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How tick-borne pathogens (TBPs) could help us understand cancer? The diversity of pathogens
transmitted by ticks is higher than that of any other known arthropod vector and includes protozoa
(e.g., Babesia spp. and Theileria spp.), bacteria (e.g., intracellular Rickettsia spp. and extracellular
Borrelia spp.), viruses (e.g., Tick-borne encephalitis (TBE) and Crimean-Congo hemorrhagic
fever (CCHF) virus), helminths (e.g., Cercopithifilaria) and, although less known, fungi (e.g.,
Dermatophilus) (Otranto et al., 2013; Brites-Neto et al., 2015; de la Fuente et al., 2017). TBPs
have complex life cycles that involve vertebrate hosts and the ticks. Intracellular TBP infection
triggers cellular and molecular responses that change host cell physiology in fundamental ways.
Within vertebrate host cells, the apicomplexan parasites Theileria parva and Theileria annulata
activate molecular pathways that result in increased production of reactive oxygen species (ROS),
cell immortalization, cancer and host death. In contrast, infection by the rickettsia Anaplasma
phagocytophilum inhibits apoptosis, block the production of ROS and results in a self-limiting
infection that rarely is lethal for the host. Theileria spp. and A. phagocytophilum modulates host
cell response by inducing transcriptional reprogramming of their vertebrate host cells, leukocytes.
Transcriptional reprogramming is induced by pathogen-encoded effector proteins that modify host
epigenetic pathways that affect not only gene transcription but also protein levels. The complexity
of molecular pathways modulated by TBP infection in vertebrate host cells parallel that of cancer
which offers a unique opportunity for comparative studies to understand complex health problems
such as cancer. Identification of differences between the molecular pathways hijacked by Theileria
spp. and A. phagocytophilum with those leading to non-infectious cancer will provide insights into
proteins, pathways and biological processes (BP) associated with malignant transformation.

This hypothesis is based in the following rationality: (i) Theileria spp. (Cheeseman and
Weitzman, 2015), A. phagocytophilum (Sinclair et al., 2014) and oncogenic factors (González-
Herrero et al., 2018) behave as “epigenators” (Berger et al., 2009; Cheeseman and Weitzman, 2015)
because they have the potential to trigger intracellular signaling pathways that lead to changes in
chromatin status and gene expression, (ii) transcriptional reprograming and proteome modulation
are hallmarks of infection by Theileria spp. (Kinnaird et al., 2013) and A. phagocytophilum (de
la Fuente et al., 2005; Lee et al., 2008), and oncogenesis (González-Herrero et al., 2018), (iii)
transcriptional reprograming and proteome modulation in Theileria spp. and A. phagocytophilum
infections and oncogenesis are associated with similar molecular and cellular processes including
apoptosis (Borjesson et al., 2005; Brown and Attardi, 2005; Hayashida et al., 2010; Ayllón et al.,
2015), metabolic reprograming (Medjkane and Weitzman, 2013; Yu et al., 2018; Cabezas-Cruz
et al., 2019; Masui et al., 2019), oxidative stress and ROS production (IJdo and Mueller, 2004;
Medjkane et al., 2014; Takaki et al., 2019) among others. To compare the cell response to
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Theileria spp. andA. phagocytophilum infections and carcinogens
we propose the combination of quantitative proteomics and
network analysis (Figure 1). Networks of proteins and BPs
clustered in Emerging Biological Pathways (i.e. network modules
resulting from the clustering of proteins and BPs in response
to different stimuli) can represent the topology of the specific
cell response to Theileria spp. and A. phagocytophilum infection
and exposure to carcinogens. The significance of proteins
and processes can be then ranked and hierarchized by
indexes representing the centrality of proteins and processes in
the networks.

