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The tumor microenvironment is increasingly recognized as an active participant in
tumor progression. A recent pan-cancer genomic profile analysis has revealed that
gene signatures representing components of the tumor microenvironment are robust
predictors of survival. A stromal gene signature representing fibroblasts and extracellular
matrix components has been associated with good survival in diffuse large B-cell
lymphoma (DLBCL). Paradoxically, a closely related gene signature has been shown
to correlate with poor survival in carcinomas, including breast, ovarian, pancreatic, and
colorectal cancer. To date, there has been no explanation for this paradoxical inverse
correlation with survival outcomes in DLBCL and carcinomas. Using public gene data
sets, we confirm that the DLBCL stromal gene signature is associated with good
survival in DLBCL and several other B-cell lymphomas while it is associated with poor
survival in ovarian cancer and several other solid tumors. We show that the DLBCL
stromal gene signature is enriched in lymphoid fibroblasts in normal lymph nodes and
in cancer-associated fibroblasts (CAFs) in ovarian cancer. Based on these findings,
we propose several possible mechanisms by which CAFs may contribute to opposite
survival outcomes in B-cell lymphomas and carcinomas.

Keywords: B cells, B-cell lymphoma, CAFs, cancer-associated fibroblasts, DLBCL, gene signature, ovarian
cancer, tumor microenvironment

INTRODUCTION

During the past decade, gene expression profile analyses of frozen tumor pieces have been
widely used to quantify various biological characteristics of malignant tumor cells and the
microenvironment in which they reside. Individual biological characteristics and dominant
molecular pathways in tumors are frequently associated with expression of a defined set of genes,

Abbreviations: CAF, cancer-associated fibroblast; CD, cluster of differentiation; CXCL, C-X-C motif chemokine ligand;
DC, dendritic cells; DLBCL, diffuse large B-cell lymphoma; ECM, extracellular matrix; FDC, follicular dendritic cells;
FRC, fibroblastic reticular cells; GC, germinal center; Ig, immunoglobulin; ImmGen, immunological genome project; IPA.
ingenuity pathway analysis; MRC, marginal reticular cells; NK, natural killer; PDGFRα, platelet-derived growth factor
receptor α; PDPN, podoplanin; PRECOG, PREdiction of clinical outcomes from genomic profiles; TCGA, the Cancer genome
atlas project; TGFβ, transforming growth factor β; TIL, tumor infiltrating lymphocyte; TLS, tertiary lymphoid structure.
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known as a gene expression signature. Since phenotypic
features represented by gene expression signatures are
sometimes associated with clinical features, such as the
length of survival of cancer patients or their response to
therapy, gene expression signatures can be used as quantitative
predictors of clinical outcomes. A recent pan-cancer PREdiction
of Clinical Outcomes from Genomic Profiles (PRECOG)
analysis revealed that genes in the tumor microenvironment
are better predictors of survival than genes expressed in
malignant tumor cells (Gentles et al., 2015). The two most
prominent components in the microenvironment of solid
tumors are fibroblasts and immune cells (Aran et al., 2017).
Generally, in carcinomas, genes expressed in fibroblasts
are associated with poor survival while genes expressed in
immune cells, particularly leukocytes, are associated with
good survival (Gentles et al., 2015). Tumor infiltrating
lymphocytes (TILs) and tertiary lymphoid structures (TLS)
are generally associated with improved clinical outcomes as
evidenced by the improved overall survival and disease-free
survival in various types of tumors (Fridman et al., 2012;
Dieu-Nosjean et al., 2014; Barnes and Amir, 2017). However,
depending on the type of tumor, tumor stage, and location
of TILs within the tumor (tumor bed, invasive margin and
stroma), different types of TILs have been associated with
both positive and negative prognosis. For example, cytotoxic
CD8+ T cells, memory T cells, and CD4+ T helper cells
are generally associated with a better prognosis, whereas
T regulatory cells, tumor associated macrophages, and
myeloid-derived suppressor cells are associated with poor
prognosis and can promote tumor progression (Fridman
et al., 2012; Kitamura et al., 2015; Barnes and Amir, 2017).
Furthermore, fibroblasts in the tumor microenvironment are
phenotypically heterogeneous and may exhibit both a pro-
and anti-tumorigenic phenotype (Augsten, 2014). Thus, the
tumor microenvironment is a complex network of interaction
between tumor cells and components of the stroma, including
the extracellular matrix (ECM), and it is currently unclear
which factors in the tumor microenvironment control the
quantity and distribution of different immune cell subtypes.
Specifically, it is unknown if fibroblasts and immune cells
affect prognosis independently or through an interdependent
interaction.

