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During the last decade, autophagy has been pointed out as a central process in
cellular homeostasis with the consequent implication in most cellular settings and
human diseases pathology. At present, there is significant data available about molecular
mechanisms that regulate autophagy. Nevertheless, autophagy pathway itself and its
importance in different cellular aspects are still not completely clear. In this article,
we are focused in four main aspects: (a) Induction of Autophagy: Autophagy is an
evolutionarily conserved mechanism induced by nutrient starvation or lack of growth
factors. In higher eukaryotes, autophagy is a cell response to stress which starts
as a consequence of organelle damage, such as oxidative species and other stress
conditions. (b) Initiation of Autophagy; The two major actors in this signaling process
are mTOR and AMPK. These multitasking protein complexes are capable to summarize
the whole environmental, nutritional, and energetic status of the cell and promote the
autophagy induction by means of the ULK1-Complex, that is the first member in the
autophagy initiation. (c) ULK1-Complex: This is a highly regulated complex responsible
for the initiation of autophagosome formation. We review the post-transductional
modifications of this complex, considering the targets of ULK1. (d)The mechanisms
involved in autophagosome formation. In this section we discuss the main events that
lead to the initial structures in autophagy. The BECN1-Complex with PI3K activity and
the proper recognition of PI3P are one of these. Also, the transmembrane proteins,
such as VMP1 and ATG9, are critically involved. The membrane origin and the cellular
localization of autophagosome biogenesis will be also considered. Hence, in this article
we present an overview of the current knowledge of the molecular mechanisms involved
in the initial steps of mammalian cell autophagosome biogenesis.

Keywords: autophagy regulation, mTOR, AMPK, ULK1, VMP1

There are three types of autophagy, processes where cytoplasmic components are delivered to
lysosomes for degradation: microautophagy/endosomal microautophagy (Li et al., 2012; Galluzzi
et al., 2017), chaperone-mediated autophagy (CMA) (Cuervo and Wong, 2014; Kaushik and
Cuervo, 2018) and macroautophagy (hereafter mentioned as autophagy). This is the engulfment of
cytoplasmic contents by a double membrane vesicle, named autophagosome. The outer membrane
of the autophagosome eventually fuses with the lysosome, where the inner vesicle is delivered
(Figure 1). Here we present a brief overview of the mechanisms involved in the initial steps of
mammalian cell autophagosome biogenesis.
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INDUCTION OF AUTOPHAGY

The main task of autophagy is to deal against poor nutrient
environments. In superior eukaryote cells, mTOR, which is a
serine/threonine kinase, checks the presence of growth factors
and nutrients. In presence of amino acids (mainly leucine,
glutamine and arginine), mTORC1 maintains the autophagy
inhibition. When nutrients are no longer available, the inhibition
of mTORC1 releases the ‘brake’ and autophagy is eventually
induced (Carroll et al., 2016). Growth factors negatively regulate
the autophagy by activation of mTOR. Activation of the
insulin receptor induces the phosphorylation of TSC2, avoiding
the TSC1/2 complex formation and the mTORC1 inhibition
(Haeusler et al., 2018). Other growth factors induce the RAS
pathway, which activates the ERK1/2 dimer that inhibits
the TSC1/2 complex and phosphorylates RAPTOR activating
mTORC1 and suppressing autophagy (Carriere et al., 2011).

AMPK is a key serine/threonine kinase that is activated in low
energy conditions (Egan et al., 2011). Then, AMPK activates the
autophagosome formation by mean of direct and indirect ways.
Furthermore, AMPK can be activated by CaMKKB in the ER-
overloaded response (Hoyer-Hansen et al., 2007). The unfolded
protein response, by mean of IRE1α, PERK and ATF6, is also
an autophagy triggering event, enhancing LC3 conjugation (Ding
et al., 2007; Kouroku et al., 2007).

During quick and intense oxygen fluctuations, autophagy is
induced by mTORC1-dependent pathways and/or by ER stress.