TICK-BORNE PATHOGENS AS MODELS IN
CANCER RESEARCH

Infection-induced malignant transformation accounted for
17.8% (1.9 million cases) of the global cancer burden in the year
2002 (Parkin, 2006). The contribution of infectious diseases to
cancer epidemiology increased in 2008 to∼2 million new cancer
cases attributable to infection with viruses, platyhelminthes, and
bacteria (Oh and Weiderpass, 2014). The loss of cellular identity
and the transformation of normal into tumor cells is a central
and challenging problem in cellular biology. Major advances have
been made in understanding the genetic basis and phenotypic
changes underlining the continuum from normal cell to tumor
cell to malignant transformation (Hanahan and Weinberg, 2000,
2011; Vogelstein et al., 2013). DNA mutations are observed in all
types of cancer (Vogelstein et al., 2013). A significant proportion
of cancer patients, however, do not have known coding driver
mutations and several non-coding mutations affecting not gene
function but gene transcription have been identified in cancer
(Fredriksson et al., 2014; Zhang et al., 2018; Reyna et al., 2019).
In consequence, the attention has been shifted to phenotypic
changes induced by aberrant gene expression that also drive
tumor and malignant transformation (Guo et al., 2017; Karki
et al., 2017; Parfett and Desaulniers, 2017).

In contrast to virus-induced tumorigenesis that include DNA
mutations in somatic cells (Ji et al., 2014), Theileria-induced
tumorigenesis in bovines does not involve changes in DNA
sequence (Cheeseman and Weitzman, 2015; Tretina et al., 2015).
Instead, epigenetic mechanisms underlie phenotypic changes
associated with Theileria-induced malignant transformation
(Cheeseman and Weitzman, 2015). Theileria is consider as a
good model to study the molecular basis of phenotypic changes
associated with transformation (Cheeseman and Weitzman,
2015; Marsolier et al., 2015). Comparing the T. annulata genome
with that of Toxoplasma gondii (as a control of intracellular
and non-transforming apicomplexan parasite), Marsolier et al.
(2015) identified 33 Theileria-specific proteins among which
they found a homolog of mammalian Pin1, a Peptidyl Prolyl
Isomerase that regulates cell proliferation, pluripotency, and
survival (Marsolier et al., 2015). The human homolog of Pin1
is overexpressed in breast cancer, increases the transcriptional
activity of c-Jun and promotes tumor growth (Wulf et al., 2001).
It turned out that by interacting and inducing the degradation
of FBW7 protein, which degrades c-Jun, Theileria’s Pin1 induces

c-Jun accumulation and activates the oncogenic c-Jun pathway
which in turn promote transformation (Marsolier et al., 2015;
Fernandes et al., 2018).

Thus, comparing the genomes of transforming (i.e., Theileria)
and non-transforming (i.e., Toxoplasma) parasites proved a valid
strategy for the identification of Pin1 as a protein relevant
in cell transformation and tumor growth (Wulf et al., 2001;
Marsolier et al., 2015). Oncogenic viruses such as Kaposi’s
Sarcoma Herpesvirus also activates c-Jun activity in host cells via
virus-encoded proteins (An et al., 2004; Hamza et al., 2004; Xie
et al., 2005). However, the complexity of the mechanisms leading
tumor transformation is revealed by the fact that infections by
non-transforming pathogens (e.g., Reovirus and Staphylococcus
aureus) also induce and activate c-Jun transcriptional activity
(Clarke et al., 2001; Borjesson et al., 2005). Staphylococcus aureus
infection induces JUN (the gene encoding for c-Jun) expression
in neutrophils (Borjesson et al., 2005), and staphylococcal α-
Toxin activates c-Jun by inducing phosphorylation of its serine
73 (Moyano et al., 2018). Reoviruses can also activate c-Jun
activity (Clarke et al., 2001) and were even proposed as cancer
therapy (Harrington et al., 2010). Another more general example
is that in both Theileria-induced and non-infectious neoplastic
transformation, apoptosis is inhibited (Fernald and Kurokawa,
2013; Dasgupta et al., 2016). Apoptosis inhibition is therefore
considered a hallmark of cancer (Hanahan and Weinberg,
2000, 2011). However, A. phagocytophilum infection also inhibits
apoptosis but, as mentioned above, it does not result in malignant
cell immortalization. One conclusion can be reached from these
simple comparisons; c-Jun activation, or apoptosis inhibition,
alone do not suffice to transform normal cells in tumor cells.
What other pathway or pathways have to be modified in a cell
to become a tumor cell? A comprehensive comparison between
the timing and totality of cell molecular pathways modulated
by Theileria spp., A. phagocytophilum and carcinogens may
provide an integrative view of the molecular pathways leading to
malignant transformation.