The functional interaction between fibroblasts and immune
cells has been most thoroughly studied in normal lymph nodes
and the spleen, where specialized fibroblasts produce ECM
to form a network that allows for lymphocyte movement
along the matrix in response to chemokine signaling. The
presence of lymphoid fibroblasts is necessary for functional
attraction, retention, compartmentalization, and survival of
immune cells (Koning and Mebius, 2012). Lymphoid fibroblasts
are crucial for lymphocyte homeostasis as well as controlling
and expanding the lymphocyte pool (Mueller and Germain,
2009). Lymphoid fibroblasts are also key players in mediating
functional immune cell interactions in the lymph nodes through
direct contact or via secreted molecules (Chang and Turley,
2015). Follicular dendritic cells (FDC) attract B cells to the
germinal center (GC) by secreting C-X-C motif chemokine

ligand 13 (CXCL13), while marginal reticular cells (MRC)
use a network of follicular conduits to deliver antigens to
cognate B cells (Chang and Turley, 2015). By secreting C-C
motif chemokine ligands 19 and 21 (CCL19 and CCL21),
fibroblastic reticular cells (FRC) recruit mature dendritic cells
(DC) and naïve B and T cells to promote cell-cell interactions
within the T cell zone (Mueller and Germain, 2009; Brown
and Turley, 2015; Fletcher et al., 2015). Recent studies
have shown that FRC are important for B-cell homeostasis
(Cremasco et al., 2014). This function has been previously
ascribed to FDC, however, cell-specific depletion experiments
demonstrated that only FRC are crucial for B-cell survival.
The mechanism by which FRC support B-cell survival is
not entirely clear, but it is thought to involve crosstalk
with B cells to control the boundaries of primary B-cell
follicles (Cyster, 2010; Mionnet et al., 2013; Cremasco et al.,
2014).

Similar to lymphoid fibroblasts in normal lymph nodes,
cancer-associated fibroblasts (CAFs) are stromal cells that
produce ECM, provide scaffolding, and exert regulatory
functions through growth factors, cytokines, and chemokines
that can promote tumor growth, angiogenesis, invasion,
and metastasis (Kalluri and Zeisberg, 2006; Levental et al.,
2009; Lu et al., 2012; Spano and Zollo, 2012; Harper and
Sainson, 2014). Recent studies provide evidence that CAFs
can also directly or indirectly contribute to immune cell
fate and survival (Harper and Sainson, 2014; Costa et al.,
2018; Mariathasan et al., 2018; Tauriello et al., 2018). It
has recently been shown that a gene signature representing
activated CAFs is present in most epithelial tumors (Jia et al.,
2016) despite the diversity of resident fibroblasts in different
organs and the presence of multiple fibroblast populations
within a single tumor type (Costa et al., 2018). Activated
CAFs in breast cancer, and possibly in other carcinomas,
are associated with immunosuppressive populations of T
lymphocytes (Costa et al., 2018). It is unclear if activated CAFs
in carcinomas are also associated with immunosuppressive
populations of B cells due to poorly defined markers for such
cells (Sarvaria et al., 2017). Moreover, studies investigating the
associations of B cell subsets with tumor progression using
defined B-cell markers have produced conflicting results even
within the same tumor type (Guy et al., 2016). An insufficient
understanding of the roles of B cells in carcinomas has hindered
the development of rational clinical trials targeting B-cells
in carcinomas. The remarkable success of B-cell depletion
with the cluster of differentiation 20 (CD20) monoclonal
antibody, rituximab, in lymphomas and rheumatoid arthritis
has sparked interest in rituximab and other B-cell targeted
antibodies as possible therapies in carcinomas (Gunderson and
Coussens, 2013). Although many carcinomas have significant
B cell infiltration (Germain et al., 2014), clinical trials have
shown limited benefits of B-cell depletion in carcinomas
(Barbera-Guillem et al., 2000; Aklilu et al., 2004), possibly
because B cells can have pro-tumorigenic or anti-tumorigenic
properties depending on their maturation stage and other
conditions that have not yet been defined (Sarvaria et al.,
2017).
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TABLE 1 | DLBCL “stromal-1” signature genes are inversely correlated with survival outcomes in B-cell lymphomas and other malignancies.

