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Alzheimer’s disease (AD) is a progressive, irreversible brain disorder characterized by
pathological aggregation of the amyloid-β peptide (Aβ) and tau protein; both of these
are toxic to neurons. Currently, natural products are regarded as an alternative approach
to discover novel multipotent drugs against AD. Dietary soy isoflavone genistein is one
of the examples of such agents that occurs naturally and is known to exert a number
of beneficial health effects. It has been observed that genistein has the capacity to
improve the impairments triggered by Aβ and also it possesses the antioxidant potential
to scavenge the AD-mediated generation of free radicals. Furthermore, genistein can
interact directly with the targeted signaling proteins and also can stabilize their activity
to combat AD. In order to advance the development of AD treatment, a better
comprehension of the direct interactions of target proteins and genistein might prove
beneficial. Therefore, this article focuses on the therapeutic effects and molecular targets
of genistein, which has been found to target directly the Aβ and tau to control the
intracellular signaling pathways responsible for neurons death in the AD brain.
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INTRODUCTION

Alzheimer’s disease is one of the most common neurodegenerative diseases that represent 60–
70% of dementia cases (Uddin et al., 2019a; Mathew et al., 2019). Currently, it is predicted
that around 44 million individuals have Alzheimer’s or related dementia and this number
is anticipated to over 135 million by 2050 (Uddin et al., 2016d; Hossain et al., 2019). The
major neuropathological AD hallmarks involve proteinous aggregates found in the form of
intracellular NFTs, containing hyperphosphorylated tau (Holtzman et al., 2011; Uddin et al.,
2019c), and extracellular senile plaques, containing Aβ deposits of heterogeneous lengths (Selkoe,
1998; Uddin et al., 2018c). Aβ peptides are generated by sequential proteolytic processing
of APP (Selkoe, 1998; Uddin et al., 2018c). In case of autosomal dominant forms of early
onset AD, mutations in APP, presenilin-1 (PSEN1) or presenilin-2 (PSEN2) are accountable
(Campion et al., 1999; Żekanowski et al., 2003; Uddin et al., 2016c). In fact, the basis for the
amyloid cascade hypothesis is based on the findings that mutations of this three-gene (i.e.,

Abbreviations: AD, Alzheimer’s disease; APP, amyloid precursor protein; Aβ, amyloid β; NFTs, neurofibrillary tangles.
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APP, PSEN1, and PSEN1) greatly change the metabolism of
APP, preferring the generation of aggregation-prone Aβ species
(Ricciarelli and Fedele, 2017; Uddin et al., 2018a). The neurotoxic
Aβ peptides are mainly produced by cleavage of APP by β- and
γ-secretases (MacLeod et al., 2015; Uddin and Amran, 2018). As
a result of this event, alteration of neurotransmitter (Reinikainen
et al., 1990; Francis, 2005), as well as synapse and neuronal
loss in the hippocampus and the neocortex (Dheen et al., 2007;
Devi et al., 2017) are the other hallmarks of this disease that
are developed. At this moment, there is no available treatment
to cure AD (Uddin and Asaduzzaman, 2016). Therefore, the
exploration of plant-derived bioactive compounds has greatly
led to the discovery of new drug candidates for AD (Uddin
et al., 2016b; Rahman et al., 2017; Jakaria et al., 2019). The
polyphenols are found to contain anti-AD activity (Queen and
Tollefsbol, 2010; Uddin et al., 2018b). In addition, they are the
most diverse and largest group of organic compounds among
many natural products.

Isoflavones are polyphenolic secondary metabolites (Pandey
and Rizvi, 2009) produced mainly from the members of
the Leguminosae family (Forslund and Andersson, 2017).
The major isoflavones found in soybean are genistein and
daidzein (Abdallah et al., 2012). In order to improve the
postmenopause symptoms, several soybean extracts including
genistein and daidzein are used as a substitute for estrogen
(Glazier and Bowman, 2001). It has been observed in rats
that the soy isoflavones can protect against the Aβ42 peptide-
mediated impairment of memory and learning (Xi et al.,
2013). On the other hand, by means of the regulation
of the nuclear factor erythroid 2-related factor 2 (Nrf2)
signaling pathway, isoflavones were observed to avert the
Aβ42–induced oxidative damage in the cerebrovascular tissue
(Xi et al., 2014). Among different soy isoflavones, genistein
constitutes about fifty percent of the total isoflavone content
(Xu et al., 2015).

