
fcell-06-00161 November 28, 2018 Time: 11:3 # 1

MINI REVIEW
published: 29 November 2018
doi: 10.3389/fcell.2018.00161

Edited by:
Gordon Chan,

University of Alberta, Canada

Reviewed by:
Sabine Elowe,

Laval University, Canada
Tim J. Yen,

Fox Chase Cancer Center,
United States

*Correspondence:
Hongtao Yu

hongtao.yu@utsouthwestern.edu

Specialty section:
This article was submitted to

Cell Growth and Division,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 16 October 2018
Accepted: 08 November 2018
Published: 29 November 2018

Citation:
Choi E and Yu H (2018) Spindle
Checkpoint Regulators in Insulin

Signaling. Front. Cell Dev. Biol. 6:161.
doi: 10.3389/fcell.2018.00161

Spindle Checkpoint Regulators in
Insulin Signaling
Eunhee Choi and Hongtao Yu*

Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas,
TX, United States

The spindle checkpoint ensures accurate chromosome segregation during mitosis
and guards against aneuploidy. Insulin signaling governs metabolic homeostasis and
cell growth, and its dysregulation leads to metabolic disorders, such as diabetes.
These critical pathways have been extensively investigated, but a link between the
two has not been established until recently. Our recent study reveals a critical role of
spindle checkpoint regulators in insulin signaling and metabolic homeostasis through
regulating endocytosis of the insulin receptor (IR). These findings have linked spindle
checkpoint proteins to metabolic regulation, expanding the connection between cell
division and metabolism. Here, we briefly review the unexpected roles of spindle
checkpoint regulators in vesicle trafficking and insulin signaling.
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INTRODUCTION

During cell division, each chromosome is replicated, and the replicated sister chromosomes
are divided equally into two daughter cells. Microtubules attach to the kinetochore, a large
protein assembly on centromeres, and generate pulling force toward opposing spindle poles. The
spindle checkpoint monitors the kinetochore-microtubule attachment and tension across sister
kinetochores (Foley and Kapoor, 2013; Jia et al., 2013; London and Biggins, 2014; Musacchio,
2015). Dysfunction of the spindle checkpoint causes chromosome missegregation and aneuploidy,
resulting in developmental defects, cancer, and premature aging (Bharadwaj and Yu, 2004; Holland
and Cleveland, 2009; Pfau and Amon, 2012; Funk et al., 2016).

The spindle checkpoint inhibits a multi-subunit ubiquitin ligase called the anaphase promoting
complex/cyclosome (APC/C) in complex with its mitotic activator CDC20 and delays chromosome
segregation (Peters, 2006; Yu, 2007; Luo and Yu, 2008; Izawa and Pines, 2015). The mitotic
checkpoint complex (MCC), consisting of MAD2, BUBR1, BUB3, and CDC20, is a major inhibitor
of APC/CCDC20 (Sudakin et al., 2001; Mapelli and Musacchio, 2007; Yu, 2007; Luo and Yu,
2008). Unattached kinetochores catalyze the formation of MCC, which diffuses away from the
kinetochores to inhibit cellular APC/CCDC20.

A critical step in the assembly of MCC is the conformational activation of MAD2. MAD2
has multiple conformations, including the inactive, open MAD2 (O-MAD2) and active, closed
MAD2 (C-MAD2) (Figure 1A; Luo et al., 2002, 2004; Sironi et al., 2002; Mapelli and Musacchio,
2007; Luo and Yu, 2008). MAD2 binds to its activator MAD1 and its effector CDC20 through
a short hydrophobic motif called the MAD2-interacting motif (MIM) with the consensus of
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(K/R)88X8X3−4P (8, a hydrophobic residue; X, any residue)
(Figure 1B). MAD2 holds the MIM through a seat-belt-like
structure formed by its C-terminal region. Since the amino acid
sequence of MIM is highly divergent, MAD2 can possibly interact
with many proteins. The MAD1−C-MAD2 core complex at
unattached kinetochores binds an additional copy of O-MAD2
and generates a conformation change of O-MAD2 to turn it
into the intermediate MAD2 (I-MAD2) (Figure 2A). I-MAD2
entraps the MIM of CDC20 to form the stable CDC20−C-MAD2
complex. CDC20−C-MAD2 further binds with the constitutive
BUBR1−BUB3 complex to form the intact MCC (Kulukian et al.,
2009; Jia et al., 2013).