B-cell lymphoma Solid tumor

Gene BL CLL DLBCL FL MCL MM Bladder Astro Glioma Colon Head and Ovarian

cytoma neck

ACTN1 −0.928 −3.216 −6.211 −1.901 −0.94 0.658 3.312 3.22 4.557 2.36 1.988 1.552

ADAM12 0.746 −0.084 −7.809 −1.749 −0.866 −0.395 0.537 1.653 4.405 1.675 2.051 2.99

BGN 0.842 1.309 −4.115 −1.775 0 −2.627 1.438 2.341 3.643 2.33 3.559 3.09

CEBPA −1.516 −3.127 −5.644 −1.639 0 −0.977 1.001 −0.041 2.652 −2.664 −1.578 −1.442

COL13A1 −0.313 −1.513 −2.402 0.332 0 −0.001 2.23 2.006 1.613 2.164 1.74 0.893

COL16A1 −0.481 0.252 −3.89 −0.6 0.333 −0.477 2.214 2.49 5.005 −0.546 1.263 4.542

COL1A1 0.349 −1.476 −4.621 −1.581 0 −1.951 3.592 3.326 3.77 1.544 3.354 3.929

COL1A2 −0.097 −0.879 −6.264 −1.605 0 −0.573 2.745 4.432 4.391 2.42 2.634 3.771

COL5A1 0.715 −0.675 −3.366 0.127 0 −0.467 1.957 3.528 4.438 2.328 3.686 3.65

COL5A2 0.969 1.124 −3.962 −1.597 0 −0.777 3.47 3.588 7.322 2.437 3.26 5.256

COL6A2 0.677 −1.368 −3.719 −0.749 −1.415 0.14 2.369 4.591 5.693 1.301 3.12 2.11

COL6A3 1.194 −0.129 −4.502 −1.442 1.37 2.684 1.282 3.005 3.071 2.403 3.141 3.178

COL8A2 −0.212 −0.894 −3.046 0.069 0 −0.905 −0.085 2.942 3.077 −0.007 1.779 2.908

CSF2RA −1.84 0 −2.861 0 0 −2.39 −0.046 0.193 0 0 0 −1.959

CTGF −0.5 0.796 −5.525 −0.73 −1.387 −0.775 1.651 1.676 −1.132 2.024 2.381 2.974

CYR61 1.159 0.092 −1.865 0.074 1.837 −0.123 3.342 1.159 3.807 1.678 1.757 3.607

DCN 0.819 0.185 −3.731 −0.026 0 −0.794 0.472 1.113 2.414 1.303 0.917 4.604

EFEMP2 1.823 1.113 −2.797 0.307 0 −5.014 2.112 4.044 7.62 1.684 3.53 2.576

EMP2 −0.057 0.044 −4.122 0.147 0 −0.579 −1.125 4.55 2.985 −0.368 0.452 −1.446

FAP −1.551 0.374 −7.496 −0.76 −1.266 −0.536 3.522 2.321 3.736 2.366 2.874 4.814

FBN1 1.125 1.079 −4.907 −1.854 0 −0.044 2.151 1.518 2.239 2.311 1.906 4.676

FN1 −1.025 −0.496 −5.638 −1.852 −1.352 2.973 3.251 2.852 5.499 2.628 2.46 4.439

GPNMB −1.638 −0.153 −6.899 0.513 0 1.112 1.281 3.946 5.214 1.74 −2.745 1.476

HSPG2 −0.267 2.244 −2.792 −1.63 0 0.845 −0.02 4.261 2.989 1.313 2.108 2.396

IL1R1 −1.566 −2.791 −4.858 −0.432 0.804 −1.789 −0.186 1.194 1.217 1.275 0.897 −0.137

ITGAV 0.897 −2.698 −6.933 0.614 −2.033 −0.212 0.402 0.945 0.226 2.253 1.503 1.792

ITGB2 −1.522 −2.053 −5.68 0.558 0.343 −1.803 0.886 0.4 4.299 −0.086 −2.064 −2.339

KITLG 0.896 −0.172 −1.923 1.04 −1.197 0.454 1.113 −0.331 1.091 1.164 −0.721 −0.504

LAMA4 0.445 2.207 −3.683 0.453 0 −3.155 2.474 0.028 3.397 2.415 2.021 2.168

LAMB2 −0.635 0.504 −1.974 −1.052 0 −0.728 0.926 1.686 5.906 0.913 1.836 2.326