Genistein suppresses Alzheimer’s pathology by regulating
copious intracellular events. In this article, we have primarily
emphasized on the current understanding of the signal regulating
potential of genistein to abate AD pathogenesis.

CHEMISTRY OF GENISTEIN

Genistein (4′,5,7-trihydroxyisoflavone) is a soy-derived
isoflavone and phytoestrogen (Miadoková, 2009) as shown
in Figure 1. It is regarded as a central intermediate
which is required in the generation of more complex
isoflavonoids (Dixon and Ferreira, 2002). Genistin (4′,5,7-
trihydroxyisoflavone 7-glucoside) and its aglycone genistein
(i.e., 4′,5,7-trihydroxyisoflavone) are the main isoflavones
found in soybeans (Zubik and Meydani, 2003). In the plants,
genistein is produced from the naringenin, an omnipresent
flavanone. It has been observed that naringenin goes through
the abstraction of hydrogen radical at C-3 afterward migration
of B-ring from C-2 to C-3 and subsequent hydroxylation of
resulting C-2 radial. In the presence of molecular oxygen and
nicotinamide adenine dinucleotide phosphate (NADPH),

the aforementioned reaction is catalyzed by isoflavone
synthase, a stereoselective microsomal cytochrome P450
enzyme (Dixon and Ferreira, 2002).

Generally, acetylglucoside, malonylglucoside, aglycone,
and glucoside are the four different forms of isoflavones
that are found in soybeans (Xu et al., 2000; Zubik and
Meydani, 2003). Interestingly, genistein is a relatively
selective estrogen receptor (ER) β agonist and has structural
similarity with estrogen (see Figure 1). ERβ is present in
the brain areas linked with memory and learning (Jacome
et al., 2010; Bean et al., 2014). Furthermore, genistein
binding to ERβ might play a role in its neuroprotective
action and also can ameliorate the memory deficit of AD
(Bang et al., 2004).

BIOAVAILABILITY OF GENISTEIN

Several pharmacokinetic studies revealed poor oral bioavailability
of genistein (Supko and Malspeis, 1995; Yang et al., 2012).
However, consistency of genistein in terms of pharmacokinetic
behaviors is still unclear because of its unpredictability and
uncertain outcomes experienced via various biopharmaceutical
investigations (Yang et al., 2012). Interestingly, while the
glycosidic form has observed to be absorbed partially,
it has been observed that the aglycon part exerts better
bioavailability as compared to the glycoside (Piskula et al.,
1999). In rats, it has been concluded by the bioavailability
studies of genistein that plasma levels of portal vein help
to bring about the understanding of the contribution of
deglycosylation in the intestine and liver and uptake uniqueness
of glycosylated flavonoids (Steensma et al., 2006). On the
other hand, in soybean, genistein’s malonylglucoside is found
to be thermolabile and degraded subsequently due to the
cooking to non-acylated glucosides (Dixon and Ferreira,
2002). In addition, genistein is found to be transported
across human intestinal epithelial cell monolayers (Dixon and
Ferreira, 2002). It is recommended based on the metabolism
and absorption rate of the ingested genistein and genistin
that genistein has higher bioavailability as compared to
genistin. However, human study showed that genistein
is absorbed similarly to its glucoside (Janice et al., 2007;
Devi et al., 2017).

In adults, genistein’s plasma half-life was evaluated from
its plasma appearance and disappearance curves for the
period of 7.9 h (Janice et al., 2007; Devi et al., 2017).
Peak concentration was found to occur following 6–8 h
of consumption and high steady-state plasma concentrations
were observed due to the soy-containing diet consumption.
Interestingly, it has been observed that up to 50–800 ng/mL
of genistein and daidzein were released from the soy food
which contains 50 mg/day of total isoflavones. On the other
hand, about 1–5 µM of genistein were released in the blood
of infants who ingested soy-based formula of 6–11 mg/kg/day
of isoflavones (that contain 4–7 mg/kg/day of total genistein).
Whereas, 0.5 µM of genistein was found to be released in
the blood of adults who ingested soy products at the rate of
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FIGURE 1 | Chemical structure of genistein in relation to estrogens.

approximately 1 mg/kg/day of total genistein (Setchell et al., 1998;
Janice et al., 2007).

ANTI-ALZHEIMER’S IN VITRO STUDIES
OF GENISTEIN

Currently, the antioxidant and neuroprotective property of
genistein is regarded as effective to treat AD.

