
fcell-07-00060 April 24, 2019 Time: 12:44 # 1

REVIEW
published: 24 April 2019

doi: 10.3389/fcell.2019.00060

Edited by:
Sandra Orsulic,

Cedars-Sinai Medical Center,
United States

Reviewed by:
Lasse Dahl Ejby Jensen,

Linköping University, Sweden
Ann E. Walts,

Cedars-Sinai Medical Center,
United States

*Correspondence:
Thomas Andl

thomas.andl@ucf.edu
Yuhang Zhang

yuhang.zhang@uc.edu;
zhang2y4@ucmail.uc.edu

Specialty section:
This article was submitted to

Molecular Medicine,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 16 January 2019
Accepted: 05 April 2019
Published: 24 April 2019

Citation:
Liu T, Zhou L, Li D, Andl T and

Zhang Y (2019) Cancer-Associated
Fibroblasts Build and Secure
the Tumor Microenvironment.

Front. Cell Dev. Biol. 7:60.
doi: 10.3389/fcell.2019.00060

Cancer-Associated Fibroblasts
Build and Secure the Tumor
Microenvironment
Tianyi Liu1, Linli Zhou1, Danni Li2, Thomas Andl3* and Yuhang Zhang1*

1 Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States, 2 College
of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China, 3 Burnett School of Biomedical
Sciences, University of Central Florida, Orlando, FL, United States

Tumor cells reside in a highly complex and heterogeneous tumor microenvironment
(TME), which is composed of a myriad of genetically stable non-cancer cells, including
fibroblasts, immune cells, endothelial cells, and epithelial cells, and a tumor-specific
extracellular matrix (ECM). Cancer-associated fibroblasts (CAFs), as an abundant and
active stromal cell population in the TME, function as the signaling center and remodeling
machine to aid the creation of a desmoplastic tumor niche. Although there is no denial
that the TME and CAFs may have anti-tumor effects as well, a great deal of findings
reported in recent years have convincingly revealed the tumor-promoting effects of CAFs
and CAF-derived ECM proteins, enzymes, chemical factors and other downstream
effectors. While there is growing enthusiasm for the development of CAF-targeting
therapies, a better understanding of the complexities of CAF-ECM and CAF-cancer
cell interactions is necessary before novel therapeutic strategies targeting the malignant
tumor “soil” can be successfully implemented in the clinic.

Keywords: cancer-associated fibroblast, tumor microenvironment, extracellular matrix, therapy,
mechanoreciprocity

INTRODUCTION

In the last decades, despite considerable advances in the development of novel immunotherapies
and targeted therapies, no significant improvements have been made in overall survival rates for
patients with malignant solid tumors. One major reason for this lack of substantial improvement is
the development of drug resistance in tumor cells, which usually reveals itself within a few months
after patients are treated with anti-cancer drugs. An Achilles’ heel of many current therapeutic
approaches is that these therapies primarily target the fast-growing tumor “seeds” but largely ignore
the fertilizing tumor “soil” – the tumor microenvironment (TME) (de Groot et al., 2017). The
TME influences the penetration, distribution, and metabolism of therapeutic agents, and produces
molecular factors and signals, which positively or negatively regulate how tumor cells grow, migrate
and respond to therapeutic agents. As cancer-associated fibroblasts (CAFs) appear to be a major
TME component in many tumors and are critical for shaping the “soil” within which the tumor
cells thrive (LeBleu and Kalluri, 2018), they have become the prime target for the efforts to modify
non-tumor cell behavior to suppress tumor growth. It is clear that the TME and CAFs are not
always pro-tumorigenic due to the complexities of their interactions with tumor cells. However,
in this review, we will mainly explore the tumor-promoting interactions between cancer cells and
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fibroblasts and how CAFs may be persuaded using novel
therapeutic approaches to renounce their fealty to the tumor cells
and even produce a tumor-suppressive “soil.”

STROMAL FIBROBLASTS,
MYOFIBROBLASTS, AND CAFs

Tumors are often referred to as “wounds that never heal”
(Dvorak, 1986) because the stroma of a wound and a tumor
share many similarities, such as fibroblast activation, increased
extracellular matrix (ECM) protein production and intensive
remodeling processes (Foster et al., 2018). Activated stroma
is molecularly, biochemically and pathologically different from
the normal stroma. In the stroma of normal human skin,
fibrous proteins fill in the interstitial space between stromal
fibroblasts while epithelial keratinocytes rest on the sheet-like
basement membrane. Under normal physiological conditions,
non-contractile fibroblasts are generally flat, spindle-shaped
and recognized as quiescent and inert cells in the ECM
(Valkenburg et al., 2018).

Myofibroblasts were first identified in the tissue wound
repair process, during which fibroblasts or smooth muscle
cells differentiate and gain a contractile phenotype (McAnulty,
2007). The major roles of myofibroblasts in wound healing
are to contract the wounds and produce and organize the
ECM (Darby et al., 2014). As the wound closes and heals,
myofibroblasts become apoptotic and finally disappear as the
scar is formed (Desmouliere et al., 1995). Myofibroblasts are
different from normal fibroblasts in many aspects, including
(1) ruffled membranes and a highly active endoplasmic
reticulum (Baum and Duffy, 2011); (2) expression of alpha
smooth muscle actin (α-SMA or ACTA2) and increased
levels of vimentin (VIM) (Ronnov-Jessen and Petersen, 1993)
and (3) formation of complex and organized stress fibers
and fibronexus adhesion complexes (Rao et al., 2016). The
bundles of microfilaments in myofibroblasts interact with
the ECM proteins through fibronexus adhesion complexes,
thereby allowing myofibroblasts to sense the tension in their
surrounding microenvironment and maintain the cellular
contractile force through the network of cytoskeletal proteins. As
a feedback response, myofibroblasts increase matrix fibroplasia
by producing ECM proteins, including collagen, elastin (ELN),
fibronectin (FN1), tenascin (TNC), and remodeling enzymes,
such as matrix metalloproteinases (MMPs).