SEMANTIC NETWORKS TO FIND
THE KEYWORDS

In graph theory, a network is a set of nodes that are connected by
edges (also known as links). In networks representing food webs
(Dunne et al., 2013) or host-parasite interactions (Lafferty et al.,
2006; Estrada-Peña et al., 2015), nodes are the organisms and
the links represent interactions between them. The directionality
and strength of the interactions can be measured as the “weight
of interaction” (e.g., the number of times a parasite has been
found on a host). We proposed to build “semantic networks”
(Estrada-Peña et al., 2018) to capture the changes in cell response
induced by different stimuli, Theileria spp., A. phagocytophilum
and carcinogens (Figure 1). In such framework, two type of
nodes can be distinguished [i.e., proteins with Gene Ontology
(GO) annotation (Villar et al., 2014) and BPs], and the links
between them would be the participation of proteins in one or
more BPs (Estrada-Peña et al., 2018). In this regard, semantic
networks are directed because a ‘source’ (i.e., the protein) is
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FIGURE 1 | Integration of quantitative proteomics with network analysis to elucidate proteins and BPs key to malignant transformation. The figure displays a workflow

previously proposed for the characterization of cell response to A. phagocytophilum infection (Estrada-Peña et al., 2018). Samples can be prepared using different

stimuli, in this case, a non-transforming bacterium (i.e., A. phagocytophilum, colored in orange), a transforming apicomplexan parasite (i.e., T. parva and/or T.

annulata, colored in green) and carcinogens (i.e., know chemical compounds capable of causing cancer, colored in brown). Following standard quantitative

proteomics and GO annotation, the names of proteins (nodes type 1) are linked to the biological process (BP) (nodes type 2) in which that protein participates using

bipartite networks. The links between nodes type 1 and 2 have strength equivalent to protein expression levels (expressed as normalized Peptide-Spectrum Matches)

in treated and untreated cells (no colored). In these networks, BPs with many proteins connected to it and proteins with high relative expression will play a key role in

keeping the structure of the network. After comparing with untreated cells, three types of phenotypic changes would be uncovered, those related with infectious

transformation (in networks resulting from Theileria spp. infection), non-infectious transformation (in networks resulting from cells exposed to carcinogens), and

non-transforming infection (in networks resulting from A. phagocytophilum infection). Finally, comparing the centrality indices of proteins and BPs in cells treated with

carcinogens and those infected with Theileria spp and A. phagocytophilum will reveal key players in non-infectious transformation. Likewise, comparing the centrality

indices of proteins and BPs in cells infected with Theileria spp. and A. phagocytophilum will provide proteins and BPs critical to infectious transformation. Other

comparisons following this logic can provide further insights on infection and cancer.

linked to a “destination” (i.e., the BP). In addition, the links have
weight equivalent to the protein levels measured by quantitative
proteomics and the Degree of each node is proportional to either
the protein level or the sum of links reaching a BP.