Upregulation of PKC Signaling
Sequential processing of APP by β- and γ-secretases (Ortega
et al., 2013) can cause the formation of neurotoxic Aβ, which
can further accumulate as amyloid plaques (Uddin et al., 2019b;
Harilal et al., 2019). In contrast, soluble APPα (i.e., non-toxic
in nature) is formed due to the α-secretase mediated cleavage
of APP (Adeniji et al., 2017). The role of α-secretase and
reduction of the burden of amyloid plaque in the brain can be
promoted by the enzyme protein kinase C (PKC, a phospholipid-
dependent serine/threonine kinase). Therefore, agents that can
cause inhibition of the enzymes β- and γ-secretases and
activation of PKC could cause blockage of the amyloid plaque
formation (Kim et al., 2011). In rat hippocampal neuronal
cells, this positive action was noticed during treatment with
genistein (i.e., 0.375 µg/mL), where it was observed that genistein
protected the cells by a considerable increment of the α-secretase
and attenuation of the β-secretase, via upregulation of the PKC
signaling pathway (Liao et al., 2013) as given in Figure 2.

Downregulation of Presenilin 1 and
Ubiquilin 1 Expression
AD-linked ubiquilin-1 controls proteasomal degradation of
proteins, comprising presenilin (Zhang and Saunders, 2009).
Genistein can cause decreased Aβ generation by downregulation
of the transmembrane protein presenilin which is found to be
involved in the APP cleavage (Matsuda et al., 2011). On the
other hand, in the lymphoid cells, genistein exerts an inhibitory
action on the protein ubiquilin 1 which usually can cause
stabilization of the presenilin (Matsuda et al., 2011). Though the
molecular mechanisms by which ubiquilin 1 is controlled have
not yet been recognized, this result may aid to develop defensive
approaches against AD. In recent times, it has been stated
that ubiquilin 1 controls proteasomal degradation of proteins
comprising presenilin (Viswanathan et al., 2011).

Reduction of Oxidative Stress
Oxidative stress (OS) is a central factor in the pathogenesis of AD
(Uddin et al., 2016a). The generation of reactive oxygen species
(ROS) in the brain can be increased due to the Aβ accumulation
and can result in OS, which has found to cause apoptosis of
neurons via the activation of caspases, cysteine-proteases, and
DNA fragmentation (Radi et al., 2014). Fascinatingly, by reducing
the ROS production, genistein (50 µM) exerts antioxidant effect
against Aβ25−35 peptide-mediated OS in PC12 cells. It has also
been found that genistein can mediate this aforementioned effect
via inhibition of the mitochondrial permeability transition pore
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FIGURE 2 | Mechanism of neuroprotective effects of genistein against neuropathological insults of Alzheimer’s disease. In the amyloidogenic pathway, cleavages of
APP by β- and γ-secretases lead to the genesis of Aβ peptides and in the non-amyloidogenic pathway, cleavages of APP by α- and γ-secretases causes the
formation of p3 and AICD. Genistein by activating PKC signaling pathway enhances the non-amyloidogenic pathway of APP cleavage by increasing α-secretase
activity and in the amyloidogenic pathway genistein block the formation of Aβ peptides by reducing γ-secretase. Genistein also reduces tau pathology by blocking
intracellular calcium levels as well as inhibit oxidative stress-mediated neuronal death by inhibiting the ROS release from the mitochondria as well as promote
autophagic clearance of aggregate-prone proteins. APP, amyloid precursor protein; sAPP, soluble APP; CTF, C-terminal fragment; AICD, APP intracellular domain;
ROS, reactive oxygen species.

opening so that the ROS release from the mitochondria can be
averted (Figure 2). The disturbed redox mechanism instigated
by Aβ25−35 is eased by genistein primarily via the activation
of nuclear factor erythroid 2/heme oxygenase-1 (Nrf2/HO-1)
pathway (Ma et al., 2010).

Cerebrovascular disease (CVD) denotes a group of
conditions that primarily disturb the blood supply to the
brain (Hu et al., 2017). Although AD and CVD are not the
same, it is often supposed that CVD coexists with AD (Love and
Miners, 2016). It is recommended based on the evidence that Aβ

deposition might be accelerated due to CVD and further can lead
to AD pathogenesis (Crystal et al., 2014). On the other hand, it
has been observed in several studies that due to the ability of Aβ

to induce OS, it can change the capacity of cerebral endothelial
cells to release the vascular relaxing factors and therefore can
cause damage to the brain (Iadecola and Gorelick, 2003). Thus,
it is expected that antioxidant therapy which can avert the
Aβ-induced OS damage in the cerebrovascular endothelial cells
might provide a protective action against AD. On the other
hand, a study involving treatment of mouse brain endothelial
bEnd.3 cells revealed that genistein (100 µM) can protect the
cerebrovascular endothelial cells against the oxidative damage

triggered by Aβ toxicity, by the maintenance of redox balance
and ROS-scavenging via redox-sensitive signaling pathways. It is
possible that the upregulation of phosphatidylinositol 3-kinase
(PI3K)-mediated Nrf2 signaling might be the process through
which genistein can provide protection to the cerebrovascular
endothelial cells, as upregulation of PI3K and Nrf2, as well as
further translocation of Nrf2 into the nucleus, were noticed in
the endothelial cells (Xi et al., 2012).

