain types of cells.
Treatment with bone morphogenetic protein-2 (BMP-2) and
TGF-β1 induces PLOD1 expression in adipose tissue-derived
mesenchymal stem cells (AT-MSCs). Interestingly, neither BMP-
2 nor TGF-β1 can induce PLOD2 expression (Knippenberg
et al., 2009). Given the crucial function of PLODs in collagen
synthesis, further defining the molecular mechanisms by which
PLOD expression is regulated may significantly expand our
understanding of collagen-related disease progression.

PHYSIOLOGICAL FUNCTIONS OF PLODs

Collagen is the major component of connective tissues and
maintains the structural integrity and the stability of tissues and
organs (Patino et al., 2002). The hydroxylysine residues provide
attachment sites for the carbohydrates and tensile strength
and mechanical stability for the collagen fibrils (Rautavuoma

et al., 2004). The abnormal expression or mutation of PLODs is
associated with collagen-related diseases, such as Kyphoscoliotic
type of EDS VIA (Pousi et al., 1994; Giunta et al., 2005; Abdalla
et al., 2015; van Dijk et al., 2017; Zahed-Cheikh et al., 2017),
Bruck Syndrome (BS) (Gistelinck et al., 2016) and RDEB (Watt
et al., 2015) (Table 2). PLOD1 regulates the hydroxylation of lysyl
residues on collagen type V. The duplication of the exon 10 to
exon 16 region of PLOD1 (p.Glu326_Lys585dup) gene (Pousi
et al., 1994; Giunta et al., 2005) and two mutations on Gln208
and Tyr675 cause the loss function of PLOD1, which may lead to
EDS VIA (Abdalla et al., 2015; van Dijk et al., 2017). In addition,
PLOD1 has been identified as a susceptibility gene for reduced
BMD (Tasker et al., 2006; Yamada and Shimokata, 2007).

Dysregulation of PLOD2 is associated with brain
arteriovenous malformations and cancer progression. PLOD2 is
overexpressed in brain arteriovenous malformations (bAVM),
and the levels of PLOD2 expression correlated with bAVM
size (Neyazi et al., 2017). PLOD2 mutant zebrafish display
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FIGURE 2 | The function and regulation of PLOD2 in cancer progression.

TABLE 2 | The association of PLODs with human diseases.

PLOD protein

family

Collagen substrate Human disease

PLOD1 Type V EDS VIA (Pousi et al., 1994; Giunta

et al., 2005; Abdalla et al., 2015; van

Dijk et al., 2017; Zahed-Cheikh et al.,

2017)

BMD (Tasker et al., 2006; Yamada and

Shimokata, 2007)

Early Alzheimer’s disease (Chong et al.,

2013)

PLOD2 Type I (Gistelinck et al.,

2016)

bAVM (Neyazi et al., 2017)

BS (Gistelinck et al., 2016)

Carcinoma (Conklin et al., 2011;

Rajkumar et al., 2011; Noda et al.,

2012; Gilkes et al., 2013b; Li et al.,

2017; Song et al., 2017)

PLOD3 Type IV and VI (Sipilä

et al., 2007)

type I (Sricholpech et al.,

2011)

Recessive dystrophic epidermolysis

bullosa (RDEB) (Watt et al., 2015)

molecular and tissue abnormalities in the musculoskeletal
system that are concordant with clinical findings in BS patients
(Gistelinck et al., 2016). There is evidence that the levels of
mature hydroxylysine aldehyde-derived cross-links typical
for skeletal tissues is increased in vein graft disease, this is
accompanied by upregulation of PLOD2 (Kahle et al., 2016).
Furthermore, increased PLOD2 expression has been detected
in the macroscopically injured region of the capsule, and
upregulation of TGF-β1, TGFβR1, and PLOD2 is likely related
to the disease progression (Belangero et al., 2016).

It has been shown that PLOD3 mutations are associated
with the connective tissue disorder (Salo et al., 2008). Analysis
of PLOD3 knock-out embryos and cells indicate that loss of
PLOD2 reduces glycosylated hydroxylysines on type IV and VI
collagen with abnormal distribution (Sipilä et al., 2007). Reduced
glycosylation may inhibit the tetramerization and secretion of
type VI collagen. Another function of PLOD3 is to glucosylate
galactosylhydroxylysine residues in type I collagen in osteoblasts.
The G-Hyl glucosylation induced by PLOD3 is crucial for
collagen fibrillogenesis in vitro (Sricholpech et al., 2011).

PLODs in Cancer Progression and
Metastasis
Increased collagen deposition and cross-linking promote
cancer development and progression by enhancing cancer cell
migration, invasion and proliferation (Provenzano et al., 2006,
2008; Levental et al., 2009; Zhu et al., 2015). Therefore, PLODs
may contribute to cancer progression by modulating collagen
cross-link and maturation.