Tumor growth recapitulates the basic wound healing program
and shares many similarities, such as deposition and crosslinking
of fibrin and FN1 and the recruitment of immune cells (Schafer
and Werner, 2008). However, unlike a normal healing wound,
which is restricted to a certain area and proceeds directionally
through the steps of hemostasis, inflammation, proliferation, and
maturation/remodeling, cancer cells distort the wound healing
program and have the potential to migrate away or expand
from the initiation site and invade adjacent tissues. CAFs are
the fibroblasts found in the stroma of human cancers but differ
from normal fibroblasts in their increased collagen and ECM
protein production and up-regulated secretion of pro-tumor

factors (Bauer et al., 2010; Xing et al., 2010; Pidsley et al., 2018).
There are several important sources from which CAFs could
be derived, including: (i) recruitment and activation of resident
fibroblasts (Fukino et al., 2004); (ii) epithelial-mesenchymal
transition (EMT) of resident epithelial cells (Petersen et al., 2001);
(iii) endothelial to mesenchymal transition (EndMT) of resident
endothelial cells (Zeisberg et al., 2007a,b) and (iv) differentiation
of bone marrow mesenchymal cells (Quante et al., 2011). In
a sense, CAFs or at least a subset of CAFs are wound-like
myofibroblasts that mediate a deranged chronic wound healing
program in tumors. For example, a large part of CAFs share
similar features as α-SMA-positive (α-SMA+) myofibroblasts
(Shiga et al., 2015). In addition, other than myofibroblastic CAFs,
subpopulations of CAFs without α-SMA expression have also
been reported, e.g., in pancreatic cancer (Ohlund et al., 2017).

HETEROGENEITY OF STROMAL
FIBROBLASTS, MYOFIBROBLASTS,
AND CAFs

Understanding the state, complexity and heterogeneity of normal
fibroblasts may shed light on the origins of CAFs, how they
form and how their transdifferentiation may be regulated in the
early stages of tumorigenesis and at the tumor front. Two major
populations of fibroblasts in the human dermis are papillary
and reticular fibroblasts, which possess distinct morphology,
molecular expression, and cellular functions (Harper and Grove,
1979). Janson et al. (2012) performed gene expression analysis
on cultured papillary and reticular fibroblasts and identified 116
differentially expressed genes. However, except for matrix Gla
protein (MGP), which is almost exclusively expressed in the
reticular dermis, they did not discover any in vivo markers to
separate the two fibroblast populations. Korosec et al. (2019)
performed lineage identity and location studies of human dermis
using two markers, fibroblast activation protein (FAP) and THY1
(Cluster of Differentiation 90 or CD90). They found that papillary
fibroblasts are FAP+; THY1−, whereas FAP−; THY1+ fibroblasts
are mainly of the reticular lineage. Their data showed papillary
and reticular fibroblasts are not completely separated according
to their spatial location.

However, recent studies have suggested that there exist more
functionally distinct fibroblast subpopulations within the human
dermis. A single-cell RNA sequencing (scRNA-seq) study by
Philippeos et al. (2018) showed that there are five distinct
fibroblast populations in adult human skin, which can be
separated based on the expression of cell surface markers,
including THY1, CD39, CD26 (DPP4), and regulator of G
protein signaling 5 (RGS5), and are not spatially segregated.
Tabib et al. (2018) performed single-cell transcriptomal analysis
of cells obtained from whole skin without pre-purifying fibroblast
populations. They identified two major fibroblast populations
based on the expression of SFRP2/DPP4 and FMO1/LSP1
markers and five minor cell populations using CRABP1,
COL11A1, PRG4, ANGPTL7, and SFRP4. In addition, there
are several subpopulations in each major fibroblast population.
These scRNA-seq data showed a complex and heterogeneous
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picture of fibroblast composition and functionality in the human
dermis, which is simply beyond our original understanding of
skin fibroblasts. Nevertheless, it remains to be understood how
these subpopulations of fibroblasts react to either wounding or
the tumorigenic process and evolve into myofibroblasts or CAFs.

Local fibroblasts are the most common origin of
myofibroblasts (Hinz et al., 2007). However, several other
cell types are able to differentiate into myofibroblasts, including
smooth muscle cells or pericytes (Hinz et al., 2007). Fibrocytes,
for example, can differentiate into myofibroblasts in skin, liver
and lung tissues (Mori et al., 2005; Iwaisako et al., 2012; Ashley
et al., 2017). In the liver, hepatic stellate cells are the source
of myofibroblasts in liver fibrosis (Wells and Schwabe, 2015).
Because of the nature of its diverse origins, myofibroblasts
appear to be a heterogeneous group as well. α-SMA is the most
commonly used marker to identify myofibroblasts (McAnulty,
2007). In addition, extra domain A fibronectin (EDA-FN),
periostin (POSTN) and prolyl-4-hydroxylase (P4HB) have also
been suggested as potential markers for myofibroblasts (Moore-
Morris et al., 2014; Ngo et al., 2014; Kanisicak et al., 2016).
A recent study proposed that amine oxidase, copper containing
3 (AOC3) and homeobox protein NKX2-3 are two biomarkers
of pericryptal myofibroblasts in the colon and rectum (Hsia
et al., 2016). Furthermore, markers that stain stromal fibroblasts
can also be used to stain myofibroblasts, such as platelet
derived growth factor receptor alpha (PDGFRA), THY1,
and VIM, although they are not specific for myofibroblasts
(Matthijs Blankesteijn, 2015).

Just like normal fibroblasts, CAFs appear to be a
heterogeneous group of cells with different origins and
different functions. This similarity was manifested by a study
reported by Lambrechts et al. (2018). By performing scRNA-seq
of 52,698 stromal cells isolated from human lung tumors and
comparing with matching non-malignant lung samples, the
authors identified five distinct types of fibroblasts in lung tumors,
which all express their own unique set of collagens and ECM
proteins that are different from non-malignant fibroblasts. Using
a three-dimensional (3D) co-culture platform, Ohlund et al.
(2017) identified two distinct populations of myofibroblasts and
inflammatory fibroblasts in pancreatic ductal adenocarcinoma
(PDA). More recently, the obscurity in CAF characterization
has been further addressed by efforts to determine the exact
composition of human tumor tissues using scRNA-seq.
scRNA-seq data derived from head and neck squamous cell
carcinoma (HNSCC) suggested that tumor myofibroblasts
and CAFs may represent distinct fibroblast subpopulations
(Puram et al., 2017). Overall, the authors were able to detect,
in addition to normal fibroblasts and myofibroblast-like cells,
two subsets of CAFs depending on the expression of FAP,
THY1, connective tissue growth factor (CTGF) and podoplanin
(PDPN). In their study, tumor myofibroblasts were identified
based on the expression of α-SMA, melanoma cell adhesion
molecule (MCAM), myosin light chain kinase (MYLK), and
myosin light chain 9 (MYL9). Interestingly, scRNA-seq of
colorectal cancer samples also revealed at least three fibroblast
populations (Li et al., 2017). One population can be described as
normal fibroblasts, the second one as myofibroblasts, which are