Suppression of Mitochondrial Damage
Mitochondrial abnormality is considered as a major pathological
factor which usually takes place as an early AD event and
the linked OS has found to cause neuronal cell death and
degeneration. In case of sporadic AD, it has been found
that Aβ deposition can take place because of mitochondrial
dysfunction, this can further lead to the formation of NFTs and
synaptic degeneration (Moreira et al., 2010). It was also observed
that reduced glutathione/oxidized glutathione (GSH/GSSG)
ratio, mitochondrial membrane potential, and mitochondrial
membrane viscosity can be maintained by genistein. These
aforesaid findings are based on the observed genistein’s (100 µM)
effect on the Aβ-induced damage of mitochondria in PC12 cells.
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On the other hand, one of the targets of genistein for
prevention of mitochondrial membrane potential loss is by
the prevention of mitochondrial permeability transition pore
(mPTP) opening. It has been found that this opening mainly
relies on certain stimuli for example depletion of adenosine
triphosphate (ATP), overload of calcium, and ROS (Xi et al.,
2011). The balance of redox is disrupted by the Aβ in the
neurons; furthermore, Aβ can lead to mitochondrial abnormality
via induction of DNA damage (Mao and Reddy, 2011; Ma
et al., 2013). It has been observed that via GSH:GSSG ratio
upregulation, Aβ-treated mitochondrial ROS accumulation can
be inhibited by the treatment of genistein to the C6 rat
glial cells. In addition, via the regulation of 8-oxoguanine
glycosylase 1 (OGG1, an enzyme involved in the removal of 8-
OHdG) expression and reduction of 8-Oxo-2′-deoxyguanosine
(8-OHdG, an oxidized derivative of deoxyguanosine) levels,
mitochondrial DNA damage in the cells can be prevented by the
genistein (50 µM) treatment (Ma et al., 2013).

Inhibition of Apoptosis
Genistein exerts neuroprotective effects to diverse kinds of
cells against several toxic stimuli. It has been noticed that
via ER activation, genistein abate the neuronal cell death
(Linford and Dorsa, 2002). In a study by Zeng et al. (2004)
reported that genistein ameliorates the cells from Aβ25−35-
induced toxicity at a concentration of 0.1- and 40-µM in
the neuronal cells of hippocampus collected from 1 day old
neonatal Sprague-Dawley rat pups. Interestingly, it has been
found that at both the concentrations, treatment with genistein
caused a decrease in the production of ROS and fragmentation
of DNA in the hippocampal cells, decreased the apoptotic
indicator caspase-3 activation, and reduction in the number of
apoptotic nuclear bodies and condensation of neuronal DNA
(Zeng et al., 2004). It might be deemed that via the calcium
level inhibition, genistein (see Figure 2) might possess an
inhibitory action on the pathology of tau; since the induction
of tau hyperphosphorylation via Aβ peptide is arbitrated via
the enhanced level of calcium. Since at the physiological level
(0.1 µM), the introduction of the antagonist of ER ICI 182,780
to the cells considerably blocked genistein’s effects, therefore
prevention of programmed cell death in the cells by genistein
is supposed to take place through an ER-dependent mechanism
(Zeng et al., 2004).

It has found that Aβ31−35 peptides can cause induction of
apoptosis in the cultured neurons of the rats via damaging the
nuclear DNA integrity, reducing the mitochondrial membrane
potential, and by further triggering bcl-2 downregulation and
upregulation of p53, caspase, and bax (Yu et al., 2009).
Fascinatingly, it has been observed that administration of
genistein (100 µM) caused inhibition of apoptosis in the cells
and also alleviation of caspase-3 upregulation, these phenomena
provide further evidence for the role of genistein in the caspase-
dependent pathway (Yu et al., 2009).