Initially, semantic networks were used to describe the global
cell transformation in response to A. phagocytophilum infection
(Estrada-Peña et al., 2018). The results demonstrated that the
resulting interactions between proteins and BP can be used to
calculate the centrality indices of each node of the network
(Estrada-Peña et al., 2018). Centrality indices are fundamental

measures of the structure of a network and account for intimate
changes in the relative importance of key functions. In addition,
centrality indices can be used to identify both proteins and BP
that are “central” and therefore occupy prominent positions
in the cellular response to different stimuli. The argument
here is that centrality indices (e.g., Degree centrality, Weighted
Degree, and Betweenness Centrality) are powerful indicators of
subtle changes in the proteome, which could be missed when
standard protein representation analysis is used. Comparison
of centrality indices between A. phagocytophilum-infected and
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non-infected human and tick cells revealed (i) that infection
by this pathogen rewires the network of cell processes and
changes the relative importance of biological pathways and
(ii) that tick and human cells respond differently to A.
phagocytophilum infection (Estrada-Peña et al., 2018). More
importantly, the ras-related protein Rab14, with a high centrality
in infected tick cells, was selected for functional validation by
gene knockdown. Rab14 knockdown resulted in a significant
decrease in A. phagocytophilum infection levels, suggesting that
A. phagocytophilum increases the relative importance of Rab14
in the proteome to facilitate infection (Estrada-Peña et al.,
2018). The identification of Rab14 as a key protein in A.
phagocytophilum infection shows that in addition to reveal the
global cell response to stimuli, semantic networks can be also
used to identify individual proteins that change the relative
importance of different BPs and can be validated in further
laboratory experiments (Estrada-Peña et al., 2018).

Network analysis has been used previously to study cancer
progression and reversal (Parikh et al., 2014), to prioritize rare
mutations in protein-coding and non-coding genomic regions
(Fredriksson et al., 2014; Zhang et al., 2018; Reyna et al.,
2019), to study how PIK3CA mutations interact with others
components of luminal-breast cancer cell signaling network and
predict clinical outcomes (McGee et al., 2017) among others.
Most network approaches to study cancer use protein-protein
interactions where the nodes are proteins and the links between
them represent physical protein-protein interactions (Ozturk
et al., 2018). In signaling networks, nodes are also proteins but
the links represent signaling relations between them (McGee

et al., 2017). Other approaches explicitly violate or relax rules
of gene and/or protein interactions and allows for biological
noise and uncertainty that are expected to occur in tumor
cells (Creixell et al., 2015). Our approach is different to those
previously reported in two fundamental ways: (i) semantic
networks (Estrada-Peña et al., 2018) connect nodes using GO
terms which are broader in scope than pathways (Creixell et al.,
2015) or protein-protein interactions, and (ii) the links between
nodes are weighted based in experimentally-determined protein
levels. Thus, semantic networks have the potential to identify not
only key BPs, but also those proteins with the higher contribution
to that BP in response to the selected stimuli. These two
properties, protein-BP connectivity and weighted contribution
of proteins result in Emerging Biological Pathways unique to the
stimuli in question (e.g., Theileria spp., A. phagocytophilum and
carcinogens). The characterization of key proteins and BPs may
lead to the identification of fundamental processes involved in
carcinogenesis, with possible implication in disease prevention
and control.

AUTHOR CONTRIBUTIONS

AC-C, AE-P, and JdF: conceived the idea, drafted the manuscript,
reviewed and accepted the manuscript in its current form.

ACKNOWLEDGMENTS

We thank members of our labs for insightful discussions on
this topic.

REFERENCES

An, J., Sun, Y., and Rettig, M. B. (2004). Transcriptional coactivation
of c-Jun by the KSHV-encoded LANA. Blood 103, 222–228.
doi: 10.1182/blood-2003-05-1538

Ayllón, N., Villar, V., Galindo, R. C., Kocan, K. M., Šíma, R.,
López, J. A., et al. (2015). Systems biology of tissue-specific
response to Anaplasma phagocytophilum reveals differentiated
apoptosis in the tick vector Ixodes scapularis. PLoS Genet. 11:e10
05120. doi: 10.1371/journal.pgen.1005120