When all kinetochores are properly attached by microtubules,
the MAD2-binding protein, p31comet, binds to MAD1-bound
C-MAD2 and inhibits further MAD2 conformational activation,
thus limiting MCC assembly (Figure 2A). In the MCC, the
N-terminal region of BUBR1 directly contacts both CDC20 and
C-MAD2 (Tipton et al., 2011; Chao et al., 2012; Tian et al.,
2012). Because p31comet and BUBR1 bind to a similar interface
on C-MAD2, p31comet competes with BUBR1 for C-MAD2
binding and weakens the contact between MAD2 and BUBR1
in the MCC. In addition, p31comet recruits the AAA+ ATPase

FIGURE 1 | MAD2 binds short hydrophobic MAD2-interacting motif (MIM)
motifs. (A) Ribbon diagrams of O-MAD2 (left, PDB ID 1DUJ) and C-MAD2
bound to the artificial MAD2-binding ligand MBP1 that was identified through
phage display (right, PDB ID 1KLQ). The C-terminal region of MAD2 (colored
in blue) undergoes a large conformational change to form the seat-belt
structure that entraps its ligand. (B) Sequence alignment of the MIM from
human CDC20, MAD1, insulin receptor (IR), ADAM17, and the MAD2-binding
peptides (MBP1 and MBP2) that were identified through phase display. The
key MAD2-binding residues are colored in red. The conserved residues in the
MIM are boxed. The MIM consensus is shown on top. K/R denotes lysine or
arginine; X, any residue; and 8, a hydrophobic residue.

TRIP13, which induces the conformational change of C-MAD2
to O-MAD2 through the local unfolding of the C-terminal region
of MAD2, thus releasing MAD2 from CDC20 and stimulating
the disassembly of free MCC (Xia et al., 2004; Yang et al., 2007;
Eytan et al., 2014; Wang et al., 2014; Ye et al., 2015, 2017;
Brulotte et al., 2017; Alfieri et al., 2018). Finally, APC/C-mediated
CDC20 ubiquitination and degradation trigger the disassembly
of MCC already bound to APC/CCDC20 (Nilsson et al., 2008;
Foster and Morgan, 2012; Uzunova et al., 2012; Yamaguchi et al.,
2016). Collectively, these mechanisms promote APC/CCDC20

activation and anaphase onset. Therefore, dynamic assembly
and disassembly of MCC are critical for timely chromosome
segregation and genomic stability.

Although the components of the MCC are conserved
from yeast to man, p31comet is only found in metazoans.
The yeast BUBR1 homolog, Mad3, lacks the C-terminal
pseudokinase domain (Bolanos-Garcia and Blundell, 2011),
which is dispensable for APC/C inhibition in human and mouse
(Elowe et al., 2010; Suijkerbuijk et al., 2012). These findings
suggest that p31comet and the C-terminal domain of BUBR1
might have additional roles in multicellular organisms. In the
mouse, MAD2 overexpression (Sotillo et al., 2007) or BUBR1
insufficiency (Baker et al., 2004) causes aneuploidy, but creates
different physiological outcomes. Mice overexpressing MAD2
expectedly develop cancer, but mice with BUBR1 insufficiency
exhibit premature aging. These results indicate that MAD2 and
BUBR1 might control systemic tissue homeostasis beyond their
functions in mitosis.

Our recent study has indeed uncovered a critical role
of MAD2, BUBR1, and p31comet in insulin signaling and
metabolism (Choi et al., 2016). These mitotic regulators directly
control insulin signaling and metabolic homeostasis through
regulating endocytosis of the insulin receptor (IR). Here, we
review our findings on the function and mechanism of the
p31comet

−MAD2−BUBR1 module in regulating IR endocytosis
and insulin signaling, discuss the implications of these findings,
and highlight key unanswered questions.