positive for α-SMA, transgelin (TAGLN) and PDGFA, and the
third one as a CAF population that is characterized by MMP2,
decorin (DCN) and collagen type I alpha 2 (COL1A2). The
authors determined that a key signaling pathway emanating
from CAFs/myofibroblasts is transforming growth factor beta
(TGF-β)/INHBA signaling, ascertaining that CAFs are not just
ECM-producing factories. The scRNA-seq results of fibroblast
populations are in good accordance with attempts to characterize
CAFs using fluorescence activated cell sorting (FACS) (Costa
et al., 2018). Such efforts in human breast cancer using six
CAF markers, including FAP, integrin beta 1 (ITGB1), α-SMA,
FSP1, platelet derived growth factor receptor beta (PDGFRB),
and caveolin-1 (CAV1), allowed the authors to identify four
distinct CAF populations, of which some were preferentially
present in subsets of breast cancers. Two of the CAF populations
expressed α-SMA and probably represent myofibroblast-like
cells. However, a comparison of the two α-SMA+ populations
revealed that one was similar to pericytes and expressed
MCAM and a gene signature related to the regulation of actin
cytoskeleton and muscle contraction. The second α-SMA+
population exhibited an immune-regulatory gene signature.
These CAFs can function as immune-suppressors and regulators
of T lymphocytes and create an immunosuppressive environment
through a multi-step mechanism (Costa et al., 2018).

scRNA-seq studies of CAFs have suggested that CAF subtypes
could be attributed to their origin in spatial subgroups of
normal fibroblasts (Philippeos et al., 2018; Tabib et al., 2018).
However, Biffi et al. (2019) reported that tumor-secreted TGF-β/
and IL1 can promote CAF heterogeneity. Subsets of CAFs can
function to either support or suppress tumor cells. For example,
it was reported that cancer cells undergo the EMT process
and acquire invasive phenotypes through the activation of the
TGF-β-SMAD signaling pathway induced by CAFs (Bellomo
et al., 2016). In addition, by producing pro-angiogenic factors,
such as fibroblast growth factor 2 (FGF2) and VEGFA (De
Palma et al., 2017), CAFs regulate angiogenesis in the stroma,
thereby providing essential nutrients for highly proliferative
tumor cells. CAFs can also assist tumor cells in overcoming
immune surveillance by recruiting immunosuppressive cells,
such as M2 macrophages and myeloid-derived suppressor cells
(MDSC) (Flavell et al., 2010; Yang et al., 2016). However, it was
reported that ablation of subsets of α-SMA+ CAFs in PDA could
result in a more aggressive cancer phenotype and reduced animal
survival (Ozdemir et al., 2014). In summary, the heterogeneity of
CAFs reflects the diversity and complexity of the TME, and more
careful research is needed to fully comprehend the interactions
among CAFs, tumor cells and the ECM.

CAF-DERIVED ECM PROTEINS

The tumor ECM is composed of a complex mixture of
macromolecules, including fibrous proteins (collagen,
ELN), proteoglycans (heparan sulfate, chondroitin sulfate),
glycosaminoglycans (hyaluronic acid), and glycoproteins (FN1,
laminins, TNC) (Botti et al., 2013). ECM proteins are not just
bystanders of the tumorigenic process. Instead, they provide
structural signals and support for tumor cells to grow and
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FIGURE 1 | COL1A1 expression levels in different cancer types and
corresponding normal tissues. COL1A1 expression levels vary in different
types of cancer, including renal cancer, pancreatic cancer, colorectal cancer,
breast cancer, lung cancer, and liver cancer and generally are higher in tumor
tissues than those in normal tissue. The data are obtained from
https://www.proteinatlas.org/ENSG00000108821-COL1A1/tissue and
https://www.proteinatlas.org/ENSG00000108821-COL1A1/pathology.

migrate. Although many other stromal cell types and tumor
cells can also produce ECM proteins, CAFs appear to be the
major player in the stroma that synthesizes, secrets, assembles
and modifies the ECM composition and organization (Faouzi
et al., 1999; Yoshimura et al., 2015; Erdogan et al., 2017). For
example, elevated collagen production and crosslinking have
been coupled with increased tumor stiffness and progression.
It was estimated that fetal rat fibroblasts synthesize about 40
molecules of procollagen/cell per second (McAnulty et al.,
1991). Many cancers are characterized by elevated levels of
collagen production, e.g., COL1A1 (Figure 1). Faouzi et al.
(1999) reported that myofibroblasts are the primary source
of collagen (types I, IV, V and VI) in the stroma of human
hepatocellular carcinoma. In addition, CAF-derived laminin was
shown to induce cervical cancer cell migration via the interaction
with integrin α6β4 (Fullar et al., 2015). In an in vitro ovarian
cancer spheroid model, CAF-secreted versican promoted cancer
invasion in a TGF-β-dependent manner (Yeung et al., 2013).

FN1 was first found to be overexpressed in human solid
tumor specimens in 1981 (Stenman and Vaheri, 1981). Although
tumor cells produce FN1 themselves, stromal cells, such as
CAFs, are indispensable for bulk FN1 assembly (Attieh et al.,
2017; Erdogan et al., 2017). Like collagen, the pro-tumorigenic
role of FN1 is also well-acknowledged. In 1998, Menzin et al.
(1998) proposed that FN1 may play an important role in
regulating the invasive phenotype and poor patient prognosis
in ovarian cancer. FN1 was also documented to promote cell
cohesion, basement membrane invasion and tumor growth in
glioblastoma (GBM). Depletion of FN1 in GBM cells resulted
in weaker cell-cell contact and less collective migration in

an in vitro spheroid model, highlighting the role of FN1 as
a “biological glue” (Serres et al., 2014). The role of FN1 in
cell cohesion has also been observed in fibroblast spheroids.
FN1-depleted fibroblasts failed to form compact spheroids
in vitro. Furthermore, the blockade of FN1-integrin interactions
impeded fibroblast activation (Salmenpera et al., 2008).