LAMB3 1.291 −1.315 −2.703 0.256 0 0.265 −0.927 1.977 3.542 1.516 2.039 −1.966

LOXL1 −1.453 −1.007 −4.202 −1.287 0 −1.92 0.711 3.9 6.299 1.697 0.751 3.664

LTBP2 0.219 −1.562 −7.565 −0.187 0 −1.848 2.849 1.197 3.314 0.542 2.718 1.541

LUM −0.357 −1.043 −5.663 −0.089 0 −1.859 1.442 3.796 3.723 1.447 1.428 4.841

MFAP2 0.862 0.01 −2.835 0.608 0 −0.68 3.151 3.543 3.011 0.874 1.666 5.462

MMP14 −1.105 2.746 −3.319 0.69 0.681 −1.647 2.046 1.787 4.691 1.786 1.168 2.297

MMP2 −1.227 −0.269 −5.709 −1.128 0.014 −0.545 0.66 1.792 3.631 1.567 3.12 3.084

MMP9 −0.819 −1.238 −7.734 −0.401 −0.12 −0.892 1.8 2.739 5.06 −0.723 0.039 −3.208

PDGFC 0.62 −3.08 −4.268 0.632 0 −0.486 2.788 −3.419 3.639 1.987 2.096 −0.167

PLAU −1.723 −1.701 −7.712 0.205 0.528 −0.749 2.515 2.302 4.592 0.627 1.521 2.334

POSTN 1.565 0.675 −5.031 −1.266 −0.77 −1.157 3.246 2.76 5.46 2.632 2.092 4.696

SDC2 −0.209 −1.963 −3.763 −0.47 −0.383 −0.664 −1.091 1.405 5.736 2.239 1.659 1.424

SERPINH1 −1.173 2.067 −2.912 −1.224 0 1.565 1.422 3.846 5.397 3.044 2.065 2.07

SPARC 0.487 −3.125 −7.236 −1.599 1.012 −2.767 2.24 −1.998 −0.074 2.412 2.933 4.188

TGFB1I1 −0.842 −1.479 −2.367 0.662 0 −1.787 1.518 2.783 4.58 1.523 3.557 4.265

THBS1 1.462 −3.212 −2.038 −1.38 0.238 −1.674 1.673 2.947 3.122 0.799 2.328 3.565

TIMP2 −0.677 −2.448 −1.399 1.006 0.343 0.83 2.608 1.584 1.251 2.73 2.271 2.495

VCAN 1.459 −3.803 −3.177 −0.588 0 −2.078 3.133 −3.546 −3.171 2.264 2.238 4.277

Analysis of the DLBCL “stromal-1” geneset in the PREdiction of Clinical Outcomes from Genomic Profiles (PRECOG) public dataset (https://precog.stanford.edu). Each
gene is assigned z scores associated with survival in different cancer types. Scores less than or equal to zero (red) are associated with good survival while positive scores
(blue) are associated with poor survival. BL, Burkitt lymphoma; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; MCL,
mantle cell lymphoma; MM, multiple myeloma.
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FIGURE 1 | DLBCL stromal-1 and stromal-2 signature genes are enriched in different stromal cell types. Expression of the DLBCL stromal-1 and stromal-2 signature
genes in the Immunological Genome Project (ImmGen) data set. (A) Gene expression values normalized across 249 mouse immunological cell types. (B) Detailed
view of gene expression values normalized to the stromal cell types shown in the legend. The graphs were generated using data from ImmGen