Reduction of Aβ-Induced Neurotoxicity
One of the vital characteristics of AD is excessive neuronal
cell death. Newborn Wistar rats were used to obtain primary

neuronal cells in which genistein’s (100 µM) effect was evaluated
against toxicity induced by Aβ31−35 peptide (Ding et al.,
2011). Interestingly, the elevation of Aβ31−35 peptide-induced
calcium overload and viscosity of the neuronal cells were
found to be reversed due to the treatment of genistein.
Elevated calcium overload and viscosity are the indicators
of reduction in the fluidity of the neuronal membrane, it
has been observed that genistein can reverse the Aβ31−35
peptide-induced fluidity alterations. Furthermore, ROS
production can be reduced by genistein (see Figure 2); the
overproduction of ROS is supposed to stimulate the signal
transduction pathways which can cause cell death. Genistein
was found to provide protection to the mitochondria of
the cells through elevation of the mitochondrial membrane
potential and reduced GSH:GSSG ratio, apart from showing
general protective action in the neuronal cells. It has also
been found that via inhibition of p38 MAPK and HCY-2,
genistein may have a contribution in case of prevention of
Aβ31−35 peptide-mediated toxicity, revealed via expression
analysis of p38 mitogen-activated protein kinases (MAPK)
and homocysteine-induced gene (HCY-2), a marker protein
of apoptosis (Ding et al., 2011). Direct functional interactions
between genistein and homocysteine are confirmed by in vitro
experiment in order to determine the activities of glutathione
peroxidase (GPx) and methylenetetrahydrofolate reductase
(MetF), reconstructed with purified compounds based on
measurement of the growth rate of the cultures of Vibrio
harveyi and Bacillus subtilis (Banecka-Majkutewicz et al., 2017).
The findings obtained from molecular modeling indicated
that homocysteine has the ability to directly interact with
genistein. It has been shown that homocysteine improved
genistein-facilitated inhibition of MetF, on the other hand,
genistein improved homocysteine-facilitated inhibition of GPx
(Banecka-Majkutewicz et al., 2017).

Mitogen-activated protein kinases are protein Ser/Thr kinases
that have a contribution in transferring the extracellular stimuli
into specific cellular responses (Cargnello and Roux, 2011). It
is known that p38MAPK is one of the subfamilies of MAPK. It
has been noticed that upon upstream kinase phosphorylation it
can become an active serine/threonine-protein kinase and found
to cause further phosphorylation of a number of nuclear and
cytoplasmic proteins. In case of AD, available evidence suggests
that p38MAPK has a significant contribution. On the other
hand, for treating AD individuals, inhibitors of p38 MAPK can
be useful (Munoz and Ammit, 2010). Rat fetuses of fourteen
to 15 days old were used to evaluate the action of genistein
against alterations induced by Aβ in p38 MAP kinase. Here the
primary cultures of rat cortical neurons were prepared from
the cerebral cortex. Interestingly, it was noticed that Aβ1−42
toxic peptide-induced cell toxicity was prevented due to the
treatment of the cells with 0.5 µM of genistein for the duration
of 48 h. The ratio of GSSG/GSH and the levels of hydrogen
peroxide and ROS were also found to be reduced by genistein.
Furthermore, aggregation of mitochondria also found to be
prevented by genistein, which otherwise can lead to cell death
induced by caspase cascade. Through the prevention of p38
action, protection of neurons against Aβ-mediated neuronal cell
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death can also be achieved with the treatment of genistein,
revealed by expression analysis of the neurons for p38 MAPK
phosphorylation (Valles et al., 2010).

Downregulation of the
Neuroinflammatory Signaling
Neuroinflammation is mainly facilitated by microglia, shows
a vital role in aging and neurodegeneration (Xia et al.,
2018; Uddin et al., 2019d). In the brain of AD individuals,
it was observed that glial cell activation could be caused
by Aβ (Meda et al., 2001). Moreover, neuroinflammatory
molecules can be secreted by these activated glial cells and
can cause nerve cell damage, which further reveals that
neuroinflammation is observed in the early stages of AD (White
et al., 2005). On the other hand, it has been observed that
pre-treatment with genistein can provide protection against the
Aβ-produced inflammatory mediators [i.e., inducible nitric oxide
synthase (iNOS), cyclooxygenase (COX), interleukin-1β (IL-1β),
and tumor necrosis factor-α (TNF-α)]. These findings were
obtained from the study involving observation of the genistein’s
effect in Aβ (5 µM)-treated astrocytes. Moreover, Aβ-induced
inflammation can also be prevented by the genistein (0.5 µM)
and can lead to delay in the onset and advancement of AD.
It is perceived that genistein-mediated activation of peroxisome
proliferator-activated receptor-gamma (PPAR-γ) primarily cause
this aforementioned effect (Valles et al., 2010). PPAR-γ has
significant contribution in case of inflammatory response
regulation; therefore anti-inflammatory property containing
drugs, which has the ability to play a role as a PPAR-γ agonist,
can cause suppression of the pro-inflammatory actions of Aβ in
AD (Heneka et al., 2011).