Berger, S. L., Kouzarides, T., Shiekhattar, R., and Shilatifard, A. (2009).
An operational definition of epigenetics. Genes. Dev. 23, 781–783.
doi: 10.1101/gad.1787609

Borjesson, D. L., Kobayashi, S. D., Whitney, A. R., Voyich, J. M., Argue,
C. M., and Deleo, F. R. (2005). Insights into pathogen immune evasion
mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis
differentiation program in human neutrophils. J. Immunol. 174, 6364–6372.
doi: 10.4049/jimmunol.174.10.6364

Brites-Neto, J., Duarte, K. M., and Martins, T. F. (2015). Tick-borne infections
in human and animal population worldwide. Vet. World. 8, 301–315.
doi: 10.14202/vetworld.2015.301-315

Brown, J. M., and Attardi, L. D. (2005). The role of apoptosis in cancer
development and treatment response. Nat. Rev. Cancer. 5, 231–237.
doi: 10.1038/nrc1560

Cabezas-Cruz, A., Espinosa, P., Alberdi, P., and de la Fuente, J. (2019). Tick-
pathogen interactions: the metabolic perspective. Trends Parasitol. 35, 316–328.
doi: 10.1016/j.pt.2019.01.006

Cheeseman, K., andWeitzman, J. B. (2015). Host-parasite interactions: an intimate
epigenetic relationship. Cell Microbiol. 17, 1121–1132. doi: 10.1111/cmi.12471

Clarke, P., Meintzer, S. M., Widmann, C., Johnson, G. L., and Tyler, K. L. (2001).
Reovirus infection activates JNK and the JNK-dependent transcription factor
c-Jun. J. Virol. 75, 11275–11283. doi: 10.1128/JVI.75.23.11275-11283.2001

Creixell, P., Reimand, J., Haider, S., Wu, G., Shibata, T., Vazquez, M., et al. (2015).
Pathway and network analysis of cancer genomes. Nat. Methods 12, 615–621.
doi: 10.1038/nmeth.3440

Dasgupta, A., Nomura, M., Shuck, R., and Yustein, J. (2016). Cancer’s Achilles’
Heel: Apoptosis and Necroptosis to the Rescue. Int. J. Mol. Sci. 18:E23.
doi: 10.3390/ijms18010023

de la Fuente, J., Antunes, S., Bonnet, S., Cabezas-Cruz, A., Domingos, A.
G., Estrada-Peña, A., et al. (2017). Tick-pathogen interactions and vector
competence: identification of molecular drivers for tick-borne diseases. Front.
Cell. Infect. Microbiol. 7:114. doi: 10.3389/fcimb.2017.00114

de la Fuente, J., Ayoubi, P., Blouin, E. F., Almazán, C., Naranjo, V., and Kocan, K.
M. (2005). Gene expression profiling of human promyelocytic cells in response
to infection with Anaplasma phagocytophilum. Cell. Microbiol. 7, 549–559.
doi: 10.1111/j.1462-5822.2004.00485.x

Dunne, J. A., Lafferty, K. D., Dobson, A. P., Hechinger, R. F., Kuris, A.
M., Martinez, N. D., et al. (2013). Parasites affect food web structure
primarily through increased diversity and complexity. PLoS Biol. 11:e1001579.
doi: 10.1371/journal.pbio.1001579

Estrada-Peña, A., de la Fuente, J., Ostfeld, R. S., and Cabezas-Cruz, A. (2015).
Interactions between tick and transmitted pathogens evolved to minimise
competition through nested and coherent networks. Sci. Rep. 5:10361.
doi: 10.1038/srep10361

Estrada-Peña, A., Villar, M., Artigas-Jerónimo, S., López, V., Alberdi, P.,
Cabezas-Cruz, A., et al. (2018). Use of graph theory to characterize human
and arthropod vector cell protein response to infection with Anaplasma

phagocytophilum. Front. Cell. Infect. Microbiol. 8:265. doi: 10.3389/fcimb.2018.
00265