(http://www.immgen.org).

THE DLBCL STROMAL-1 GENE
SIGNATURE IS INVERSELY
CORRELATED WITH SURVIVAL
OUTCOMES IN B-CELL LYMPHOMAS
AND OTHER SOLID TUMORS

Using expression profile analysis of DLBCL biopsy samples
from treatment-naïve newly diagnosed patients, Lenz et al.
identified two stromal gene signatures, stromal-1 and stromal-
2, of which the stromal-1 gene signature was found to be
associated with good survival in DLBCL patients (Lenz et al.,
2008). However, gene signatures similar to the DLBCL stromal-
1 gene signatures have been associated with poor survival in
carcinomas, including ovarian cancer (Cheon et al., 2014), breast
cancer (Farmer et al., 2009), colorectal cancer (Calon et al., 2015;
Isella et al., 2015), and pancreatic cancer (Moffitt et al., 2015).

To systematically explore the association of the DLBCL stromal-
1 gene signature with survival in cancer patients, we used
PRECOG, a pan-cancer database of expression signatures in
which each tumor type is represented by multiple independent
expression profile data sets and associated survival data. This
extensive database is ideal for multi-data set validation of
prognostic signatures that have been identified in individual data
sets. Using the DLBCL stromal-1 gene signature represented
by 50 genes (Lenz et al., 2008), we confirmed that the
signature is associated with poor survival in carcinomas and
brain tumors and good survival in DLBCL and several other
B-cell lymphomas (Table 1). This pattern of inverse association
with survival between B-cell lymphomas and carcinomas/brain
tumors was specific to the DLBCL stromal-1 gene signature,
and was not associated with the DLBCL stromal-2 gene
signature represented by 34 genes (Lenz et al., 2008) (data not
shown).
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FIGURE 2 | DLBCL stromal-1 signature genes are enriched in cancer-associated fibroblasts (CAFs). (A) Non-centered gene set clustering analysis of the stromal
and epithelial cell types in ovarian cancer and the normal ovary in the GSE40595 dataset using the DLBCL stromal-1 and stromal-2 gene sets. The number of
samples in each group is indicated in parentheses. The gene set clustering analysis and image acquisition was performed using the R2 Genomics Analysis and
Visualization Platform (https://hgserver1.amc.nl). (B) The same data are shown as box dot plots with P-values for differential expression of the DLBCL stromal-1 and
stromal-2 gene signatures in different cell types.