MITOTIC REGULATORY PROTEINS IN
GLUCOSE AND LIPID METABOLISM

The pancreas produces insulin to maintain metabolic
homeostasis in vertebrates (Petersen and Shulman, 2018). Insulin
binds to IR on the cell surface, disrupts the inactive IR dimer, and
stabilizes the active dimer, in which the two cytoplasmic kinase
domains undergo trans-autophosphorylation and activation
(Gutmann et al., 2018; Scapin et al., 2018). The activated IR
triggers two major signaling cascades: the phosphatidylinositol
3-kinase (PI3K)−AKT pathway and the mitogen-activated
protein kinase (MAPK) pathway (White, 2003; Taniguchi et al.,
2006; Boucher et al., 2014). The PI3K−AKT pathway controls
glucose and lipid metabolism and the MAPK pathway governs
cell growth. The activated IR can be internalized through
clathrin-mediated endocytosis (CME), which attenuates insulin
signaling at the plasma membrane (Goh and Sorkin, 2013).
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FIGURE 2 | Spindle checkpoint proteins in mitosis and insulin signaling. (A) The roles and regulation of mitotic regulatory proteins in mitosis (left and middle).
(B) MAD2, BUBR1, and p31comet control insulin receptor endocytosis.

Dysregulation of insulin signaling can cause insulin resistance
syndromes, including type 2 diabetes. IR knockout (Insr−/−)
mice exhibit mild growth retardation, glycogen storage defects,
diabetic ketoacidosis, and neonatal lethality (Accili et al., 1996;
Joshi et al., 1996). Liver-specific IR knockout (liver-Insr−/−) mice
survive to adulthood and develop hepatic insulin resistance and
dyslipidemia (Michael et al., 2000; Biddinger et al., 2008a,b).
Thus, insulin signaling in the liver is critical for metabolic
homeostasis.

Spindle checkpoint regulators are essential for embryonic
viability in mice (Dobles et al., 2000; Kalitsis et al., 2000;
Wang et al., 2004; Park et al., 2013). For example, loss of
MAD2 causes early embryonic lethality, presumably due to
severe chromosome missegregation and p53-dependent cell
death during early development. Partial loss of the checkpoint
increases aneuploidy, but produces variable phenotypes (Michel
et al., 2001; Baker et al., 2004, 2009; Iwanaga et al., 2007;
Jeganathan et al., 2007; Choi et al., 2012; Park et al., 2013). MAD2-
overexpressing transgenic mice develop increased aneuploidy
and spontaneous cancers, likely due to hyperactivation of the
spindle checkpoint (Sotillo et al., 2007). Surprisingly, ablation
of p31comet, a direct inhibitor of MAD2 function in the spindle
checkpoint, causes hyperactivation of the spindle checkpoint,
but does not produce the expected tumorigenesis phenotype.
Instead, p31comet knockout (p31−/−) mice exhibit mild growth
retardation and neonatal lethality (Choi et al., 2016).

Multiple tissues of p31−/− mice examined, including heart,
fat, and kidney, show no developmental abnormalities. Lung
and respiratory muscle in p31−/− mice are normal, and
there is evidence that the lungs have been inflated. Skeletal
muscle is normal with intact sarcomeres, and the myofibers
are not hypotrophic. p31−/− mice also exhibit normal liver
development, including the formation of the hepatic cord and
scattered, small hematopoietic foci. However, the glycogen level
in hepatocytes, but not in the skeletal muscle, is significantly

decreased in p31−/−mice. Glycogen stored in the liver is a crucial
energy source (Girard and Pegorier, 1998). The insufficient
energy to breathe and the inability to transition from placenta to
nursing may have contributed to the neonatal lethality in p31−/−

mice. The phenotypes of p31−/− mice are highly similar to those
of Insr−/− mice and severe insulin resistance human diseases,
such as Donohue syndrome (also known as leprechaunism)
(Rogers, 1966).

