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Motor proteins are responsible for transport of vesicles and organelles within the cell
cytoplasm. They interact with the actin cytoskeleton and with microtubules to ensure
communication and supply throughout the cell. Much work has been done in vitro and
in silico to unravel the key players, including the dynein motor complex, the kinesin and
myosin superfamilies, and their interacting regulatory complexes, but there is a clear
need for in vivo data as recent evidence suggests previous models might not recapitulate
physiological conditions. The zebrafish embryo provides an excellent system to study
these processes in intact animals due to the ease of genetic manipulation and the optical
transparency allowing live imaging. We present here the advantages of the zebrafish
embryo as a system to study live in vivo processive transport in neurons and provide
technical recommendations for successful analysis.
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INTRODUCTION

Processive intracellular transport is essential for the distribution of organelles and cellular cargoes
within the cell. In the case of neurons, such transport provides communication between different
cell compartments and ensures supply to the growing synapse, clearance of detritus and serves as
the support for intracellular signaling (Hirokawa et al., 2010). This process relies on the function
of motor proteins and their interaction with the cell cytoskeleton, the three components of which
play important roles in regulating transport. Indeed, neurofilaments provide structure and regulate
axonal caliber, which influences transport metrics. Microtubules are responsible for axonal polarity,
a consequence of the stereotyped orientation of their dynamic fast-growing ends, and act as the rails
guiding motor proteins within the axon and dendrites. Finally, actin filaments form a structural
network supporting the growth cone, pre- and postsynaptic regions, and play an important role in
dendrites where they form the spines, essential for synaptic transmission.

Dynein and the kinesin superfamily are the unidirectional molecular motors responsible for
transport on microtubules, both in dendrites and axon. In polarized axons, it is split according to
the direction relative to the microtubule fast-growing end (+), with kinesins being responsible for
‘anterograde’ movement (toward the synapse) and dynein for ‘retrograde’ movement (toward the
cell body). Their movement can in turn be categorized as ‘slow’ or ‘fast’ depending on their transport
rate. Slow axonal transport is mainly used for delivery of cytoskeletal components and associated
proteins, with kinetics in the range of 0.2–8 mm/day (Lasek et al., 1984). Fast axonal transport is
used for organelles and vesicles, but also for mRNA granules (Maday et al., 2014), with kinetics in
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the range of 50–400 mm/day (Lasek et al., 1984). This type
of transport, in terms of motor complex involved for different
types of cargoes, motor adaptor complexes and transport
metrics, has been widely studied and is well reviewed elsewhere
(Maday et al., 2014).

Unconventional myosins, molecular motors of the actin
cytoskeleton, are commonly associated with dynamic shaping of
membranes, as well as organelle formation and transport, but
their functions in neuronal transport is not well understood.
Among this super-family, Myosin5a, 5b, 6 and 10 have been
identified as processive transporters in neurons, and participate
in local transport of intracellular cargoes over short-range
distances. Processive myosins are likely part of a cooperative
mechanism which is based on the coordination of actin and
microtubule transporters (Wu et al., 2000). This is nicely
illustrated with Myo5a binding directly to kinesins (Huang
et al., 1999), suggesting that organelles transported in axons
along microtubules may be transported by Myo5a in presynaptic
terminals, which lack microtubules (Wu et al., 1998; Bridgman,
1999; Lalli et al., 2003; Nalavadi et al., 2012). Processive myosins
are implicated in vesicle endocytosis, recycling and exocytosis,
and hence participate in receptor transport and localization,
regulating neuronal signaling and axonal pathfinding (Wu et al.,
2002; Osterweil et al., 2005; Zhu et al., 2007; Correia et al., 2008;
Nash et al., 2010; Lazo et al., 2013; Sui et al., 2015). Moreover,
processive myosins take part in transport of mRNAs and RNPs
in neurons, as demonstrated for Myo5a (Ohashi et al., 2002;
Yoshimura et al., 2006; Balasanyan and Arnold, 2014; Calliari
et al., 2014; Lindsay and Mccaffrey, 2014).