IN NORMAL LYMPH NODES, DLBCL
STROMAL-1 AND STROMAL-2 GENE
SIGNATURES ARE ENRICHED IN
STROMAL FIBROBLASTS AND
ENDOTHELIAL CELLS, RESPECTIVELY

To identify immune cell types that express the DLBCL stromal-
1 and stromal-2 signature genes, we looked for enrichment of
these genes in the transcriptomes of 249 normal immunological
cell types that had been isolated from mice and characterized
by the Immunological Genome Project (ImmGen) (Heng and
Painter, 2008; Shay and Kang, 2013). This analysis identified
stromal cells as the most likely source of both gene signatures,
although some of the genes were also expressed in macrophages,
monocytes, granulocytes, and stem cells (Figure 1A). Closer
examination of the stromal cell subtypes revealed that the DLBCL

stromal-1 and stromal-2 signature genes were preferentially
expressed in different types of stromal cells. DLBCL stromal-1
signature genes were particularly enriched in cells characterized
by expression of podoplanin (PDPN) and platelet-derived
growth factor receptor α (PDGFRα), including FRC from
mesenteric and subcutaneous lymph nodes and the so-
called double-negative stromal cells, while stromal-2 signature
genes were enriched in blood and lymphatic endothelial cells
(Figure 1B).

THE DLBCL STROMAL-1 GENE
SIGNATURE IS ENRICHED IN
OVARIAN CAFs

To identify cells that express the DLBCL stromal-1 and
stromal-2 signature genes in an epithelial tumor, we selected
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FIGURE 3 | CAFs have an inverse association with tumor stage in DLBCL and ovarian carcinoma. Enrichment of the DLBCL stromal-1 gene signature in progression
stages I-IV in (A) three DLBCL microarray datasets (GSE10846, GSE87371, and GSE4475) that were combined into one dataset, and (B) The Cancer Genome Atlas
(TCGA) ovarian carcinoma dataset (https://cancergenome.nih.gov). The gene signature enrichment analysis was performed using the R2 Genomics Analysis and
Visualization Platform (https://hgserver1.amc.nl). The y axis shows relative enrichment of the DLBCL stomal-1 gene signature. The x axis shows tumor stage. The
number of samples for each tumor stage is indicated in parentheses.

ovarian cancer because of the existing microarray data set
(GSE40595) in which a large number of ovarian cancers
have been laser capture microdissected into epithelial and
stromal components (Yeung et al., 2013). For comparison
with normal tissue, a small number of samples in this data set
were microdissected from the normal ovary epithelium and
stroma (Yeung et al., 2013). Our gene signature enrichment
analysis revealed strong enrichment of the DLBCL stromal-
1 gene signature in CAFs in comparison to cancer cells,
normal ovary fibroblasts, and normal ovary epithelial cells
(Figure 2). The DLBCL stromal-2 gene signature was
enriched in CAFs but also in the normal ovary stroma
(Figure 2).

POSSIBLE MECHANISMS BY WHICH
CAFs CONTRIBUTE TO INVERSE
SURVIVAL OUTCOMES IN B-CELL
LYMPHOMAS AND CARCINOMAS

It is unusual for a gene signature to be associated with
inverse survival outcomes in B-cell lymphomas and carcinomas.
This is unlikely to be a technical error related to microarray
technology as several individual genes from the DLBCL
stromal-1 signature have been validated as predictors of good
survival in DLBCL by independent technologies, such as
immunohistochemistry and qPCR in formalin-fixed paraffin-
embedded tissues (Lossos et al., 2004; Meyer et al., 2011;
Tekin et al., 2016). Similarly, various technologies have
been used to validate many of the signature genes as
predictors of poor survival in carcinomas (Farmer et al., 2009;
Cheon et al., 2014; Calon et al., 2015; Isella et al., 2015;

TABLE 2 | Upstream regulators of genes in the DLBCL stromal gene signature-1
and stromal gene signature-2.