Abbreviations: AMBRA1, Activating molecule in BECN1-regulated autophagy
protein 1; AMPK, AMP-activated Kinase; AP-4, Adaptor protein 4; ATF6,
Activating transcription factor 6; ATG, Autophagy related gen or protein; Bcl-2,
B-cell lymphoma 2; BECN1, Coiled-Coil Moesin-Like BCL2-Interacting Protein;
BH3, Bcl-2 homology 3; BiP, Binding immunoglobulin protein; BNIP3, BCL2
interacting protein 3; CaMKKB, Calcium/calmodulin-dependent protein kinase
kinase 2; COPII, Coat complex protein II; CTAGES5, Cutaneous T-cell linphoma-
associated antigen 5; CUL3, Cullin-3; DAPK, Death-associated protein kinase;
DEPTOR, DEP domain containing mTOR-interacting protein; DFCP1, Double
FYVE containing protein 1; EP300, Histone acetyltransferase p300; ERK1/2,
Mitogen-activated protein kinase; Esyt, Extended synaptotagmin; FIP200, FAK
family-interacting protein of 200 kDa (also known as RB1CC1); FOXO3, Forkhead
box protein O3; GSK3, Glycogen synthase kinase 3; HIF1α, Hypoxia-inducible
factor 1 alpha; HORMA, Hop/Rev7/Mad2 domain; IDR, Intrinsically disordered
region; IRE1α, Inositol-requiring enzyme 1 alpha; JNK, c-Jun N-terminal
kinases; KAP1, E3 SUMO-protein ligase TRIM28; KHLH20, Kelch-like protein
20; LC3, Microtubule-associated proteins 1A/1B light chain 3B (also known
as MAP1LC3B); LIR, LC3-interacting region; LKB1, Serine/threonine-protein
kinase STKB1; MIT, Microtubule interacting and trafficking domain; mLST8,
mammalian Letal with SEC13 protein 8; NEDD4, Neural precursor cell expressed
developmentally down-regulated protein 4; NEDD4L, Neural precursor cell
expressed developmentally downregulated gene 4-like; NRF2, Nuclear factor
erythroid 2-related factor 2; PDK1, 3-phosphoinositide-dependent protein kinase
1; PERK, Proline-rich receptor-like protein kinase; PI3K, Phosphatidylinositol
3-kinase; PI3P, Phosphatidylinositol 3-phosphate; PKCδ, Protein kinase C delta
type; PRAS40, Proline-rich Akt substrate of 40 kDa; PROPPIN, β-propeller that
bind polyphosphoinositides; RAB, Ras-related protein; RAPTOR, Regulatory-
associated protein of mTOR; Rheb, Ras homolog enriched in brain; ROS, Reactive
oxygen species; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; SIRT1,
Sirtuin 1; SQSTM1, Sequestosome 1 (also known as p62); STX17, Sintaxin 17;
SUMO, Small ubiquitin-like modifier; TFEB, Transcription factor EB; TIP60, 60
KDa Tat-Interactive Protein; mTOR, mammalian Target of Rapamycin; TRAF6,
Tumor necrosis factor receptor (TNFR)-associated factor 6; TRAPPIII, transport
protein particle (TRAPP) III complex; TSC1/2, Tuberous sclerosis 1/2; ULK1,
unc-51-like kinase 1; UVRAG, UV radiation resistance associated protein; VMP1,
Vacuole membrane protein 1; Vps, Vacuolar protein sorting; WIPI, WD repeat
domain phosphoinositide-interacting protein.

(Papandreou et al., 2008; Rouschop et al., 2010). In moderate but
chronic hypoxia, autophagy is triggered mainly by HIF1α and
PKCδ-JNK1 pathways (Mazure and Pouyssegur, 2010). HIF1α

is the major transcription factor involved in cell response to
hypoxia (Brocato et al., 2014). Among the genes transcribed
by HIF1α is BNIP3 which disrupts the Bcl2-BECN1 interaction
releasing BECN1 to be part of the autophagy process (Zhang et al.,
2008), and VMP1, which interacts with BECN1 and is required
for autophagosome formation (Ropolo et al., 2007; Rodriguez
et al., 2017). Regarding to the PKCδ pathway, this kinase activates
JNK1 that in turn phosphorylates Bcl2 to release it from BECN1
(Pattingre et al., 2009).

Oxidative stress induces autophagy in order to recycle
damaged mitochondria (and other damaged organelles), and
eliminate proteins aggregates (Ureshino et al., 2014). NRF2
is bound to antioxidant response elements promoting the
transcription of p62, a cargo receptor for autophagy (Puissant
et al., 2012). FOXO3 induces the expression of LC3 (an ATG
protein that is described below) and BNIP3 (Mahalingaiah
and Singh, 2014). Finally, ROS inhibit ATG4-mediated LC3
delipidation, that takes place immediately after formation of
the autolysosome, conferring stability to LC3 and favoring
its recruitment to the autophagosome (Scherz-Shouval et al.,
2007).