Fernald, K., and Kurokawa, M. (2013). Evading apoptosis in cancer. Trends Cell
Biol. 23, 620–633. doi: 10.1016/j.tcb.2013.07.006

Fernandes, R., Ferreira, S., and Botelho, M. C. (2018). Commentary: theileria
parasites secrete a prolyl isomerase to maintain host leukocyte transformation.
Front. Med. 5:120. doi: 10.3389/fmed.2018.00120

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 May 2019 | Volume 7 | Article 79

https://doi.org/10.1182/blood-2003-05-1538
https://doi.org/10.1371/journal.pgen.1005120
https://doi.org/10.1101/gad.1787609
https://doi.org/10.4049/jimmunol.174.10.6364
https://doi.org/10.14202/vetworld.2015.301-315
https://doi.org/10.1038/nrc1560
https://doi.org/10.1016/j.pt.2019.01.006
https://doi.org/10.1111/cmi.12471
https://doi.org/10.1128/JVI.75.23.11275-11283.2001
https://doi.org/10.1038/nmeth.3440
https://doi.org/10.3390/ijms18010023
https://doi.org/10.3389/fcimb.2017.00114
https://doi.org/10.1111/j.1462-5822.2004.00485.x
https://doi.org/10.1371/journal.pbio.1001579
https://doi.org/10.1038/srep10361
https://doi.org/10.3389/fcimb.2018.00265
https://doi.org/10.1016/j.tcb.2013.07.006
https://doi.org/10.3389/fmed.2018.00120
https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Cabezas-Cruz et al. Good, Bad and the Tick

Fredriksson, N. J., Ny, L., Nilsson, J. A., and Larsson, E. (2014). Systematic analysis
of non-coding somatic mutations and gene expression alterations across 14
tumor types. Nat. Genet. 46, 1258–1263. doi: 10.1038/ng.3141

González-Herrero, I., Rodríguez-Hernández, G., Luengas-Martínez, A., Isidro-
Hernández, M., Jiménez, R., García-Cenador, M. B., et al. (2018). The
making of leukemia. Int. J. Mol. Sci. 19:E1494. doi: 10.3390/ijms190
51494

Guo, Y., Nie, Q., MacLean, A. L., Li, Y., Lei, J., and Li, S. (2017). Multiscale
modeling of inflammation-induced tumorigenesis reveals competing
oncogenic and oncoprotective roles for inflammation. Cancer Res. 77,
6429–6441. doi: 10.1158/0008-5472.CAN-17-1662

Hamza, M. S., Reyes, R. A., Izumiya, Y., Wisdom, R., Kung, H. J., and Luciw, P.
A. (2004). ORF36 protein kinase of Kaposi’s sarcoma herpesvirus activates the
c-Jun N-terminal kinase signaling pathway. J. Biol. Chem. 279, 38325–38330.
doi: 10.1074/jbc.M400964200

Hanahan, D., andWeinberg, R. A. (2000). The hallmarks of cancer.Cell 100, 57–70.
doi: 10.1016/S0092-8674(00)81683-9

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next
generation. Cell 144, 646–674 doi: 10.1016/j.cell.2011.02.013

Harrington, K. J., Vile, R. G., Melcher, A., Chester, J., and Pandha, H. S.
(2010). Clinical trials with oncolytic reovirus: moving beyond phase I into
combinations with standard therapeutics. Cytokine Growth Factor Rev. 21,
91–98. doi: 10.1016/j.cytogfr.2010.02.006

Hayashida, K., Hattori, M., Nakao, R., Tanaka, Y., Kim, J. Y., Inoue, N., et al.
(2010). A schizont-derived protein, TpSCOP, is involved in the activation of
NF-kappaB in Theileria parva-infected lymphocytes. Mol. Biochem. Parasitol.
174, 8–17. doi: 10.1016/j.molbiopara.2010.06.005