Microglial cells are found to be activated via different stress
signals and these microglial cells play a vital role in case of
the inflammatory response (Dheen et al., 2007). In addition,
microglial cells also contain toll-like receptors (TLRs), a specific
type of pattern recognition receptors (PPRs) (Kielian, 2006). In
humans, although several different functional TLRs have been
recognized, among them TLR2 and TLR4 are regarded as most
significant in terms of Aβ-mediated toxicity in AD individuals
(Facci et al., 2015). It has been observed that in the treatment
of the BV-2 cells with the aggregated Aβ25−35 forms caused
enhancement of the expression of TLR2 as well as TLR4 and
also induction of the inflammatory cytokine (i.e., IL-6) release.
Genistein treatment (50 µM) inhibits the inflammatory action
of Aβ25−35 by inducing downregulation of TLR expression.
The aforesaid findings were based on the study involving the
evaluation of genistein’s anti-inflammatory potential in the BV-1
cells (Yu et al., 2013).

In addition, it has been revealed in another study that via
reduction of the expression of inflammatory mediators, for
instance, iNOS and IL-1β; genistein (50 µM) can protect the
BV-1 microglial cells against the Aβ25−35-induced inflammatory
response (Zhou et al., 2014). It is believed that, in the
microglial cells, the anti-inflammatory action of genistein is
arbitrated through the reversal of TLR4 expression (i.e., which is
upregulated by Aβ) and also found to be facilitated due to the

downstream transcription of nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB). On the other hand, in
the cytoplasm, this transcription factor usually occurs in the
inactive form linked with regulatory proteins like p50 and p65.
Interestingly, upon activation, the complex of NF-κB p65 p50 is
found to translocate to the nucleus and can cause induction of
the pro-inflammatory gene expression. It has also been found
that via reversal of the Aβ-induced changes in the expression
of NF-κB p50 and NF-κB p65, genistein can exert its anti-
inflammatory action against Aβ. The action of genistein (50 µM)
against neuroinflammation triggered by Aβ was studied in the C6
cells, in order to assess the genistein’s effect on the regulation
of TLR4/NF-κB signaling pathway. Moreover, via suppression
of the Aβ-induced inflammatory response, the C6 cells were
observed to be protected due to the treatment of genistein. The
aforesaid findings were based on several observations including
a reduction in the levels of NF-κB, TLR4 downregulation, as well
as upregulation of IL-1β, TNF-α, and IκB-α. In addition, through
interfering with the TLR4/NF-κB signaling pathway, another
study has shown that Aβ-induced neuroinflammation can also be
prevented by genistein (Ma et al., 2015).

ANTI-ALZHEIMER’S IN VIVO STUDIES
OF GENISTEIN

Auspicious outcomes have been obtained by means of a
number of pre-clinical assessments of genistein, which further
recommends that genistein might be employed as potential drug
therapy in case of AD treatment.