INITIATION OF AUTOPHAGY

Independently of the induction agent, in canonical autophagy,
the initiation of autophagosome biogenesis is managed by the
kinases mTOR and AMPK. In fact, through the association with
RAPTOR, DEPTOR, PRAS40 and mLST8, mTOR constitutes
the complex 1 [mTORC1]. At basal conditions, mTORC1 is
stimulated by the small GTPase Rheb. In turn, mTOR triggers cell
growth and diverse anabolic processes such as lipids, proteins and
nucleotides synthesis (Lamb et al., 2013; Klionsky and Schulman,
2014). On the other hand, active mTORC1 abolishes most of
catabolic processes including the autophagy (Lamb et al., 2013;
Klionsky and Schulman, 2014; Figure 1B). Therefore, mTOR
inhibits autophagy, by several phosphorylations on the first
complex of the pathway (see further), when optimal nutrients
concentration is available.

During starvation, Rheb is inhibited by the TSC1/2
heterodimer removing the activation stimulus on mTOR
(Huang and Manning, 2008). This inhibition of mTORC1
decreases its influence on autophagy and as a consequence,
the mechanism of autophagosome biogenesis is triggered
(Carroll et al., 2016; Figure 1E). Moreover, the inactivation of
mTORC1 allows that the dephosphorylated TFEB translocates
to the nucleus (Puertollano et al., 2018) where it induces the
transcription of ATG genes, such as UVRAG, WIPI, MAPLC3B,
SQSTM1, Vps11, Vps18, and ATG9B. TFEB also promotes the
lysosomal function in the cell (Settembre et al., 2011).

AMPK is a heterotrimeric complex composed by a catalytic α

subunit and two regulatory subunits, β and γ (Egan et al., 2011).
Since AMPK is activated in low energy conditions, this kinase
inhibits anabolic processes, and induces catabolic pathways, such
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FIGURE 1 | (A) Schematic overview of autophagy. UKL1 activation leads to autophagosome biogenesis. On the ER surface, the transmembrane protein VMP1
recruits a PI3K complex. The consequent PI3P subdomain is recognized by DFCP1 on the omegasome structure. Then, in the isolation membrane, WIPI proteins
recruit the ATG5-ATG12-ATG16 complex which in turn make possible the lipidation of LC3 on the membrane. The formation of autophagosome, a double
membrane vesicle, allows the carrying of cargo to lysosome. Eventually, cargo is degraded in the resulted autophagolysosome. ER, endoplasmic reticulum; PI3K,
phosphatidylinositol 3-kinase; PI3P, phosphatidylinositol (3,4,5) triphosphate (PI3P). (B) Diagram of interrelationship among the cellular energetic and metabolic
regulators, mTOR and AMPK, and the autophagy. (C) Representative scheme of the ULK1 complex proteins. Upper right number in each scheme shows the length
of the amino acid chain. Described domains are showed for each protein. (D) Possible structure and interrelationship among the ULK1 complex proteins, suggested
from available data. KD, kinase domain; LIR, LC3-interacting region; IDR, intrinsically disordered region; MIT, microtubule interacting and trafficking domain; HORMA,
HOP1, REV7, and MAD2 domain; MIM, MIT-interacting motif; NLS, nuclear localization signal; CC, coil-coil region; LZ, leucine zipper; WF, WF finger motif.
(E) Regulation of the autophagy initiation complex ULK1 by mTOR and AMPK at basal (left) and starvation (right) conditions.
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as autophagy (Egan et al., 2011; Zhang et al., 2013; Figure 1B).
AMP binding allows LKB1 to phosphorylate AMPK (Thr172)
(Xiao et al., 2007; Zhang et al., 2013), which in turn directly and
indirectly activates the autophagosome formation as is explained
in the next sections.