From recent evidence, it is apparent that in vivo axonal
transport data do not recapitulate what has been observed in vitro
(Gibbs et al., 2016; Klinman and Holzbaur, 2016; Knabbe et al.,
2018), emphasizing the need for a more physiological context.
With this in mind, excellent work has been published reporting
in vivo axonal transport (reviewed in Sleigh et al., 2017) in models
such as the Drosophila wing (Vagnoni and Bullock, 2017) and
larvae (Vukoja et al., 2018), as well as the mouse brain (Knabbe
et al., 2018) and sciatic nerve (Gibbs et al., 2016). All of these
models have advantages and drawbacks: the mouse model is
widely used and as a mammal, has a high genetic conservation of
genes of interest but is not translucent and only allows access to
axonal transport in a restricted area of the targeted cell population
by way of surgery. The Drosophila is a model with a fantastic
genetic manipulation toolbox, however, it is an invertebrate with
reduced conservation to human compared to vertebrate models.

Over the last decades, zebrafish has emerged as a powerful
vertebrate model to study the development of the nervous system
in vivo. Adult zebrafish are small in size and produce a large
number of offsprings, with a rapid external development. The
embryonic zebrafish are translucent, and recent advances in
genetic manipulation have made this model a great option to
monitor neurodevelopment by high-resolution live imaging and
at single-cell level. In addition, the zebrafish embryo is used
extensively for modeling neurodegeneration (Bandmann and
Burton, 2010; Kabashi et al., 2010; Santoriello and Zon, 2012;
Babin et al., 2014; Patten et al., 2014; Fontana et al., 2018).
Some processive motors have been associated with neurological

disorders (Chen et al., 2013) and many studies have reported
axonal transport defects in the context of neurodegenerative
diseases (Chevalier-Larsen and Holzbaur, 2006; Goldstein, 2012;
Liu et al., 2012; Millecamps and Julien, 2013), further outlining
the interest of this model. In this article, we thus discuss
the advantages of the zebrafish model in the study of live
in vivo intracellular transport, with a particular focus on fast
axonal transport.

ADVANTAGES OF THE ZEBRAFISH
MODEL

Relevance to Mammalian Models
The genome of Danio rerio is fully sequenced and presents
at least one ortholog for 70% of human genes (Howe et al.,
2013). In particular, kinesin, dynein and myosin molecular
motors implicated in neuronal transports are extremely well
conserved in eukaryotes and even more in vertebrates (Kim
and Endow, 2000; Sittaramane and Chandrasekhar, 2008). These
proteins have a higher conservation with the human ortholog in
zebrafish compared to D. melanogaster for example. Zebrafish
and drosophila dynein Dync1h1 show 91% and 72% identity
(NCBI Blastp) with the human protein, respectively. Similarly,
the processive Myo6 is 85% and 53% identical to the human
one in zebrafish and drosophila, respectively. This high degree
of conservation provides support for using zebrafish as a model
system to investigate the functions of these molecular motors.

Genetic Manipulations
Compared especially to the mouse, the ease of stable or transient
genetic manipulations has positioned the zebrafish as an ideal
vertebrate model for live in vivo imaging.

Transgenesis in zebrafish is routinely and efficiently
performed to express fusion proteins, mutated proteins or
the gal4 transcription factor under a tissue-specific promoter
thanks to the use of transposon elements. Ease of genetic
manipulations in zebrafish has tremendously increased with the
development of the CRISPR/Cas9 technology. The generation
of knock-out mutants has become extremely powerful (Hwang
et al., 2013) and using a Gal4/UAS-based restriction of Cas9
expression makes it possible to induce tissue-specific mutations
and restrict the phenotype to a subset of cells (Di Donato et al.,
2016). Recent advances based on the fusion of a mutated Cas9
(nickase) with an acetyl deaminase leading to the precise editing
of a single nucleic acid (Komor et al., 2016) was also shown to
work in zebrafish (Zhang et al., 2017). This technology makes it
possible to target a specific protein domain in order to interfere
with protein–protein interaction and opens the possibility
of reproducing mutations associated with human diseases to
elucidate the underlying pathological mechanism.