Upstream regulator Molecule type p-value

of overlap

DLBCL stromal-1 gene signature

TGFB1 Growth factor 4.78E-31

COLQ Other 2.70E-20

Bleomycin Chemical drug 1.97E-18

SPDEF Transcription
regulator

2.73E-18

Tgf beta Group 3.95E-18

TGFB3 Growth factor 8.04E-18

TNF Cytokine 1.53E-17

DLBCL stromal-2 gene signature

KLF2 Transcription
regulator

1.89E-09

Rosiglitazone Chemical drug 5.82E-09

VEGFA Growth factor 5.90E-09

PPARG Ligand-dependent
nuclear receptor

1.36E-08

10E,12Z-octadecadienoic acid Chemical –
endogenous
Mammalian

4.98E-08

WNT3A Cytokine 6.02E-08

MGEA5 Enzyme 1.08E-07

The identification of upstream regulators was done using Ingenuity Pathway
Analysis (www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/).

Moffitt et al., 2015; Jia et al., 2016). While the mechanism by
which the DLBCL stromal-1 signature genes could contribute to
good survival in DLBCL is still unclear, multiple mechanisms
by which CAFs contribute to poor outcomes in carcinomas
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have been proposed, including the promotion of tumor
growth, angiogenesis, invasion and metastasis, the provision
of protective niches for cancer stem cells, and the obstruction
of access of chemotherapies and immunotherapies (Jain,
2013; Kalluri, 2016). Here, we will specifically focus on
the possible direct or indirect roles of CAFs that could
contribute to inverse survival outcomes in DLBCL and
carcinomas.

Cancer-associated fibroblasts share structural and molecular
features with the reticular fiber networks of secondary lymphoid
organs, which are known to guide and compartmentalize
specific immune cell types and play key roles in mediating
functional immune cell interactions (Acton et al., 2012;
Astarita et al., 2012; Cremasco et al., 2014; Chang and Turley,
2015; Fletcher et al., 2015; Turley et al., 2015). However,
in addition to being sites in which immune responses
are initiated, secondary lymphoid organs are also sites
that foster immune privilege that prevents autoimmunity
by inducing tolerance and deleting autoreactive T cells,
suppressing effector T cell proliferation, and supporting
regulatory T cells (Fletcher et al., 2011, 2014, 2015; Brown
and Turley, 2015). Currently, lymph node fibroblasts are
being explored for their therapeutic potential to circumvent
unwanted inflammation in autoimmune diseases, sepsis,
and graft rejection after organ transplantation (Fletcher
et al., 2011, 2014, 2015). Based on the molecular similarity
between CAFs and lymph node fibroblasts, we propose that
CAFs primarily play an immunosuppressive role in tumors
using similar molecular mechanisms to those used by lymph
node fibroblasts in regulating immune cell tolerance and
homeostasis. In support of this hypothesis, CAF-derived
factors have been shown to contribute to immune editing
in vivo to avoid tumor detection and rejection by the host
immune system (Stover et al., 2007; Kraman et al., 2010).
Specific to B cells, several in vitro models have shown the
ability of different types of fibroblasts to modulate B cell
differentiation, activation, and function. Adipose tissue-derived
fibroblasts have been shown to suppress plasmablast formation
and induce formation of regulatory B cells (Franquesa et al.,
2015) while rheumatoid synovial fibroblasts have been shown
to induce immunoglobulin (Ig) class-switch recombination
and IgG/IgA production in IgD+ B cells (Bombardieri et al.,
2011). We envision that the immunoregulatory functions of
CAFs may lead to improved survival in DLBCL and other
B-cell lymphomas where malignant cells themselves are subject
to functional alteration. In contrast, immunosuppression
by CAFs in carcinomas may lead to an ineffective immune
defense against malignant cells, which is associated with poor
survival.