ULK1 COMPLEX

ULK1 is so far the first complex in the core molecular machinery
involved in the biogenesis of autophagosomes. This complex is
composed by the serin/threonin protein kinase ULK1, ATG13,
FIP200, and ATG101. Activated ULK1 is capable of triggering
series of phosphorylations that enable the nucleation process
and autophagosome biogenesis. At N-terminal ULK1 is the
kinase domain followed by a disordered region that is postulated
as highly regulated. On the opposite side, there are two MIT
domains in tandem that compose a globular structure (Noda
and Fujioka, 2015). ULK1 structure was characterized in complex
with ATG13. On the C-terminal of ATG13 there are two
MIT-interacting motifs in a helical region for recognition-
interaction with the ULK1 MIT domains (Noda and Fujioka,
2015; Qi et al., 2015). Additionally, both proteins, ULK1
and ATG13, have a LIR domain for interaction with LC3
family members. ATG101, the smallest member of the complex,
is essential for autophagy (Mercer et al., 2009). ATG101 is
almost fully composed by a HORMA domain with direct
interaction with the HORMA domain at the N-terminus of
ATG13. ATG101 stabilizes ATG13 and ULK1 (Mercer et al.,
2009; Suzuki et al., 2015) and seems to recruit downstream
molecules through its WF finger motif (Suzuki et al., 2015).
The last member of ULK1-complex is FIP200, that is the
largest molecule involved in this complex (Hara et al., 2008;
Figures 1C,D).

ULK1 complex is regulated by the two major key proteins
related to nutritional and energetic sensing, mTOR and AMPK
(He and Klionsky, 2009). Under growth factors stimulation and
nutrient availability, the activated mTORC1 interacts with ULK1
through RAPTOR and phosphorylates several sites of ULK1
(Ser757/5637 in mouse, Ser758 in human) (Alers et al., 2012)
and Atg13 (Ser258 in mouse) subunits (Kim et al., 2011; Puente
et al., 2016). Then, ULK1 complex remains inactivated and
autophagy repressed. AMPK induces ULK1-mediated autophagy
by three strategies: 1- AMPK phosphorylates TSC2 at Ser1345
enhancing the activity of this mTORC1 inhibitor (Inoki et al.,
2003). 2- AMPK is able to inhibit mTORC1 activity directly by
phosphorylation of Raptor in Ser792/722 (Gwinn et al., 2008;
Egan et al., 2011). 3- AMPK interacts with and phosphorylates
ULK1 in Ser317/777 for its activation (Kim et al., 2011;
Figure 1E).

Another pathway for ULK1 autophagy activation has been
proposed: AMBRA1 may act as a bridge between ULK1 and
the ubiquitin ligase E3 TRAF6 (Nazio et al., 2013; Grumati
and Dikic, 2018). TRAF6-mediated poly ubiquitination, K63
type branched ubiquitin, potentiates autophagy activation by
promoting stabilization and self-association of ULK1. This
event initiates a positive loop, where ULK1 phosphorylates

AMBRA1 enhancing TRAF6-mediated ULK1 ubiquitination
(Nazio et al., 2013; Grumati and Dikic, 2018). Further,
growth factors withdrawal might induce the activation of
TIP60 by GSK3-mediated phosphorylation at Ser86. TIP60 is
an acetyltransferase that induces the activation of ULK1 by
acetylation of Lys162/606 enhancing the triggering of autophagy
(Lin et al., 2012).

THE MECHANISMS INVOLVED IN
AUTOPHAGOSOME BIOGENESIS

Once activated, ULK1 is able to phosphorylate several substrates.
Among them, there are two initial complexes, the ULK1
complex itself and the PI3KC3 complex 1 (PI3KC3-C1). In
the first complex, ULK1 phosphorylates to itself (Thr180/1046,
Ser1042) (Bach et al., 2011), and the other members of
the complex, Atg13 (Ser318/203), FIP200 (Ser943/986/1323)
and ATG101 (Ser11/203) (Lin and Hurley, 2016; Orhon and
Reggiori, 2017; Figure 1E). In the second complex, ULK1
potentiates the PI3K activity of the catalytic subunit Vps34, by
the phosphorylation of two members of the complex, BECN1
(Ser14) and ATG14L (Ser29), resulting in the increment of PI3P
production (Russell et al., 2013). Following to ULK1 complex
activation, the transmembrane protein VMP1 interacts with the
BH3 domain of BECN1 through its ATG domain, recruiting the
PI3KC3-C1 to the autophagosomal membrane (Molejon et al.,
2013).