Tenascin is another highly expressed ECM glycoprotein in the
tumor stroma, such as the stroma of canine mammary carcinoma,
pancreatic cancer and prostate cancer, and is associated with
poor patient prognosis (Yoshimura et al., 2015; Cai et al., 2017;
Ni et al., 2017). Mouse embryonic fibroblasts lacking TNC
have robust overexpression of tissue plasminogen activator (tPA)
and increased capacity to digest fibrin in situ (Brellier et al.,
2011). Furthermore, they discovered that there was a correlation
between in vivo TNC expression and fibrin accumulation in head
and neck squamous cell carcinomas (SCC) and lung carcinomas,
further confirming that TNC functions as a regulator of the
fibrinolytic system.

CAF-DERIVED ECM ENZYMES

Tumor progression and metastasis require a distinct ECM
biomechanical architecture, for which CAFs not only produce
and secrete ECM proteins and also actively participate in
the ECM proteolysis, crosslinking and assembly processes.
In such a rigid and highly crosslinked tumor stroma, drug
penetration is one potential reason for tumor cells to escape
therapy. In addition, CAF-mediated ECM remodeling is a highly
responsive process of receiving, processing and responding to the
cellular, molecular and mechanical signals in the TME. The lysyl
oxidase (LOX) family and MMPs represent two major types of
remodeling enzymes produced by CAFs. As a highly adaptive
and mechanically responsive stromal cell type, CAFs sense and
respond to the ECM stiffness in a LOX/MMP-dependent manner
and further fine-tune the CAF-ECM interactions.

The LOX family oxidases include five members: LOX and
lysyl oxidase like (LOXL) 1, 2, 3, and 4 (Wang et al.,
2016). They share similar structures and catalyze the cross-
linking of collagen and ELN by oxidation, contributing to
increased stiffness of the tumor stroma. In tissue fibrosis,
it was demonstrated that fibroblast-derived LOX could be
induced by different soluble factors, such as insulin-like growth
factor-binding protein 5 (IGFBP5) (Nguyen et al., 2018) and
POSTN (Kumar et al., 2018), and by the transcription factor
hypoxia inducible factor 2 alpha (HIF2A) (Hikage et al., 2019).
Elevated levels of LOX family oxidases are often observed in
cancers and play a prominent role in cancer progression. Gene
expression analysis of mouse mammary tumors revealed that
activated fibroblasts are the major producers of LOX family
oxidases (Pickup et al., 2013). When colon cancer patient-derived
CAFs and normal fibroblasts were compared by proteomic
analysis, LOXL2 was found to be overexpressed in CAFs and
was identified as a predictive prognostic factor in stage II
colon cancer patients (Torres et al., 2015). Similarly, LOXL2
expression in gastric CAFs was also demonstrated to be positively
correlated with the invasive ability of gastric cancer cells
(Kasashima et al., 2014).
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TABLE 1 | Expression of MMP2 and MMP9 is correlated with cancer progression and metastasis.

MMP2 References MMP9 References

Basal-cell carcinoma Gozdzialska et al., 2016 Basal-cell carcinoma Gozdzialska et al., 2016

Brain cancer Wang M. et al., 2003; Tabouret et al., 2014 Brain cancer Wang M. et al., 2003; Li et al., 2016

Breast cancer Yari et al., 2014; Chen Y. et al., 2015; Ramos
et al., 2016; Tabouret et al., 2016

Breast cancer Wu et al., 2014; Yousef et al., 2014

Colorectal cancer Groblewska et al., 2014 Gastric cancer Wang et al., 2014; Chen S.Z. et al., 2015

Endometrial adenocarcinoma Li et al., 2014 Liver cancer Sun et al., 2014

Gastric cancer Wang et al., 2014 Lung cancer Lee et al., 2015; Zhang et al., 2015; Gong
et al., 2016; Yu et al., 2016

Lingual and gingival cancers Nishio et al., 2016 Pancreatic cancer Jakubowska et al., 2016

Lung cancer Zhang et al., 2015 Pituitary adenoma Liu et al., 2016

Melanoma Kamyab-Hesari et al., 2014 Prostate cancer Oguic et al., 2014

Osteosarcoma Zhang and Zhang, 2015 Squamous cell carcinoma Stanciu et al., 2016

Ovarian cancer Fu et al., 2015

In breast cancer, LOXL2 inhibition showed anti-tumor
effects in reducing tumor size and angiogenesis. Furthermore,
a combination of LOX and LOXL2 inhibitors resulted in
even smaller and less metastatic tumors (Chang et al.,
2017). Interestingly, in mice bearing aggressive breast cancer,
anti-LOXL2 monoclonal antibody AB0023 exhibited potent
inhibitory effects in activated fibroblast as suggested by an 88%
reduction of α-SMA+ cells by immunohistochemistry (IHC) after
AB0023 treatment (Barry-Hamilton et al., 2010). The inhibitory
effect was also shown to be closely associated with the reduction
in cross-linked collagenous ECM matrix. Recently, an in vitro
study using siRNA adenovirus vector to silence LOXL2 expression
in mouse lung fibroblast also showed that the proliferation of
lung fibroblasts was significantly decreased via the TGF-β/Smad
signaling pathway (Wen et al., 2018). All these findings highlighted
the role of CAF-derived LOX family oxidases in regulating tumor
migration and invasion and potential beneficial outcomes of
targeting CAF-synthesized LOX family oxidases.

The ability of cancer cells to digest surrounding ECM and
localize to distal sites has long been attributed to MMPs, which
are zinc-containing endopeptidases. MMPs play pivotal roles in
creating the paths for tumor cells to leave the primary tumor
niche and wade through the stiff matrix. There are 24 MMPs in
mammals (Vandenbroucke and Libert, 2014), of which MMP2 and
MMP9 are found to be overexpressed in many cancer types and
promote tumor progression and metastasis (Table 1). CAFs were
shown to be the major producer of MMP2 in mouse lung tumors
as indicated by IHC staining results showing MMP2 primarily
localizes to fibroblasts (Bates et al., 2015). Using the online
database proteinatlas.org, we summarized the correlation between
13 MMPs and patient prognosis status in nine human cancers
in Table 2 based on the RNA-Seq data. Four MMPs (MMP10,
MMP15, MMP24, MMP25) are shown to be favorable to patient
prognosis as their expression levels are positively correlated with
patient survival. However, the expression levels of eight MMPs
(MMP1, MMP3, MMP7, MMP11, MMP12, MMP14, MMP19,
and MMP28) are shown to be negatively correlated with patient
survival. Interestingly, MMP9 seemed to have context-dependent
roles in different cancer types. In conclusion, the roles of different
MMPs in the TME need to be carefully examined based on cancer

types and stages, and this should also be one major consideration
when designing, dosing and scheduling MMP-targeting drugs for
cancer patients (Iyer et al., 2012).