Cancer-associated fibroblasts are also capable of modifying
the immune landscape by selective attraction, recruitment,
retention, activation, and suppression of different immune
cell types (Karin, 2010; Raz and Erez, 2013; Harper and
Sainson, 2014). Recent studies provide evidence that CAFs
can directly contribute to immune cell fate and survival
(Harper and Sainson, 2014). In mouse models, CAFs have
been shown to attract macrophages, neutrophils, and subsets

of T cells that promote tumor progression (Silzle et al.,
2003; Grum-Schwensen et al., 2010; Elkabets et al., 2011).
One possible underlying mechanism for the association of
the DLBCL stromal-1 gene signature with good survival in
patients with DLBCL is that fibroblasts and the associated
ECM attract and trap malignant B cells thereby impeding
their spread to new anatomical locations. We show a small
but consistent inverse association of the DLBCL stromal-
1 gene signature expression with DLBCL tumor stage (a
measure of lymph node groups and extranodal sites to
which malignant cells have metastasized) (Figure 3A). The
decrease in stromal gene signature expression in the later
stages of DLBCL may indicate that the stroma plays a role
in localizing the lymphoma cells to the lymph nodes during
the earlier stages of the disease. In contrast, DLBCL stromal-1
gene signature expression is typically increased with increased
tumor stage in epithelial carcinomas, such as ovarian cancer
(Figure 3B). The increase in CAFs in the later stages of
carcinomas may prevent immune cells from reaching the tumor
parenchyma by trapping the immune cells in the stroma
thereby preventing an anti-tumor response. A recent study
of immune cell infiltration in metastatic urothelial carcinomas
showed that patients whose tumors were classified as immune-
excluded (immune cells localized in the CAF-rich stroma)
had increased disease progression and decreased response
to immunotherapy (Mariathasan et al., 2018). Therefore, we
hypothesize that CAFs aid in retaining DLBCL in the lymph
node, which is associated with better prognosis, whereas in
carcinomas CAFs trap immune cells, which is associated
with decreased anti-tumor immune activity and a worse
prognosis.

One of the key modulators of the cancer microenvironment
is the multifunctional cytokine, transforming growth factor
β (TGFβ). TGFβ induces CAF activation and fibroblast-
to-myofibroblast transition with consequent linearization of
collagen fibers and stiffening of the ECM. In turn, activated CAFs
induce TGFβ signaling to perpetually maintain the activated state
(Calon et al., 2014; Beach et al., 2016; Erdogan and Webb, 2017).
Consistent with the DLBCL stromal-1 signature representing
CAFs, our Ingenuity Pathway Analysis (IPA) of the DLBCL
gene signatures implicates TGFβ signaling as the main upstream
regulator of the DLBCL stromal-1 gene signature (Table 2).
In carcinomas, TGFβ has been shown to promote tumor
progression by inhibiting immunosurveillance through multiple
mechanisms (Flavell et al., 2010; Sheng et al., 2015), including
the recruitment of macrophages (Byrne et al., 2008) and limited
efficacy of immunotherapy by excluding CD8+ T cells from the
tumor parenchyma (Mariathasan et al., 2018; Tauriello et al.,
2018). It is likely that TGFβ also plays an immunosuppressive role
in lymphomas. However, TGFβ is also a potent negative regulator
of B-cell survival, proliferation, activation, and differentiation
(Sanjabi et al., 2017). Stroma-derived TGFβ has been shown
to induce senescence and apoptosis in mouse models of B-cell
lymphoma (Reimann et al., 2010; Stelling et al., 2018). Thus, the
DLBCL stromal-1 gene signature may be primarily associated
with tumor-promoting immunosuppression in carcinomas, while
the same immunosuppression may lead to the eradication of
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B cells, which represent the malignant component of B-cell
lymphoma.

CONCLUSION

Past clinical trials have taught us that successful targeted therapies
in one disease do not always yield the desired results in
another disease despite the presence of the same target. One
example is the poor response of B-cell-infiltrated carcinomas to
rituximab, which has shown remarkable success in lymphomas
and rheumatoid arthritis. The opposite survival outcomes
associated with the presence of stromal cells in B-cell lymphomas
and carcinomas should serve as a warning that targeting the
tumor microenvironment may produce opposite effects in B-cell
lymphomas and carcinomas.

DATABASE LINKS
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