There are two main PI3KC3 complexes in autophagosome
biogenesis. The complex 1 is composed by BECN1, ATG14L,
Vps15 and Vps34, which is a key component in autophagosome
initiation. The other complex, PI3KC3-C2, is related to
autophagosome maturation and endosomal trafficking and is
composed by the same members except for the regulatory protein
ATG14L which is replaced by UVRAG. Structurally, the PI3KC3-
C1 is stabilized in pairs, BECN1/ATG14L and Vps15/Vps34
(Stjepanovic et al., 2017). Upon autophagy induction, BECN1
recruitment induces the complex assembly, through the adaptor
ATG14L, where the WD domain of Vps15 organizes the proteins
into the complex allowing the activity of Vps34 (Stjepanovic
et al., 2017). Moreover, the KAP1-mediated SUMOylation of
Vps34 enhances the interaction of this protein with the rest of
the complex (Yang et al., 2013). As it was commented before,
ULK1-mediated phosphorylation of BECN1, ATG14L and Vps34
potentiates PI3K activity in this complex. The tumor suppressor
DAPK, a calcium/calmodulin serine/threonine kinase, also
contributes to the PI3KC3-C1 recruitment to the autophagosome
membrane. This kinase phosphorylates BECN1 on its BH3
domain interfering with the BECN1-Bcl-xL association and
releasing BECN1 (Zalckvar et al., 2009). This effect is reaffirmed
by TRAF6 which ubiquitinates BECN1 on the same region
(Shi and Kehrl, 2010). Recently, it has been proposed that
Vps34 activity may be switched on/off by an EP300-dependent
acetylation/deacetylation on K771, as another regulation of the
PI3KC3-C1 (Su and Liu, 2017; Su et al., 2017).

The cascade of subsequent activations of ULK1 and PI3KC3-
C1 complex members is limited by a series of degradative
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processes. The deubiquitinase A20 (DUB A20) controls BECN1
participation on autophagosome formation by elimination of
poly ubiquitin chain in the BH3 domain placed by ATF6
E3 ligase. Beyond that regulation, the E3 ligases NEDD4 and
NEDD4L induce degradation of key members in ULK1, and
Vps34 complexes respectively (Platta et al., 2012; Nazio et al.,
2016). BECN1 is poly ubiquitinated with K11-linked ubiquitin
chain by NEDD4 to be eliminated in the proteasome. Similar
activity is carried out by NEDD4L on ULK1 targeting this protein
with K27- and K29-linked ubiquitin chains. In both cases, the
proteasome-mediated elimination of those proteins causes the
destabilization of its respective complexes. In a redundant way of
labeling for degradation, the poly ubiquitination with K48-linked
ubiquitin chains on ULK1, BECN1, and Vps34 is catalyzed by the
complex CUL3-KHLH20 (Liu and Chen, 2016).

The Omegasome and the Isolation
Membrane
The local enrichment of PI3P in ER-subdomains acts as the
signal for the nucleation of several autophagy-related proteins in
a structure named omegasome that resembles the Greek letter
omega (Ktistakis and Tooze, 2016). The first protein which
recognizes the PI3P is DFCP1. DFCP1 possesses a diffuse pattern
over the ER, mitochondria and Golgi but it is rapidly mobilized
to the PI3P spots by the recognition of this phospholipid with
the two FYVE motifs of its structure. Although it is a marker of
omegasome, little is known about its role during the initial steps
of autophagosome biogenesis. Additionally, the DFCP1 depletion
does not seem to interfere with the progression of autophagy.

The rising omegasome leads to extension of a sack-like
structure named isolation membrane or phagophore. WIPI2b, a
member of the PROPPIN family, recognizes the local PI3P by
the FRRG motif of its WD40-repeat β-propeller on the isolation
membrane (Nascimbeni et al., 2017a). The process continues
with two ubiquitin like systems: ATG12 and LC3. Cytoplasmic
ATG12 is covalently attached to a C-terminal glycine of ATG5.
This catalytic reaction resembles the ubiquitination process
where ATG7 and ATG10 are subrogated to E1 and E2 enzymes,
respectively (Klionsky and Schulman, 2014). ATG5-ATG12
complex is highly important, since it functions as E3 enzyme
for LC3 conjugation to phosphatidylethanolamine (PE) on the
autophagosomal membrane. This process seems to be mediated
by ATG16L, which is composed by a WD40-repeat β-propeller
domain localized in the C-terminal sequence. At N-terminal
sequences, ATG16L possesses a binding domain that allows the
interaction with ATG5 to eventually form the ATG12-ATG5-
ATG16L complex (Wilson et al., 2014). The middle sequence
of ATG16L expands a coil-coil (cc) dimerization domain that
induces the formation of ATG16L dimers (Wilson et al., 2014).
Then, WIPI2b is recognized by a region of ATG16L, between
the cc-dimerization domain and the WD40-repeated β-propeller
domain. Consequently, the ATG12-ATG5-ATG16L complex is
recruited to the isolation membrane. LC3 plays a central role
in autophagy being involved in vesicle elongation, maturation,
fusion of autophagosome-lysosome and even as an adaptor to
cargo recognition (Nakatogawa et al., 2007; Lee and Lee, 2016).