Improvement of the Spatial Memory and
Learning
Pan et al. (2000) revealed that memory could be improved
through the oral intake of soy phytoestrogens to ovariectomized
retired breeder rats. In an ovariectomized animal model of AD,
the action of dietary soy meal ingestion (10 and 20 g) which
comprised of with and without isoflavones (10 and 20 g) was
assessed in order to evaluate whether postmenopausal dementia
could be improved by the soy isoflavones. In the animals,
learning and spatial memory were improved due to the feeding
of soy meal, which further recommends that soya meal might be
employed in case of AD treatment, as an alternative to estrogen
(Sarkaki et al., 2008). In another study, rats were treated with
a daily attainable high dose (10 mg/kg/day) and a low dose
(1 mg/kg/day) of genistein. The findings revealed that a high
dose of genistein can improve learning and spatial memory in
rats. Nonetheless, treatment of genistein exerts no action on
fear-driven learning and memory (Kohara et al., 2015). In AD
animal model, the protective effect of genistein was evaluated
against the damage of neurons induced by Aβ1−40 (Bagheri
et al., 2011). This study suggested that genistein suggestively
decreased the malondialdehyde content but did not show any
effect on superoxide dismutase (SOD) activity and nitrite content.
The outcomes recommended that pretreatment of genistein
improves Aβ-mediated damage of short-term spatial memory in
rats (Bagheri et al., 2011).
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Upregulation of Antioxidant Activity
Females live longer than males and the incidence of AD is higher
in women as menopause may trigger AD (Janicki and Schupf,
2010; Viña and Lloret, 2010). Oestrogens protect females against
aging by up-regulating the expression of antioxidant, longevity-
related genes as well as mitochondrial toxicity of Aβ (Borrás
et al., 2005; Viña and Lloret, 2010). Interestingly, Borrás et al.
(2005) revealed the estrogen-mediated activation of NF-kB and
MAPK directs expression of antioxidant enzymes, for example,
manganese superoxide dismutase (Mn-SOD) and GPx. In a
different study, the interaction of soy isoflavones with ERs was
analyzed (Morito et al., 2001). It has been observed that binding
affinities of equol, dihydrogenistein, and genistein are found to
be comparable to the binding affinity of 17 beta-estradiol. In
addition, the findings also revealed that genistin normally binds
to the receptors more weakly and cause induction of transcription
less than the genistein, also it can induce the growth of MCF-7
cells more strongly as compared to genistein. Mahn et al. (2005)
reported that on long-term basis feeding of rats with a diet rich in
soy protein during adult life and gestation can result in enhanced
endothelial function, reduced OS, and decreased blood pressure
in aged male offspring. On the other hand, enhanced vascular

reactivity in animals fed a diet rich in soy protein was paralleled
by elevated mitochondrial glutathione and mRNA levels for
endothelial nitric oxide synthase (eNOS) and the antioxidant
enzymes Mn-SOD and cytochrome c oxidase (Mahn et al., 2005).
Interestingly, it has been noticed that genistein can play a role in
a very similar fashion (Figure 3) to that of estradiol to the ER
(Viña and Lloret, 2010). In a study, Ye et al. (2017) have revealed
that genistein might have a neuroprotective function in AD
via regulation of calcium/calmodulin-dependent protein kinase
IV (CAMK4) in order to regulate hyperphosphorylation of tau.
However, in the transgenic Caenorhabditis elegans CL4176 that
expressing human Aβ1−42, treatment of genistein (100 µg/mL)
was found to have no effect on the paralysis induced by Aβ

(Gutierrez-Zepeda et al., 2005). In contrast, in the nematodes,
another major isoflavone glycitein exhibited a protective action.
It is conjectured that glycitein may suppress Aβ toxicity through
combined antioxidative activity and inhibition of Aβ deposition
(Gutierrez-Zepeda et al., 2005).

Prevention of Aβ Aggregation
In the lateral blade of the dentate gyrus region of the brain, the
formation of Aβ aggregation was prevented by the treatment

FIGURE 3 | Mechanism of neuroprotective and antioxidant effects of genistein by interacting with estrogen receptor. Genistein binds to estrogen receptor activates a
signaling pathway leading to phosphorylation of MEK, MAPK and subsequent phosphorylation of IKβ that causes translocation of NFκB and finally upregulating the
expression of antioxidant enzymes. Genistein also abates intracellular calcium levels which leads to the reduction of CAMKK1, CAMK4 activation that leads to
reduction of tau hyperphosphorylation and NFTs formation. MEK, mitogen-activated protein kinase kinase; MAPK, mitogen-activated protein kinase; IKβ, IKβ kinase;
NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells; CAMKK1, calcium/calmodulin-dependent protein kinase kinase I; CAMK4, calcium/calmodulin-
dependent protein kinase IV; NFTs, neurofibrillary tangles.
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of genistein (Bagheri et al., 2012). In addition to the aforesaid
effect, treatment of genistein preserved this region which further
recommends that, via an estrogenic pathway, genistein at a dose
of 10 mg/kg has the capacity to avert the deficits of memory and
learning in the rats injected with Aβ. The passive avoidance test
and the Y maze test have revealed that the treatment of genistein
can recall aspects of memory and learning and also enhance the
short-term spatial recognition memory (Bagheri et al., 2012). It
has also been revealed that that formation of Aβ aggregates can be
prevented by the treatment of genistein to the animals (10 mg/kg)
injected with the Aβ1−40 into the hippocampus of the rats.