Liver-specific p31comet knockout (liver-p31−/−) mice survive
to adulthood and show hyperinsulinemia and hyperglycemia that
are less severe than those of liver-Insr−/−mice (Choi et al., 2016).
Furthermore, despite having high serum insulin levels, liver-
p31−/− mice show decreased levels of glycogen and triglyceride
in the liver. Interestingly, their serum triglyceride levels are
slightly increased, indicating that ablation of p31comet in the liver
can promote systemic changes in glucose and lipid metabolism.
Like liver-Insr−/− mice, liver-p31−/− mice display glucose and
insulin intolerance, albeit to lesser extent. These results suggest
that p31comet might promote insulin signaling.

p31comet functions not only in the liver but also in other
tissues, as p31−/− mice show neonatal lethality whereas liver-
p31−/− mice are viable, a phenomenon also seen with whole-
body or liver-specific IR ablation. The glycogen depletion in the
liver of liver-p31−/− embryos is much less severe than that of
the p31−/− embryos, allowing liver-p31−/− mice to survive.
One obvious possibility is that insulin signaling in other tissues
regulates hepatic glycogen levels. Incomplete genetic ablation
of p31comet by Albumin-Cre in embryos might be another
contributing factor.

Disruption of BUBR1 causes early embryonic death
accompanied by increased apoptosis (Wang et al., 2004).
BUBR1 insufficiency (Bub1bH/H) mice expressing BUBR1 at
approximately 10% the level of wild-type mice do not show
discernible difference from wild-type littermates at birth,
but develop aging-associated phenotypes, including cachexia,
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cataracts, and kyphosis (Baker et al., 2004). The fat deposits
in Bub1bH/H mice are greatly reduced, and they display
muscle atrophy (Baker et al., 2004, 2008). Strikingly, BUBR1
insufficiency in mice improves glucose and insulin sensitivity
without pancreatic β-cell degeneration (Baker et al., 2008; Choi
et al., 2016).

In summary, ablation of the mitotic regulatory proteins
triggers mitotic errors and increases aneuploidy. Because
two aneuploidy mouse models (p31−/− and Bub1bH/H) have
opposite metabolic phenotypes, in terms of glucose tolerance and
insulin sensitivity, aneuploidy alone cannot underlie all metabolic
phenotypes in these mice. Instead, these results suggest that
mitotic regulators may directly control metabolic homeostasis
in vivo.

MITOTIC REGULATORS IN INSULIN
SIGNALING AND INSULIN RECEPTOR
ENDOCYTOSIS

Clathrin-mediated endocytosis is an essential process in vesicle
trafficking that transports various cargos from the cell surface
to the inside of the cell (Goh and Sorkin, 2013; Traub and
Bonifacino, 2013; Kaksonen and Roux, 2018). Over 50 soluble
cytosolic proteins are involved in this process in a highly
ordered manner. The assembly polypeptide 2 (AP2) complex
is a key adaptor that links the clathrin lattice to both the
cargo and lipid components of the plasma membrane. AP2
is a heterotetramer consisting of AP2A, AP2B1, AP2M1, and
AP2S1 subunits. The entire AP2M1 and AP2S1 subunits, along
with the N-terminal trunk domains of AP2A and AP2B1,
make a large globular AP2 core. This core recognizes sorting
signals of the cargo, such as acidic dileucine and YXX8 (Y
denotes Tyrosine; X, any residue; and 8, a hydrophobic residue)
endocytic motifs. The phosphoinositide, phosphatidylinositol
4,5-bisphosphate [PtdIns(4,5)P2], at the plasma membrane
triggers a large conformational change of the AP2 core from the
inactive “locked” form to the active “open” form, thus enabling
cargo binding (Collins et al., 2002; Jackson et al., 2010). The
C-terminal appendages of the AP2A and AP2B1 subunits extend
from the core and bind to clathrin, other adaptors, and various
accessory proteins, and promote clathrin vesicle formation.

The mechanism of IR endocytosis has been extensively studied
for several decades. The kinase activity of IR is essential for its
endocytosis (Grako et al., 1992; Carpentier et al., 1993). The
NPEY motif in the juxtamembrane region and an acidic dileucine
motif in the kinase domain of IR have been reported to promote
IR endocytosis (Backer et al., 1990, 1991; Haft et al., 1994; Hamer
et al., 1997). However, how the CME machinery can recognize
the active IR and accelerate the clathrin pit formation is largely
unknown.