LC3 shows a diffuse pattern distributed over the cytoplasm
and into the nucleus (known as LC3-I) in basal conditions.
Upon autophagy triggering, LC3 is deacetylated in the nucleus
by SIRT1 (Huang et al., 2015) and is cleaved in cytoplasm by
ATG4B, which eliminates the C-terminal arginine residue to
expose a glycine (Satoo et al., 2009; Maruyama and Noda, 2017).
In an ubiquitin-like reaction, the exposed glycine is combined
to form a thioester bound, first with ATG7 (E1-like enzyme)
and then with ATG3 (the E2-like enzyme) (Satoo et al., 2009;
Maruyama and Noda, 2017). ATG3 is recognized by ATG12
of the ATG12-ATG5-ATG16L complex which has been already
recruited to isolation membrane through WIPI2b. The ATG12-
ATG5-ATG16L complex functions as the E3 enzyme leading the
formation of an amide bound with the amine headgroup of PE
(Noda et al., 2013; Otomo et al., 2013; Dooley et al., 2015). The
lipidated LC3 (LC3-II) is present at the isolation membrane and
on the autophagosome, in both sides of the membrane. The
arrival of autophagosome to the lysosome is a fusion dependent
mechanism of the HOPS complex, through STX17 (Jiang et al.,
2014), and RAB7 (Gutierrez et al., 2004). Since LC3 is present in
both membranes of autophagosome, once exposed to lysosomal
hydrolases, there is a pool of LC3 that is degraded with cargo.
However, the LC3 localized in the external membrane is cleaved
from the PE, by ATG4B, and then recycled. (Noda et al., 2013;
Otomo et al., 2013; Dooley et al., 2015).

Autophagosome Biogenesis in
Non-Canonical Autophagy
Furthermore, of which is explained above, autophagy is able to
follow unconventional pathways. ER-stress or glucose influx after
starvation in NIH3T3, can induce autophagy independent of
mTOR inhibition and where AMPK activation is not essential
(Corona Velazquez and Jackson, 2018). Moreover, the glucose
influx in mouse embryonic fibroblast can trigger autophagy
independent of ULK1/2. Starved chicken DT40 cells show
an autophagy dependent of ATG13-FIP200 interaction but
independent of ULK1. Similar behavior is observed in some
viral infection, such as coronaviruses, HBV or Poliovirus, which
induce a non-degradative ULK1-independent form of autophagy.
Even more interesting is that the oleate fatty acid can induce
an autophagy mechanism that lacks of PI3P synthesis, since it
cannot be inhibited by knocking-down of BECN1, Vps34, or
ATG14. These examples suggest that autophagy is flexible and
the pathways in autophagosome biogenesis may adapt to different
situations depending on the inductor and the biological context
(Corona Velazquez and Jackson, 2018).

Autophagosome Initiation Site
It is accepted that the initial structure related to autophagy
is located on the ER. The data suggest that ULK1 complex
translocates to phosphatidylinositol-enriched ER-subdomains
and then, the membrane structure is fed by ATG9A-containing
vesicles (Nishimura et al., 2017). Then, autophagosomes are
formed in highly active ER-subdomains where lipidic interchange
between ER and other cytoplasmic organelles occurs.
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TABLE 1 | Main molecules involved in the initial steps of mammalian autophagosome biogenesis.

Protein Complete name Autophagy related function Reference

mTOR Mammalian target of rapamycin Members of mTOR complex 1 (mTORC1):
Autophagy inhibition by phosphorylation of
ULK1 complex

Lamb et al., 2013

RAPTOR Regulatory-associated protein of mTOR

DEPTOR DEP domain containing mTOR-interacting
protein

PRAS40 Proline-rich AKT1 substrate 40

mLST8 Mammalian lethal with SEC13 protein 8

AMPK AMP-activated protein kinase Autophagy activation by ULK1, mTORC1, and
TSC2 phosphorylation

Egan et al., 2011

p62 Sequestosome-1 (SQSTM1 gene) Autophagy cargo receptor Puissant et al., 2012

ULK1 Unc-51-like kinase 1 Members of ULK1 complex Bach et al., 2011; Russell et al.,
2013