To recapitulate endogenous expression of a protein of interest,
both in terms of pattern and level, bacterial artificial chromosome
(BAC) transgenesis, where very large DNA sequence (up to
300 kb) can be inserted into the genome, is used in zebrafish
(Lee et al., 2001; Suster et al., 2011). The CRISPR/Cas9 era
has now opened the possibility of direct knock-in at a targeted
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locus. This strategy has been successful in zebrafish, based on the
error-prone non-homologous end-joining DNA damage repair
mechanism (Auer et al., 2014) and by short or long homology
arm recombination (Hruscha et al., 2013; Hwang et al., 2013;
Irion et al., 2014; Zhang et al., 2016). However, the efficiency
of the latter technique is still low and locus-dependant. Its
optimization will be an important technical advance in the
field (Albadri et al., 2017), for example, to allow endogenous
expression of a fusion protein of choice for visualization in vivo,
without overexpression.

Pharmacological Manipulations
Zebrafish embryos are amenable to pharmacological treatment by
bath application, allowing for treatment of intact, live embryos
with compounds known for the modulation of cytoskeletal
dynamics, for instance, targeting microtubules: Colchicine
(Roche et al., 1994), vinblastine (Keiter et al., 2016; Yao et al.,
2017), vincristine (Mizgirev and Revskoy, 2010; Khan et al.,
2012; Holloway et al., 2016), nocodazole (Plucińska et al., 2012;
Jayachandran et al., 2016) and paclitaxel (Jayachandran et al.,
2016). For the actin cytoskeleton: Cytochalasin D (Nukada
et al., 2015; Artelt et al., 2018) and latrunculin A (Artelt
et al., 2018), jasplakinolide (Artelt et al., 2018), phalloidin oleate
(Dutta and Kumar Sinha, 2015), and the inhibitor of actin–
myosin interaction BDM (Norden et al., 2009) have been used
with success.

Finally, zebrafish embryos are well suited to high-throughput
approaches that have made them an excellent tool in drug
discovery by small molecule screening (Zon and Peterson, 2005;
Mathias et al., 2012; Miscevic et al., 2012; Tamplin et al., 2012;
MacRae and Peterson, 2015).

EXAMPLES AND RECOMMENDATIONS
FOR THE ANALYSIS OF IN VIVO
TRANSPORT IN ZEBRAFISH

To date, a few studies have taken advantage of the zebrafish
model to perform in vivo axonal transport assays, generating
tools to study the movement of mitochondria (Plucińska et al.,
2012; Campbell et al., 2014; Paquet et al., 2014; Auer et al.,
2015; Drerup et al., 2017), endosomes (Clark et al., 2011;
Ponomareva et al., 2014, 2016), autophagosomes (He et al., 2009),
lysosomes (Drerup and Nechiporuk, 2013), synaptophysin-
containing vesicles (Auer et al., 2015) as well as motor proteins
and components of their regulatory complexes (Drerup and
Nechiporuk, 2013, 2016). The in vivo analysis of myosin-based
transport is only starting in zebrafish neuronal development
(Liu et al., 2013).

Based on published evidence, it is plain to see that the
metrics reported for the same cargo visualized in vivo in
zebrafish display variation between cell types and developmental
stages. Indeed, we have observed metrics for mitochondrial
anterograde transport in primary motor neurons (MN; axon)
and in retinal ganglion cells (RGC; arbor) and while we
did not find differences in average run speed, average run
length and duration were significantly different in these two

cell types. Furthermore, the average run speed detected was
approximately 0.4 µm/s (Figure 1C), which is consistent
with reported data from Campbell et al. (2014) (peripheral
sensory neuron arbors, approx. 0.4 µm/s) but inconsistent
with data from Plucińska et al. (2012) (peripheral Rohon-
Beard sensory neuron axons, approx. 1.2 µm/s ‘moving speed’
and 0.6 µm/s ‘average speed’) and from Drerup et al. (2017)
(peripheral lateral line axon, approx. 1.0 µm/s). We also found
discrepancies between cell types in the transport of recycling
endosomes (labeled with Rab11a-GFP), where we observed
an average speed of approx. 0.5 µm/s (Figure 2B), whereas
Ponomareva et al. (2014) report an average speed of approx.
0.18 µm/s/0.03 µm/s (central/peripheral Rohon-Beard sensory
neuron axon).

Based on the evidence above outlining the variability of
these processes, we will highlight a few key points to take
into consideration when designing experiments to characterize
transport in zebrafish neurons.