CAF-ECM INTERACTIONS

The interactions between CAFs and the ECM influence the
stiffness of the tumor stroma and can be described using
the term “mechanoreciprocity” (van Helvert et al., 2018),
which consists of both “outside-in” and “inside-out” signaling
modes (Shattil et al., 2010). The “outside-in” signaling mode
is a well-established mechanism, by which ECM proteins can
function as ligands and bind to integrin receptors on the cell
membrane (Table 3). Integrins are transmembrane receptors
composed of a heterodimer of α and β subunits. As shown in
Figure 2, when the cells encounter a rigid ECM, the integrin
molecules become dimerized to trigger the focal adhesion
cascade and the activation of downstream signaling, including
tyrosine protein kinase SRC and focal adhesion kinase FAK1,
thereby converting external mechanical signals into cellular and
biochemical signals inside the cells (Barczyk et al., 2010; Tucker
and Chiquet-Ehrismann, 2015; Benito-Jardon et al., 2017).
Integrin α11β1 is a stromal cell-specific receptor for collagen and
also known as an important regulator for fibroblast activation
(Carracedo et al., 2010). Zhu et al. (2007) showed that the growth
of the tumors formed by non-small-cell lung carcinoma (NSCLC)
cell lines, A549, NCI-H460, and NCI-H520 mixed with integrin
α11-deficient fibroblasts were significantly impeded as compared
with the tumors derived from the mixture of either tumor cell
line and wild-type fibroblasts. In this case, fibroblasts, originally
good “listeners” and “responders” to the mechanical cues, lost
their active ECM remodeling ability after the fibroblast-ECM
interaction was blocked. In another example, cardiac fibroblasts
cultured on a stiff matrix expressed increased amounts of LOX,
further crosslinked collagen fibers and stiffened the ECM. To the
contrary, the inhibition of the binding between α2β1 integrin and
collagen I ablated this effect and downregulated LOX expression
(Gao et al., 2016). In the “outside-in” signaling mode, the
mechanical cues can also activate other signaling pathways in
fibroblasts, such as the mitogen-activated protein kinase (MAPK)
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TABLE 2 | Correlations between MMP/LOX expression and the 5-year survival rates of cancer patients∗∗.

MMP/LOX Prognosis∗ Cancer type 5-year survival

High expression Low expression Sample size p-value

MMP1 Unfavorable Renal cancer 60% 82% 877 9.90E-10

Unfavorable Liver cancer 36% 50% 365 0.0000042

Unfavorable Cervical cancer 59% 74% 291 0.00047

MMP3 Unfavorable Pancreatic cancer 5% 34% 176 0.00041

Unfavorable Cervical cancer 45% 71% 291 0.00097

MMP7 Unfavorable Liver cancer 38% 60% 365 0.00025

Unfavorable Lung cancer 34% 50% 994 0.00034

MMP9 Unfavorable Renal cancer 64% 78% 877 0.000041

Favorable Endometrial cancer 81% 60% 541 0.00025

Unfavorable Liver cancer 37% 64% 365 0.00072

MMP10 Favorable Urothelial cancer 48% 27% 406 0.00071

MMP11 Unfavorable Renal cancer 65% 81% 877 0.00026

MMP12 Unfavorable Liver cancer 33% 51% 365 0.00014

MMP14 Unfavorable Renal cancer 58% 73% 873 0.00013

Unfavorable Ovarian cancer 20% 35% 373 0.00095

MMP15 Favorable Renal cancer 86% 65% 877 8.50E-08

Favorable Urothelial cancer 49% 30% 406 0.00031

MMP19 Unfavorable Renal cancer 62% 81% 877 8.60E-09

MMP24 Favorable Renal cancer 74% 51% 877 8.20E-11

MMP25 Favorable Head and neck cancer 51% 29% 499 0.000011

MMP28 Unfavorable Pancreatic cancer 16% 40% 176 0.0000063

LOX Unfavorable Renal cancer 64% 87% 877 3.90E-08

Unfavorable Urothelial cancer 25% 51% 406 0.00033

Unfavorable Liver cancer 36% 52% 365 0.00074

LOXL1 Unfavorable Glioma 0 10% 153 0.00013

LOXL2 Unfavorable Lung cancer 31% 57% 994 1.50E-07

Unfavorable Renal cancer 54% 72% 877 2.90E-07

Unfavorable Cervical cancer 52% 82% 291 0.0000098

Unfavorable Glioma 0 10% 153 0.00018

Unfavorable Pancreatic cancer 6% 43% 176 0.00091

LOXL3 Unfavorable Renal cancer 61% 77% 877 8E-08

LOXL4 Unfavorable Glioma 2% 16% 153 0.00054

Unfavorable Ovarian cancer 23% 39% 373 0.00096

∗The prognosis of each group of patients was examined by Kaplan–Meier survival estimators, and the survival outcomes of the two groups were compared by log-rank
tests.
∗∗Data available from:
MMP1: https://www.proteinatlas.org/ENSG00000196611-MMP1/pathology

MMP3: https://www.proteinatlas.org/ENSG00000149968-MMP3/pathology

MMP7: https://www.proteinatlas.org/ENSG00000137673-MMP7/pathology

MMP9: https://www.proteinatlas.org/ENSG00000100985-MMP9/pathology

MMP10: https://www.proteinatlas.org/ENSG00000166670-MMP10/pathology

MMP11: https://www.proteinatlas.org/ENSG00000099953-MMP11/pathology

MMP12: https://www.proteinatlas.org/ENSG00000262406-MMP12/pathology

MMP14: https://www.proteinatlas.org/ENSG00000157227-MMP14/pathology

MMP15: https://www.proteinatlas.org/ENSG00000102996-MMP15/pathology

MMP19: https://www.proteinatlas.org/ENSG00000123342-MMP19/pathology

MMP24: https://www.proteinatlas.org/ENSG00000125966-MMP24/pathology

MMP25: https://www.proteinatlas.org/ENSG00000008516-MMP25/pathology

MMP28: https://www.proteinatlas.org/ENSG00000271447-MMP28/pathology

LOX: https://www.proteinatlas.org/ENSG00000113083-LOX/pathology

LOXL1: https://www.proteinatlas.org/ENSG00000129038-LOXL1/pathology

LOXL2: https://www.proteinatlas.org/ENSG00000134013-LOXL2/pathology

LOXL3: https://www.proteinatlas.org/ENSG00000115318-LOXL3/pathology

LOXL4: https://www.proteinatlas.org/ENSG00000138131-LOXL4/pathology
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TABLE 3 | Integrins and their ECM partners.