ATG13 Autophagy-related protein 13

FIP200 FAK family interacting protein of 200 kDa

ATG101 Autophagy-related protein 101

BECN1 Beclin 1 Members of PI3KC3-C1/2 Ktistakis and Tooze, 2016

Vps15 Serine/threonine-protein kinase VPS15

Vps34 Phosphatidylinositol 3-kinase VPS34

ATG14L Autophagy-related protein 14L Member of PI3KC3-C1

UVRAG UV radiation resistance associated protein Member of PI3KC3-C2

KAP-1 E3 SUMO-protein ligase TRIM28 SUMOylation of Vps34 Yang et al., 2013

DAPK Death-associated protein kinase BECN1 phosphorylation Zalckvar et al., 2009

CUL3 Cullin-3 Poly ubiquitination of ULK1, Vps34, and BECN1 Liu and Chen, 2016

KLHL20 Kelch-like protein 20 Substrate-binding subunit of CUL3 ubiquitin
ligase. Recognition of ULK1, Vps34, and
BECN1 as substrates

Liu and Chen, 2016

VMP1 Vacuole Membrane Protein 1 Recruitment of PI3KC3-C1 by interaction with
BECN1 /autophagosomal membrane

Ropolo et al., 2007

EP300 EP300-interacting inhibitor of differentiation 300 Vps34 acetylation Su et al., 2017

DFCP1 Double FYVE-containing protein 1 Omegasome marker Ktistakis and Tooze, 2016

WIPI2b WD40-repeat phosphoinositide-interacting
protein

Isolation membrane marker Nascimbeni et al., 2017a

ATG12 Autophagy-related protein 12 Member of ATG12-ATG5-ATG16L complex: E3
like function in LC3 conjugation to
phosphatidylethanolamine

Klionsky and Schulman, 2014

ATG5 Autophagy-related protein 5

ATG16L Autophagy-related protein 16L

ATG7 Autophagy-related protein 7 E1 in LC3 lipidation and ATG12-ATG5
conjugation

ATG10 Autophagy-related protein 10 E2 in ATG12-ATG5 conjugation

ATG3 Autophagy-related protein 3 E2 like function in LC3 lipidation Satoo et al., 2009

LC3 Microtubule-associated proteins 1A/1B light
chain 3B

Vesicle maturation/cargo recognition Lee and Lee, 2016

SIRT1 NAD-dependent deacetylase sirtuin-1 LC3 deacetylation Huang et al., 2015

ATG4B Autophagy-related protein 4B Clevage of C-terminal Gly of LC3 Maruyama and Noda, 2017

ATG9A Autophagy-related protein 9 A Isolation membrane extension Feng and Klionsky, 2017

Esyt 1, 2, 3 Extended synaptotagmin-1, 2, 3 ER-PM contact sites Nascimbeni et al., 2017b

AP-4 Adaptor protein 4 Isolation membrane extension Mattera et al., 2017

Sar1 Sar1 COPII coat: participation in autophagosome
biogenesis

Karanasios et al., 2016

Sec 13, 23, 24, 31

Rab11A Ras-related protein Rab-11A Recycling endosomes Puri et al., 2018

AMBRA1 Activated in BECN1-regulated autophagy
protein 1

ULK1 ubiquitination Nazio et al., 2013

TRAF6 TNF receptor (TNFR)-associated factor 6 ULK1 and BECN1 ubiquitination Grumati and Dikic, 2018
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Two sites of autophagosome biogenesis have been recently
demonstrated: The ER-plasma membrane contact site (ER-
PM) and the ER-Mitochondria contact site (Hamasaki et al.,
2013; Nascimbeni et al., 2017b). VMP1 is a key player
in the biogenesis of autophagosomes that remains in the
autophagosomal membrane (Grasso et al., 2011). VMP1-BECN1
interaction allows the recruitment of PI3KC3-C1 to the ER-PM
contact site by the interaction with the proteins Esyt 1, 2, and
3 (Nascimbeni et al., 2017b). Moreover, VMP1 was suggested to
also regulate the ER-mitochondria contact site during autophagy
and to be involved in the release of the initial autophagosome
vesicle by activation of SERCA pump (Tabara and Escalante,
2016; Zhao et al., 2017). The transmembrane protein ATG9A
is in Golgi and endosomal system, in early and late endosomes
with a minimal percentage of recycling ones (Feng and Klionsky,
2017). In starvation, the TRAPPIII complex, related to ER-Golgi
vesicular trafficking, mobilizes ATG9A vesicles to the sites of
nascent autophagosomes (Shirahama-Noda et al., 2013). The
adaptor protein AP-4 is required for this event, since it mediates
the trafficking of ATG9A from trans-Golgi network to the site
of autophagosomes maturation (Mattera et al., 2017). This event
would potentiate the expansion of the isolation membrane.
Nevertheless, the contribution of this membrane by the ATG9A
vesicles is not enough to explain the growth of the membrane
itself. Moreover, ATG9 seems to take a distinctive role in different
systems. In contrast to mammals, yeast ATG9 has a fundamental
role at very early steps in the pre-autophagosomal structure. On
the other hand, in plants, the depletions of Arabidopsis ATG9 still
allows formation of autophagosomal structures supplemented
with ATG8 (LC3 ortholog) suggesting divergent regulation and
mechanisms of this types of vesicles (Zhuang et al., 2017).