Regulation of Construct Expression and
Imaging
Most approaches discussed here rely on the overexpression
of fusion proteins, allowing in vivo detection of the bound
fluorescent protein. This can be achieved injecting DNA
constructs to obtain single-cell labeling of cargoes, as shown
here (Figure 1A), or creating stable transgenic lines, where
restriction of expression can be achieved by a combination
of Gal4- and UAS-expressing lines. While this technique
produces a bright signal well suited to time-lapse imaging,
overexpression of protein can lead to deleterious effects by
interfering with endogenous expression and triggering stress
response mechanisms (Cheng and Lee, 2010). It is therefore
essential to ensure that the construct does not lead to toxicity by
monitoring cell morphology and embryonic development. The
acquisition parameters in time-lapse microscopy are optimized
to limit bleaching of fluorescent proteins and damage of the
target cell, while still observing the target movement (for
instance: high frequency sampling but reduced duration). In
the case of the examples presented here, time-lapse imaging
of labeled cargo in neurons was performed at 2 Hz for
endosomes (5 min duration; Figure 2B) and at 1 Hz for
mitochondria (10 min duration; Figures 1B,C) on a spinning disk
confocal microscope.

Single Cell Type
Axonal transport dynamics can be influenced by the varying
expression of subunits composing the motor protein complexes
or particular cargo adapters, as well as by the axon caliber,
due to differences in microtubule density affecting engagement
of motors (Yu et al., 2017) and due to activity- and
myelination-dependent number of neurofilaments (de Waegh
et al., 1992). It is therefore recommended to target one cell
type (Figures 1B,C), and in the case of spinal cord neurons,
to limit observation to a specific region as cell size can
fluctuate along the trunk and tail owing to the rostro-caudal
developmental wave.
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FIGURE 1 | Construct expression and cell type selection. (A) Injection of DNA constructs coding for fusion proteins can be restricted to a single cell type by use of
the Gal4/UAS system. (B) In this example, we injected a UAS construct labeling mitochondria (phb, prohibitin-GFP see schematics in A) combined with a membrane
reporter (tagRFP-Caax). We obtained labeling of a single primary motor neuron (MN; in the Tg(mnx1:gal4) background) and a single retinal ganglion cell (RGC; in the
Tg(brn3c:gal4) background), respectively, in the embryonic spinal cord (48 hpf) and in the larval optic tectum (4 dpf). (C) Time-lapse imaging of mitochondria (1 Hz
for 10 min) was performed on these cell types, and transport dynamics were calculated from kymograms. Here, we show example of the disparity in transport
metrics that can arise when comparing different cell types for a single cargo (MN n = 7 cells/44 anterograde runs; RGC n = 7 cells/37 anterograde runs). ∗∗p < 0.01,
∗∗∗∗p < 0.0001.
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FIGURE 2 | Examples of time-lapse analysis. (A) As described in Figure 1A, single cell labeling of primary motor neurons was obtained for recycling endosomes
(Rab11a-eGFP), combined with a membrane reporter (tagRFP-Caax) to identify cell type. Red boxes: Three cell compartments were imaged (2 Hz for 5 min), 1-axon
initial segment, 2-mid-axonal segment, 3-axonal arbor segment. (B) Kymograms were generated from the time-lapses acquired (Kymograph tool, ImageJ) and a
variety of transport metrics can be calculated manually (compiled in Excel, statistics in Graphpad Prism6). In this example, significant differences between neuronal
segments are detected for the transport direction ratio (anterograde/retrograde), and retrograde run duration (n = 3 cells; AIS n = 47/54 anterograde/retrograde runs;
mid-axon n = 85/82 anterograde/retrograde runs; arbor n = 63/86 anterograde/retrograde runs). ∗∗p < 0.01, ∗∗∗p < 0.001.
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Single Cell Compartment
Different cell compartments have different cytoskeletal
composition and regulatory mechanisms that can affect the
composition and expression of motor proteins and their adaptor
proteins, hence influencing the regulation of axonal transport
(de Waegh et al., 1992; Yu et al., 2017; Gumy and Hoogenraad,
2018). As shown here (Figure 2), time-lapse imaging in different
compartments of the same neuron for the same cargo can yield
significant differences in some metrics of transport dynamics,
but not others. The selection of a compartment most suited to
the research hypothesis and consistency in the segment imaged
across individual embryos and larva appears thus crucial, as
well as the analysis of a variety of metrics such as run length
and duration, average speed, pause frequency, average pause
duration, switching behavior, area flux and transport rates of
cargoes, both in the anterograde and retrograde directions.