ECM Protein Interacting Integrins References

Collagen α1β1, α2β1, α10β1, α11β1 Leitinger, 2011

Fibronectin α4β1, α5β1, α8β1, αIIbβ1,
αvβ3, αvβ6, αvβ8

Pankov and Yamada, 2002;
Danen et al., 2005

Tenascin-C α9β1, α8β1, αvβ1, αvβ6 Tucker and Chiquet-Ehrismann, 2015

Laminin α3β1, α6β1, α7β1, α6β4 Belkin and Stepp, 2000; Yamada and
Sekiguchi, 2015

FIGURE 2 | The “outside-in” signaling mode in CAF-ECM interactions. When
the membrane-bound integrin receptors interact with ECM proteins, integrin
α- and β- subunits dimerize to activate downstream FAK1 and Src signaling
and induce cytoskeleton remodeling, thereby converting external mechanical
signals into cellular and biochemical signals inside the cells.

pathway (Wang J. et al., 2003; Paszek et al., 2005). In addition,
it was reported that increased ECM stiffness could also activate
the SRC-YAP-MYL9/MYL2 axis in CAFs to maintain the CAF
phenotype. A positive feedback loop is established between CAF
function and ECM stiffness, leading the stiff tumor stroma to
become even stiffer and more favorable for cancer cell invasion
(Calvo et al., 2013).

The “inside-out” signaling mode refers to the regulation
of integrin-ECM interactions by intracellular signals. CAFs
respond to tissue tension and exert their ECM remodeling and
assembly abilities to further increase the stiffness of the stroma.
The “inside–out” signaling mode is normally triggered by the

binding of intracellular molecules, such as talin or kindlin,
to the tails of integrins, leading to an increased affinity for
extracellular ligands and enhanced ECM signaling (Shattil et al.,
2010). For example, CAFs exert contractile forces and mediate
extracellular FN1 assembly mainly via integrin αvβ3, leading
to increased FN1 fibrillogenesis and ultimately contributing to
tumor invasion (Attieh et al., 2017). Similarly, FN1 production
and assembly were also observed in CAFs in prostate cancer.
Erdogan et al. (2017) reported that CAFs produce an FN1-rich
ECM with anisotropic fiber orientation as compared with normal
fibroblasts and regulate cancer cell migration. In their study,
CAFs remodel the FN1-rich ECM via the non-muscle myosin II
(NMII)-α5β1 integrin axis.

DIRECT CAF-CANCER CELL CONTACT

Cancer-associated fibroblast-dependent tumor-promoting roles
have long been attributed to the CAF secretome, but there is no
denying that direct cell-cell contact also plays an important role
in CAF-mediated cancer cell migration and invasion. Labernadie
et al. (2017) discovered a heterotypic E-cadherin/N-cadherin
adhesion complex between CAF and SCC cells. As shown in
Figure 3, CAFs migrate through the ECM via integrin-mediated

FIGURE 3 | A heterotypic E-cadherin/N-cadherin complex mediates
CAF-SCC cell contact. As reported by Labernadie et al. (2017) intercellular
physical force is transmitted between SCCs and CAFs by a heterophilic
adhesion complex involving N-cadherin at the CAF membrane and E-cadherin
at the cancer cell membrane. This heterotypic CAF-cancer cell interaction
triggers β-catenin recruitment, α-catenin/vinculin interaction, and actin
remodeling, allowing CAFs to exert an intercellular physical force on cancer
cells and promote cooperative tumor invasion.
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cytoskeleton remodeling and actomyosin reassembly while
dragging tumor cells through CAF-cancer cell interaction via
this heterotypic cadherin complex. The intercellular physical
force between cancer cells and CAFs promote cooperative tumor
invasion by triggering β-catenin recruitment, β-catenin/vinculin
interaction and actin remodeling in both cell types.

In NSCLC, CAFs could potently enhance the motility of
NSCLC cells through direct cell-cell contact via the hedgehog
signaling pathway. Two co-culture systems (direct co-culture
and indirect co-culture) were utilized to differentiate whether
the motility-promoting effect is mediated by paracrine factors
or cell-cell contact. Interestingly, increased tumor cell migration
was only shown in a direct co-culture system, suggesting that
CAF-promoted NSCLC cell migration is mediated by direct
cell-cell contact (Choe et al., 2013). PDPN is a transmembrane
glycoprotein that is known to be correlated with poor patient
prognosis in lung adenocarcinoma (Ito et al., 2012). In an in vitro
3D collagen invasion model, PDPN-positive (PDPN+) CAFs
accelerated lung tumor cell invasion into the collagen matrix.
Ablation of PDPN reduced the invasive behavior of both CAFs
and lung tumor cells. Because PDPN+ CAFs were observed to
display high RHOA activity, RHO Kinase (ROCK) inhibitors
were used to treat CAFs before co-culturing with lung tumor
cells. ROCK inhibition suppressed PDPN-induced tumor cell
migration, highlighting the role of the RHOA/ROCK axis in
CAF-dependent tumor invasion (Neri et al., 2015).