IJdo, J. W., and Mueller, A. C. (2004). Neutrophil NADPH oxidase is reduced
at the Anaplasma phagocytophilum phagosome. Infect Immun. 72, 5392–5401.
doi: 10.1128/IAI.72.9.5392-5401.2004

Ji, X., Zhang, Q., Du, Y., Liu, W., Li, Z., Hou, X., et al. (2014). Somatic
mutations, viral integration and epigenetic modification in the evolution
of hepatitis B virus-induced hepatocellular carcinoma. Curr. Genomic 15,
469–480. doi: 10.2174/1389202915666141114213833

Karki, R., Man, S. M., and Kanneganti, T. D. (2017). Inflammasomes and Cancer.
Cancer Immunol. Res. 5, 94–99. doi: 10.1158/2326-6066.CIR-16-0269

Kinnaird, J. H.,Weir,W., Durrani, Z., Pillai, S. S., Baird,M., and Shiels, B. R. (2013).
A bovine lymphosarcoma cell line infected with theileria annulata exhibits an
irreversible reconfiguration of host cell gene expression. PLoS ONE. 8:e66833.
doi: 10.1371/journal.pone.0066833

Lafferty, K. D., Dobson, A. P., and Kuris, A. M. (2006). Parasites dominate
food web links. Proc. Natl. Acad. Sci. U.S.A. 103, 11211–11216.
doi: 10.1073/pnas.0604755103

Lee, H. C., Kioi, M., Han, J., Puri, R. K., and Goodman, J. L. (2008).
Anaplasma phagocytophilum-induced gene expression in both human
neutrophils and HL-60 cells. Genomics 92, 144–151. doi: 10.1016/j.ygeno.2008.
05.005

Marsolier, J., Perichon, M., DeBarry, J. D., Villoutreix, B. O., Chluba, J., Lopez,
T., et al. (2015). Theileria parasites secrete a prolyl isomerase to maintain
host leukocyte transformation. Nature 520, 378–382. doi: 10.1038/nature
14044

Masui, K., Onizuka, H., Cavenee, W. K., Mischel, P. S., and Shibata, N.
(2019). Metabolic reprogramming in the pathogenesis of glioma: update.
Neuropathology 39, 3–13. doi: 10.1111/neup.12535

McGee, S. R., Tibiche, C., Trifiro, M., and Wang, E. (2017). Network analysis
reveals a signaling regulatory loop in the PIK3CA-mutated breast cancer
predicting survival outcome. Genom. Proteom. Bioinforma. 15, 121–129.
doi: 10.1016/j.gpb.2017.02.002

Medjkane, S., Perichon, M., Marsolier, J., Dairou, J., and Weitzman, J.
B. (2014). Theileria induces oxidative stress and HIF1α activation that
are essential for host leukocyte transformation. Oncogene 33, 1809–1817.
doi: 10.1038/onc.2013.134

Medjkane, S., and Weitzman, J. B. (2013). A reversible Warburg effect is induced
by Theileria parasites to transform host leukocytes. Cell Cycle. 12, 2167–2168.
doi: 10.4161/cc.25540

Moyano, A. J., Racca, A. C., Soria, G., Saka, H. A., Andreoli, V., Smania, A.M., et al.
(2018). c-Jun Proto-oncoprotein plays a protective role in lung epithelial cells
exposed to staphylococcal α- and Toxin. Front. Cell. Infect. Microbiol. 8:170.
doi: 10.3389/fcimb.2018.00170

Oh, J. K., and Weiderpass, E. (2014). Infection and cancer: global
distribution and burden of diseases. Ann. Glob. Health 80, 384–392.
doi: 10.1016/j.aogh.2014.09.013

Otranto, D., Dantas-Torres, F., Brianti, E., Traversa, D., Petrić, D., Genchi, C., et al.
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