PERSPECTIVES FOR FUTURE
RESEARCH

Alternative Labeling
Nanoparticles are inorganic semiconductors representing an
attractive alternative for fluorescent labeling in live imaging
applications because of their high spatial resolution and
photostability. In addition, it is possible to tune their emission
wavelength by varying their size and chemical composition.
Because of this, and their broad absorption profile, it is possible
to excite multiple colors at once, which is useful to reduce sample
phototoxicity (Gao et al., 2005). In contrast to genetically encoded
fluorescent protein tags, however, they need to be efficiently
targeted to their biologically relevant endpoint. This has so
far relied on surface modifications and solubilization strategies
that led to very large particles better suited to high-sensitivity
detection of low number of targets, such as single-molecule
detection (Pinaud et al., 2006). Of note, this approach has allowed
for real-time visualization of single-molecules in living cells
(Dahan et al., 2003). Conjugation to biomolecules is, however,
an interesting avenue to allow precise targeting and while still
requiring the expression of a genetically encoded protein adaptor
(Gao et al., 2005; Howarth et al., 2005), would provide the
advantageous optical properties of nanoparticles over traditional
fluorescent proteins.

Microscopy Improvements
Advances in imaging technology in the last years have yielded
many optimized systems applicable to the study of in vivo axonal
transport in the zebrafish embryo. Indeed, a great example of
this is the swept field confocal microscope, which permits higher
frame-rate capture when compared with spinning disk confocal
and allows the rapid acquisition of z-stack time-lapses or high
speed imaging (upward of 1,000 fps) of movement in single-
plane (Castellano-Muñoz et al., 2012). Other systems circumvent
classic caveats to an in vivo approach, such as photodamage,
single-plan and temporal restriction and low signal, for instance:
2-photon microscopy (Renninger and Orger, 2013), light-sheet

microscopy (Huisken et al., 2004; Panier et al., 2013; Park et al.,
2015; Tomer et al., 2015; Fu et al., 2016). In the context of in vivo
imaging of axonal transport, these strategies could allow the
tracking of cargo and motors with exquisite temporal resolution,
while also permitting 3D tracking in a whole embryo over long
periods of time; considerable advantages over in vitro and other
in vivo models.

Automated Detection and Analysis
The generation of kymograms as a 2D representation of time-
lapse imaging is a common tool for the analysis of axonal
transport, where the tracked target often moves on a single focal
plane, in a linear trajectory. When analyzing movement in more
complex environment, however, single particle tracking becomes
a necessity, which renders manual analysis an arduous task. In
the past years, many options have become available for automated
detection and tracking, both commercially (Imaris, Metamorph,
Igor Pro, etc.) and via open-source programs (MATLAB, ImageJ,
etc.). Still, time-lapse videos obtained in vivo from intact animals
are often noisier by nature than their cell culture counterpart,
and since these samples are prone to photodamage, lead to
undersampled data. This in turn impedes automatic detection
and requires manual check of extracted metrics, while possibly
omitting crucial information. Further advances in detection
algorithms, based on in vivo data estimating how cargoes should
behave, will surely be of benefit to researchers facing the tedious
task of manual tracking.

CONCLUSION

The zebrafish embryo has emerged as an excellent model to
pursue the characterization of processive transport in vivo as
it can meet the need for more inclusive models, where the
contribution of neuronal activity, glia and the cell cytoskeleton
are taken into account. We outlined here some advantages and
technical hints to use the zebrafish model for this type of analysis.
Considering the recent breakthroughs in genetic manipulations
and imaging technologies, this vertebrate is gaining attention
in the field of neurodegenerative disease modeling, where
axonal transport deficits are common hallmarks. In addition, a
new emerging model sharing the same subfamily as zebrafish,
Danionella translucida, which remains transparent throughout its
life, will further expand the possibilities of adult neuronal imaging
in vivo (Schulze et al., 2018). It is thus only a matter of time before
axonal transport assays in zebrafish embryos become widespread
for the study of physiological and pathological conditions.
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