INDIRECT CAF-CANCER
CELL INTERACTIONS

Paracrine signaling between CAFs and cancer cells represents
another well-studied mode of interaction between the two
cell types that shapes the TME and promotes tumor growth.
Hepatocyte growth factor (HGF) is a paracrine growth factor
known to contribute to cancer progression. In cancer cells,
HGF activates downstream RAS/MAPK and PI3K signaling
pathways by binding to its receptor MET (Organ and Tsao,
2011). Cytokine antibody arrays suggested that HGF was the
most significantly upregulated secreted factor in CAFs in breast
cancer when compared to normal fibroblasts, which is positively
correlated to their pro-tumorigenic ability to promote breast
tumorigenesis in mice (Tyan et al., 2011). Similarly, the tumor-
promoting functions of CAF-derived HGF were also observed
in gastric cancer. By ablating HGF expression in vivo, CAFs
failed to promote tumor growth in nude mice (Wu et al., 2013).
Interestingly, CAF-derived HGF is also sufficient to induce RAF
inhibitor resistance via the binding of its receptor MET and
reactivation of the MAPK and PI3K/AKT signaling pathways in
melanoma cells. 50 nM of recombinant HGF induced strong drug
resistance to a BRAF inhibitor, vemurafenib, in several melanoma
cell lines (Straussman et al., 2012).

CXCL12, also known as stromal cell-derived factor 1 (SDF1),
is an important regulator in cancer initiation, angiogenesis,
and metastasis (Orimo et al., 2005; Sugihara et al., 2015;
Teng et al., 2016). In addition, CXCL12 was shown to induce
angiogenesis by recruiting endothelial progenitor cells (EPCs)

in breast cancer, thereby providing sufficient nutrients to fuel
tumor growth and metastasis. Furthermore, after mice bearing
breast cancer were treated with antibodies targeting CXCL12,
reduced tumor volume and cell number were observed (Orimo
et al., 2005). It was reported that CAF-derived CXCL12 activated
TGF-β-regulated C-X-C chemokine receptor type 4 (CXCR4)
expression in human prostatic epithelial BPH-1 cells to induce
tumorigenesis. The CAF-conditioned medium was sufficient
to induce CXCR4-AKT activation in BPH-1 cells in vitro.
In vivo tumor grafting experiments also supported this claim.
CXCR4-deficient prostate tumors were significantly smaller and
less invasive as compared to control tumors, confirming the
role of the CXCL12-CXCR4 axis in initiating tumor formation
(Ao et al., 2007). The EMT process represents a pivotal
mechanism used by cancer cells for migration and invasion. It
was shown in vitro that CAF-derived CXCL12 functions as an
important EMT inducer in breast cancer cells by regulating the
Wnt/β-catenin signaling pathway (Shan et al., 2015). TGF-β is
another multifunctional cytokine that is well-known for its role
in inducing the EMT process. CAF-derived TGF-β1 promoted
the aggressive phenotypes of breast cancer cells by inducing EMT
through the activation of TGF-β/SMAD signaling. The EMT
phenotype was reversed in the cells after the addition of TGF-β1
neutralizing antibody (Yu et al., 2014).

THERAPEUTIC PERSPECTIVES:
TARGETING THE ECM
MICROENVIRONMENT

Despite the growing enthusiasm for the development of
CAF-targeting therapies, targeting CAFs has been challenging
and lacks real and meaningful progress. One interesting example
is FAP. Murine anti-FAP antibody F19 showed a significant
tumor-inhibitory effect in xenograft models of lung, pancreas,
and head and neck cancers with no obvious signs of toxicity
(Ostermann et al., 2008). Because of promising pre-clinical data, a
humanized version of murine anti-FAP antibody, sibrotuzumab,
has been designed and tested in a phase I clinical trial and
was determined to be safe and tolerable (Scott et al., 2003).
However, in the phase II study in metastatic colorectal cancer,
sibrotuzumab showed no therapeutic benefits (Hofheinz et al.,
2003). Therefore, instead of targeting a specific subset of CAFs
or CAFs in general, identifying the exact mechanisms that CAFs
use to support cancer cells may help to develop better therapeutic
strategies, e.g., based on CAF autophagy (Zhang et al., 2018), or
based on the specific ECM proteins that are produced by CAFs.

TARGETING ECM PROTEINS

Humanized anti-collagen antibodies and ECM inhibitors have
emerged as promising agents for cancer therapy (de Jonge
et al., 2006; Koon et al., 2011). Halofuginone is an inhibitor
of collagen I and was shown having anti-tumor activities in
mouse models of prostate cancer (Gavish et al., 2002), pancreatic
cancer (Spector et al., 2010) and lung cancer (Taras et al.,
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2006). D93/TRC093 is a humanized monoclonal antibody that
specifically binds the HU177 cryptic collagen epitope within
the tumor ECM with potential antiangiogenic and antitumor
activities (Cretu et al., 2007; Caron et al., 2016). In the study
conducted by Caron et al. (2016) D93/TRC093 was found to
restrict the accumulation of α-SMA+ fibroblasts, which could be
explained by the inhibition of integrin α10β1-mediated fibroblast
adhesion and migration on denatured collagen. In a phase I
clinical study, TRC093 was shown to be well-tolerated and had
tumor-inhibitory effects as monotherapy and in combination
with bevacizumab in 19 patients carrying different types of solid
tumors (Robert et al., 2010).

Conjugating a monoclonal antibody with a cell-killing agent
is a new approach to develop novel targeted anti-cancer agents.
In the past two decades, FN1-targeting antibodies have been
designed and tested in different models. L19 is a monoclonal
antibody known to target the ED-B domain of FN1. By
attaching anti-angiogenesis drugs to L19, the fusion protein
was demonstrated to exhibit strong anti-tumor effects in animal
models carrying different tumors, including teratocarcinoma,
colon adenocarcinoma and sarcoma (Birchler et al., 1999).
Interleukin-2 (IL-2) is a cytokine factor and an important player
in anticancer immunity. However, the cardiovascular toxicity of
IL-2 remains a major clinical issue. To overcome this problem, a
new strategy was designed by fusing IL-2 with L19 so that IL-2 can
be precisely targeted to the tumor site, resulting in reduced side
effects. This drug conjugate exerted strong immune-stimulatory
effects and inhibited tumor growth in stage III melanoma patients
(Danielli et al., 2015). Currently, L19-IL-2 in combination
with L19-TNF is in a phase III clinical trial to evaluate
its efficacy against advanced melanoma (ClinicalTrials.gov
Identifier: NCT03567889). Similarly, TNC-targeting antibodies
have also been conjugated with IL-2, and have shown some
preliminary signs of anti-tumor activity in advanced solid tumors
and metastatic breast cancer (Catania et al., 2015). Navitoclax
(ABT-263) is a small molecule that was shown to have the
ability to induce apoptosis in myofibroblasts (Lagares et al.,
2017). Consequently, Navitoclax could be used to target CAFs
in solid tumor. Navitoclax-loaded nanoliposome was modified
with peptide FH (FH-SSL-Nav), which specifically binds to TNC,
to precisely eradicate CAFs at the tumor site. Using a xenograft
mouse model of hepatocellular cancer, FH-SSL-Nav was shown to
have the ability to deplete CAFs and inhibit tumor growth (Chen
et al., 2016). In January 2017, the National Cancer Institute (NCI)
approved a phase Ib/II trial study to evaluate the side effects and
best dose of the combination of MEK inhibitor Trametinib and
Navitoclax in treating patients with advanced or metastatic solid
tumors (ClinicalTrials.gov Identifier: NCT02079740).