Increased PLOD expression has been detected in many
types of cancer. The PLOD2 expression level is significantly
upregulated in breast cancer compared to normal mammary
tissue, and the upregulation correlates with short disease-related
survival (Gjaltema et al., 2015). In esophageal squamous-cell
carcinoma (ESCC), expression of the tumor suppressor gene
esophageal cancer-related gene 4 has a negative association with
PLOD1 and PLOD2 (Li et al., 2017). The PLOD2 expression
is significantly correlated disease-free survival and tumor size
in hepatocellular carcinoma (HCC) (Noda et al., 2012). PLOD3
is overexpressed in HCC (Elsemman et al., 2016; Shen et al.,
2018) and is a potential diagnosis marker for early-stage HCC
(Shen et al., 2018). Knockdown of PLOD3 suppresses liver
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tumor incidence as well as tumor growth rates in spontaneous
mouse HCC model (Shen et al., 2018). Nicastri used a
quantitative proteomic technique and identified 54 up-regulated
glycoproteins in colorectal cancer samples, including PLOD2 and
PLOD3 (Nicastri et al., 2014).

Increased PLOD2 expression is crucial for tumor invasion and
metastasis (Figure 2). For instance, silencing PLOD2 expression
in the breast cancer cell line MDA-MB 231 reduces cancer
metastasis and collagen deposition in the primary tumor tissue;
interestingly, PLOD2 expression has little effect on the primary
tumor growth (Gilkes et al., 2013b). Hypoxia- and TGF-β1-
induced PLOD2 expression promotes themigratory, invasive and
adhesive capacities of cervical cancer cells by promoting EMT
and the formation of focal adhesion (Remst et al., 2014; Xu et al.,
2017). In HIF-1α-deficient tumors, ectopic PLOD2 expression
restores the migration and metastatic potential, and inhibition
of PLOD2 activity suppresses the tumor metastases (Eisinger-
Mathason et al., 2013). Although HIF-1 induces expression of
PLOD1 and PLOD2, PLOD2 expression in breast cancer cells is
more important for fibrillary collagen formation, tumor stiffness
and cancer metastasis to lymph nodes and lungs (Gilkes et al.,
2013b).

Function of PLOD2 in lung cancer progression differs slightly
from breast cancer; ectopic expression of PLOD2 enhances
both primary cancer growth and metastasis (Chen et al., 2015).
PLOD2 hydroxylates telopeptidyl lysine residues on collagen,
subsequently increasing the level of hydroxylysine aldehyde–
derived collagen cross-links (HLCCs) and lowering levels of
lysine aldehyde–derived cross-links in lung cancer tissue (Chen
et al., 2015). Recent study also reveal that PLOD2 expression
induces PI3K/AKT signaling in glioma (Song et al., 2017)
and non-small-cell lung cancer (NSCLC) (Du et al., 2017);
activation of the PI3K pathway may contribute to increased cell
proliferation, migration and invasion.

It is well established that PLOD2 protein locates in ER
(Liefhebber et al., 2010). However, a recent study shows that
PLOD2 protein can be secreted by lung cancer cells and induce
collagen remodeling (Chen et al., 2016). Addition of recombinant
PLOD2 to the extracellular space promotes HLCC formation
in the extracellular matrix, suggesting that secreted PLOD2 is
functional (Chen et al., 2016). However, function of secreted
PLOD2 in cancer development and progression remains to be
determined.

Cancer associated fibroblasts (CAFs) and stellate cells,
as the major source of ECM production in the tumor

microenvironment, promote tumor cell invasion and migration
through the PLOD2-induced collagen cross-link (Bozóky et al.,
2013; Pankova et al., 2016). PLOD2 is highly expressed in
CAFs; silencing PLOD2 expression in CAFs significantly reduced
the tumor invasion and metastasis (Pankova et al., 2016).
Knockdown of PLOD2 in pancreatic stellate cells inhibits
directional migration of cancer cells within the matrices
by constructing an insensitive microenvironment of three-
dimensional (3D)matrices to tumormigration (Sada et al., 2016).
These results indicate that PLOD2 expressed in stromal cells is
crucial for cancer progression.

FUTURE DIRECTION

Loss of function mutations and abnormal PLOD expression
are involved in many collagen-related diseases. Impairment of
PLOD1 function contributes the development of Kyphoscoliotic
type of EDS. Mutations of PLOD3 cause the connective
tissue disorder (Salo et al., 2008). Many studies demonstrate
that increased PLOD2 and PLOD3 expression is required
for cancer progression and metastasis. Therefore, targeting
PLOD is a potential therapeutic strategy for cancer and other
collagen-related diseases. Unfortunately, there is no potent
PLOD inhibitor available. Since the client protein and function
of PLOD1, PLOD2, and PLOD3 in collagen synthesis are
different, it is important to develop specific inhibitors for
PLOD to halt cancer progression. Another strategy to inhibit
PLOD activity in cancer tissue is to reduce PLOD expression;
therefore, further understanding how PLOD is regulated during
cancer development may identify signaling pathways to target
PLOD.
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