Earlier studies implicated MAD2 and BUBR1 as IR- and
AP2B1-interacting proteins, respectively, but the physiological
functions of these interactions were not explored (O’Neill
et al., 1997; Cayrol et al., 2002). The phenotypes of p31−/−

mice suggested the possible involvement of p31comet in insulin
signaling and promoted us to re-examine the potential functions

of these interactions. Our recent finding indicates that IR
directly binds to MAD2 through a conserved MIM in the
extreme C-terminal region (Figure 2B; Choi et al., 2016).
IR-bound MAD2 adopts the active closed conformation (C-
MAD2), similar to MAD1- or CDC20-bound C-MAD2. In vitro
and in cells, the IR-bound C-MAD2 recruits AP2B1 through
BUBR1, and promotes clathrin-mediated endocytosis of IR. As
in inhibition of the spindle checkpoint signaling in mitosis,
p31comet blocks the association of MAD2−BUBR1−AP2B1 with
IR, thereby inhibiting IR endocytosis. As revealed by total
internal reflection fluorescence (TIRF) microscopy, p31comet,
MAD2, and BUBR1 can indeed localize to the plasma membrane.
The colocalization between IR and BUBR1 at the cell surface
is increased by the chemical inhibition of dynamin, the
GTPase required for clathrin-mediated endocytosis, with or
without insulin treatment. Thus, the p31comet

−MAD2−BUBR1
module regulates clathrin-mediated endocytosis of IR and insulin
signaling in human cells.

Consistent with the in vitro findings, IR is prematurely
internalized in liver from liver-p31−/− mice, resulting in
insulin signaling defects and diabetic phenotypes (Choi et al.,
2016). In contrast, IR autophosphorylation and activating AKT
phosphorylation in response to insulin are more robust in
Bub1bH/H hepatocytes. Suppression of CME by depletion of
AP2B1 or clathrin, or ablation of MAD2 or BUBR1 restores the
level of IR on the plasma membrane and proper insulin signaling
in p31−/− hepatocytes. Expression of MAD2-binding-defective
IR rescues the insulin signaling defects and metabolic phenotypes
in liver-p31−/− mice. Finally, liver-specific p31comet and BUBR1
double knockout mice survive to adulthood and exhibit improved
insulin sensitivity, similar to Bub1bH/H mice.

Taken together, these findings establish a direct function
of spindle checkpoint proteins in IR endocytosis and insulin
signaling. This work provides a clear example of the evolutionary
repurposing of a core cell division module for metabolic
regulation. It further raises the interesting question why spindle
checkpoint proteins are used to control insulin signaling.

The connection between mitotic regulators and vesicle
trafficking is not limited to MAD2 and BUBR1. It has been
reported that BUB1 can also bind to AP2B1 in a yeast-two hybrid
assay (Cayrol et al., 2002). Recently, the Drosophila homolog of
BUB1 has been shown to promote viral and pathogen entry into
fly cells through mediating clathrin-mediated endocytosis (Yang
et al., 2018). In that system, BUB1 physically interacts with the
AP2 adaptor. Whether this function of BUB1 is conserved in
mammals remains to be demonstrated. Unlike BUBR1, BUB1 is a
functional kinase. It will be interesting to test if the BUB1 kinase
activity is required for vesicle trafficking and, if so, BUB1 may be
a viable target for limiting viral infections.