TARGETING ECM
REMODELING ENZYMES

Extracellular matrix remodeling plays an essential role in
CAF-mediated desmoplastic reactions, which cannot be achieved
without LOX-induced ECM crosslinking. LOX inhibitors have
emerged as potential alternatives to target the desmoplastic

TME and improve drug delivery efficacy. In an in vitro 3D
spheroid model using four different mouse tumor cell lines,
including Lewis lung carcinoma cell line (LLC), a fibrosarcoma
cell line (MT6) and two breast carcinoma cell lines (4T1,
EMT6), LOX inhibition significantly improved the diffusion
of doxorubicin (Schutze et al., 2015). Blocking LOX family
oxidases in vitro or in vivo has shown potent anti-tumor
activities in breast and pancreatic cancer (Park et al., 2016;
Chang et al., 2017). Nevertheless, caution should still be
taken when considering using LOX inhibitors. In a rat model
of prostate cancer, LOX inhibition seems to have context-
dependent effects during different stages of tumor progression.
Before tumor formation, LOX inhibitors showed strong tumor-
inhibiting capacity. To the contrary, after prostate tumors were
established, LOX inhibition did not affect or decrease tumor
growth (Nilsson et al., 2016). In recent clinical trials, simtuzumab,
a monoclonal antibody against LOXL2, failed to produce
improved anti-tumor benefits when given in combination with
other anti-cancer drugs, including 5-fluorouracil, leucovorin,
irinotecan (FOLFIRI) and gemcitabine (Benson et al., 2017;
Hecht et al., 2017).

Many MMPs have been known to be notorious for their roles
in promoting cancer progression. As a result, more than 50 MMP
inhibitors were investigated in clinical trials. In a pre-clinical
study, an anti-MMP9 monoclonal antibody GS-5745 successfully
inhibited tumor growth and reduced tumor metastasis in mice
bearing colorectal tumors (Marshall et al., 2015). Nevertheless,
despite exciting preclinical data, none of these MMP inhibitors
displayed anti-tumor effects in clinical trials. Although there
are many explanations for these failures, such as bad clinical
trial design, poor oral bioavailability, and inadequate cancer
stages (Vandenbroucke and Libert, 2014), one potential reason
responsible for the failures of these MMP inhibitors might
be the obscurity of the roles and functions of MMPs in
the ECM microenvironment. In addition, the use of broad-
spectrum MMP inhibitors also suppresses potential tumor-
inhibiting MMPs. Therefore, although MMPs are attractive
therapeutic targets, more research is needed to unravel the
roles of different MMPs in different cancer types and/or during
various cancer stages. Furthermore, more efforts are required
to develop more specific and selective MMP inhibitors to avoid
potential side effects.

TARGETING CAF-DERIVED
MOLECULAR SIGNALS

Cancer-associated fibroblast-mediated paracrine signaling has
also been envisioned as a potential target in cancer treatment.
In a recent phase I–II study on myeloid leukemia, plerixafor, a
CXCR4 inhibitor, resulted in improved recovery rate when given
in combination with a FLAG-Ida regime (fludarabine, idarubicin,
cytarabine, and G-CSF) (Martinez-Cuadron et al., 2018).
To block TGF-β activity, TGF-β inhibitors and monoclonal
antibodies have been designed and tested in clinical trials.
Galunisertib, a TGF-β receptor kinase inhibitor, however, showed
highly context-dependent tumor-inhibitory effects. While it
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showed promising clinical responses in neuroblastoma patients
(Tran et al., 2017), galunisertib had no significant therapeutic
effect in a phase II clinical study in recurrent glioblastoma
patients (Brandes et al., 2016). The monoclonal antibody
fresolimumab (GC1008), which is capable of neutralizing all
human isoforms of TGF-β, has also been investigated in advanced
malignant melanoma and renal cell carcinoma and showed
early stage anti-tumor effects with no dose-limiting toxicity in
a phase I clinical study (Morris et al., 2014). In 2017, several
clinical trials investigating an anti-HGF antibody, rilotumumab,
were published. In one clinical trial, improved antitumor
activities of rilotumumab in combination with cisplatin and
capecitabine were shown in patients with MET-positive advanced
gastric or gastroesophageal junction cancer (Doi et al., 2017).
The combined use of rilotumumab with erlotinib (an EGFR
receptor inhibitor) also showed successes in treating advanced
NSCLC (Tarhini et al., 2017). However, in another clinical
trial on small-cell lung cancer patients, no significant clinical
benefit of rilotumumab in combination with platinum-based
chemotherapy was observed (Glisson et al., 2017). Similarly, in
a phase III clinical study, the treatment utilizing rilotumumab
plus epirubicin, cisplatin, and capecitabine as a first-line therapy
on gastric or gastro-oesophageal junction cancer patients was
unsuccessful (Catenacci et al., 2017). Taken together, targeting
CAF-induced paracrine signaling appears to be spatial-temporal
and case-dependent.

CONCLUSION

It is an astonishing feat of the tumor cells to abandon the
basic rules of tissue homeostasis and to grow uncontrollably.
Unfortunately, as we have learned from many modern targeted
therapies, a simple approach to eliminate tumor “seed” is
generally condemned to failure. It is becoming clear that the TME
is actively involved in tumor initiation, progression, metastasis
and the development of drug resistance. However, only after
gaining enhanced knowledge about the TME, including the
heterogeneous nature and complexity of CAF populations, a
multiplex approach targeting CAFs and the ECM will naturally
come by and provide desired clinical benefits.
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