Ribosomes-free regions specialized in ER-Golgi
communication are present in the rough ER. Vesicles arise
targeted to the Golgi from these areas, described as ER-exit sites
(ERES). These vesicles are supplemented by the proteins Sar1,
Sec23, Sec24, Sec13 and Sec31, that constitute the COPII coat
(Zahoor and Farhan, 2018). Before reaching Golgi, the COPII-
coated vesicles go through an intermediated structure named
ER-Golgi intermediate compartment (ERGIC) (Ben-Tekaya
et al., 2005). The function of these structures is not completely
understood, but they might participate in the autophagosome
biogenesis. An impairment of these compartments causes an
autophagy downregulation (Karanasios et al., 2016; Zahoor and
Farhan, 2018).

Data suggest that the bulk contribution for the growth of the
autophagosome membrane comes from the ER-Golgi vesicular
trafficking. During starvation, the FIP200-CTAGES5 interaction
induces the remodeling and enlargement of ERES positives for
Sec12 (Ge et al., 2017). This allows the production of COPII-
coated vesicles that are released to contribute to autophagosome
formation. Moreover, ULK1 phosphorylates Sec23A, a member
of the COPII multiprotein complex. This event is related
to morphological variations on ERES during starvation and
might turn the secretory machinery from anabolic to catabolic
state.

A recent work shows a previously unexpected key role
of Rab11A-positive membranes in autophagosome biogenesis

(Puri et al., 2018). They demonstrated that WIPI2 relies,
beyond the recognition of PI3P, in the interaction with Rab11A
for recruitment of ATG16L. Also, the authors suggest a
model where isolation membrane is represented by Rab11A-
positive membrane, likely to be recycling endosomes. In this
context, Rab11A-positive membranes constitute the platform for
autophagosome formation initial steps.

CONCLUSION AND PERSPECTIVES

The initial molecular steps in autophagosome biogenesis
are determined by three mains complexes: ULK1 complex;
PI3KC3-C1; and ATG16L1–ATG5–ATG12 which eventually
favors LC3 lipidation in the growing isolation membrane. LC3
family seems to play a relevant role in cargo recognition,
autophagosome closure and fusion with lysosomes. However,
while the initial molecular steps seem to be essential and
well-known in canonical autophagy, the subsequent events in
mammalian autophagosome biogenesis are less characterized.
Moreover, the wide spectrum of autophagy-related events and
the number of molecules involved (Table 1) leads to the concept
that different pathways might account for diverse types of
autophagy and may reveal different functions of autophagy in
physiological and pathological cellular processes. Furthermore,
the meaning of different origins and composition of the
autophagosomal membrane, such as those supplied by ATG9A
and COP-II vesicles (Feng and Klionsky, 2017), are still not fully
understood.

Moreover, autophagosome biogenesis is regulated by
a variety of signaling pathways through posttranslational
modification, such as phosphorylations, ubiquitinations,
SUMOylations and acetylation, that may account for diverse
conditions, functions or selectivity. Furthermore, this molecular
regulation, that are eminently druggable, may be relevant in the
development of therapeutic strategies of autophagy modulation
for complex pathologies such as cancer (Galluzzi et al., 2015) or
neurodegenerative diseases (Zare-Shahabadi et al., 2015).

Although there are many aspects still unclear on mammalian
autophagosome biogenesis, future findings that shed light on this
sophisticated intracellular process can be taken for granted.
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