EFFECT OF PLOIDY ON HEPATIC
METABOLISM

Wild-type hepatocytes are naturally polyploid, which can
suppress liver tumorigenesis and enhance the functional capacity
of the liver (Duncan et al., 2010, 2012; Zhang et al., 2018).
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While earlier studies had claimed that aneuploidy is common
in normal rodent and human liver (Duncan et al., 2010,
2012), recent single cell whole-genome sequencing analysis
has revealed that there is no widespread aneuploidy in wild-
type mouse hepatocytes (Knouse et al., 2014; Choi et al.,
2016). Disruption of the spindle checkpoint is expected to
generate aneuploidy. Several complementary lines of evidence
argue against the change in ploidy as the determining factor
of the metabolic defects in liver-p31−/− mice (Choi et al.,
2016). First, the polyploidy status is not altered in liver-
p31−/− hepatocytes. Second, single-cell sequencing analysis
reveals that about 5% of liver-p31−/− hepatocytes and 20% of
Bub1bH/H hepatocytes are aneuploid. Thus, although ablation
of p31comet in mouse embryonic fibroblasts (MEFs) causes
high incidences of aneuploidy similar to those previously
reported for MEFs harboring a hypomorphic allele of CDC20
or BUBR1 (Baker et al., 2004; Malureanu et al., 2010),
the aneuploidy incidence of p31−/− hepatocytes in vivo is
surprisingly low. Importantly, the Bub1bH/H mice harboring
higher incidence of aneuploidy in hepatocytes show insulin
sensitivity, as opposed to insulin resistance seen in liver-
p31−/− mice. Third, re-expression of p31comet in the adult
liver rescues the metabolic phenotypes and insulin signaling
defects of liver-p31−/− mice, without altering the low-level
aneuploidy in hepatocytes. Similarly, expression of the MAD2-
binding-deficient mutant of IR, but not wild-type IR, rescues
the metabolic phenotypes of liver-p31−/− mice. These genetic
suppression experiments provide the strongest evidence that
aneuploidy is not the sole factor driving the metabolic
phenotypes.

Collectively, these data strongly support the specific functions
of the mitotic regulators in insulin signaling and metabolism.
Bub1bH/H mice undergo premature aging. Given the prominent
roles of the insulin pathway in aging, it is conceivable that the
hyperactive insulin pathway in Bub1bH/H contributes to their
premature aging phenotypes. This possibility needs to be further
investigated in future studies.

SUMMARY AND OUTLOOK

The spindle checkpoint is critical for mitotic fidelity in dividing
cells. Insulin signaling coordinates both metabolic homeostasis
and cell proliferation. The p31comet

−MAD2−BUBR1 module
of crucial spindle checkpoint proteins plays an important
role in insulin signaling and systemic homeostasis by
ensuring timely IR endocytosis (Figure 2B). These unexpected
findings raise many interesting questions: (1) How do

this mitotic module and the known mechanisms of IR
endocytosis cooperate to regulate IR endocytosis? (2) How
does insulin stimulation suppress p31comet-mediated inhibition
of BUBR1−AP2 association with IR? Can insulin signaling
control this mitotic module? (3) Are the mitotic and metabolic
functions of the spindle checkpoint regulators linked? Can
extracellular hormones regulate chromosome segregation
through IR? (4) What is the physiological consequence of
disruption of the IR−MAD2 interaction? Can it promote
tumorigenesis or suppress diabetic phenotypes? Future studies
aimed at answering these questions will greatly advance
our understanding of the physiological functions of the
unexpected connection between checkpoint proteins and insulin
signaling.

MAD2 interacts with IR through the MIM (Choi et al.,
2016). The mitotic p31comet

−MAD2−BUBR1 module likely
only regulates cell-surface receptors that contain the MIM.
The insulin-like growth factor 1 receptor (IGF1R) and IR
share over 80% homology in their intracellular domains.
However, IGF1R does not contain the MIM, and is unlikely
to be regulated by the p31comet

−MAD2−BUBR1 module. On
the other hand, other unrelated receptors that contain the
MIM may be regulated through similar mechanisms. For
example, ADAM17/TACE, which is a metalloprotease with
crucial functions in cancer biology, has a functional MIM
and binds directly to MAD2 (Nelson et al., 1999; Murphy,
2008; Choi et al., 2016). It will be interesting to examine the
potential regulation of ADAM17 by MAD2. Future studies are
also required to systematically discover new MAD2−binding
receptors and to elucidate the physiological functions of these
binding events. Research in this direction may reveal new
regulatory mechanisms of cell surface receptors, expand the non-
cell-cycle functions of mitotic regulators, and uncover novel
therapeutic targets for treating human diseases, such as cancer
and diabetes.
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