Regulation of BACE1 and NEP Actions
In a study, the action of genistein (26 µg/day) was assessed
in a unique double transgenic/knockout APP 23 mice with an
ovariectomy (APP/OVX; with a definite estrogen level in the
brain) and with a genetic deficiency in aromatase (APP/Ar+/−;
with non-detectable estrogen levels in the brain), which revealed
a genetic deficiency of aromatase and decreased level of
endogenous estrogen (Li et al., 2013). Since aromatase can lead
to estrogen synthesis, therefore this enzyme is primarily targeted.
Reduced levels of β-secretase, the formation of plaque, as well
as Aβ42 and Aβ40 were observed in the genistein (26 µg/day)-
treated APP/Ar+/− female mice. On the other hand, neprilysin-2
(NEP2) is a protease which has found to cause Aβ degradation
and can help in protecting against Alzheimer’s. Interestingly, it
has been observed that treatment of genistein elevated NEP2
activity. As like estrogen, genistein might be more effective
in case of AD prevention. The aforementioned phenomenon
was observed when estrogen treatment was compared to the
genistein’s effect. In order to halt the formation of amyloid
plaque, study was also done to evaluate whether late and early
treatment of genistein have an effect or not. In terms of early
treatment, 3 months old female mice were subjected to genistein
treatment and at 12 months of age, brain tissues were assessed
to determine the occurrence of plaques. Furthermore, for both
animals, treatment of genistein has decreased the number of
plaques. In contrast, in terms of late treatment group, treatment
of genistein was introduced at the age of 9 months, when
the plaque has already found to be produced in the brain.
Nonetheless, the formation of the plaque was not reduced
by genistein. Henceforth, genistein treatment is found to be
advantageous if it is introduced at an early age and this genistein
treatment against AD relies on the estrogen level in the brain
(Li et al., 2013).

Activation of Aβ Clearance Pathway
Aβ aggregates are the foremost protagonist in AD (Oddo et al.,
2006). In the CNS of a healthy human being, the Aβ production
rate (i.e., 7.6%) is found to be lower as compared to the rate
of Aβ clearance (i.e., 8.3%) (Bateman et al., 2006). Autophagy
is a mechanism that involves vesicle and lysosome-arbitrated
degradative process. Indeed, autophagy is vital for cellular health
and protein homeostasis (Uddin et al., 2019a). In addition,
autophagy is a vital regulator of clearance and generation of Aβ

(Nilsson and Saido, 2014). Aβ clearance from the brain is another
major target for anti-AD drugs in order to decrease neuronal

death and synaptic defect (Lukiw, 2012; Uddin et al., 2019c). It
has been revealed by Pierzynowska et al. (2019) that genistein can
cause activation of autophagy at the higher dose (i.e., 150 mg/kg
per day; this dose was markedly higher as compared to the
doses used in previous AD studies) in a streptozotocin-induced
rat model of the sporadic AD. In addition to this, they also
observed that at this dose, genistein caused complete degradation
of Aβ and hyperphosphorylated tau by stimulation of autophagy.
Indeed, the behavior was found to be completely corrected (i.e.,
it was identical to healthy animals) in rats which were treated
with a high dose of genistein. Furthermore, this observation
was consistent in case of all the performed behavioral tests
including open field test and locomotor measurements. It was
concluded by the study that the autophagy-dependent process is
accountable for genistein-facilitated reduction of AD pathology
when this soy-derived isoflavone is particularly used at high dose
(Pierzynowska et al., 2019).

Apolipoprotein E (ApoE) is another protein which is also
regarded as a target for AD treatment since this protein is
supposed to have a contribution in case of Aβ clearance
from the brain (Ashraf and Uddin, 2019). Bonet-Costa et al.
(2016) reported cognition and memory-enhancing capacity
of genistein (0.022 mg/kg/day) in APP/presenilin 1 double
transgenic (APP/PS1) AD mouse model. This aforementioned
effect was linked with a reduction of Aβ levels in the brain,
in the number and the area of amyloid plaques as well as
in microglial reactivity. The primary reason for the aforesaid
effect is genistein’s binding with the PPAR-γ moiety of the RXR
(retinoid X receptor)/PPAR-γ dimer receptor. Moreover, from
the astrocytes, ApoE release can be promoted by the genistein’s
binding to the PPAR-γ, therefore recommending the uses of
genistein for AD treatment (Bonet-Costa et al., 2016).

Inhibition of Inflammatory Mediators
Various isoforms of the nitric oxide (NO) generating are raised
in AD representing a role for NO in the pathogenesis (Lüth
et al., 2002; Cau et al., 2012). In the animals, enhancement of
the number of neuronal nitric oxide synthase (nNOS) expressing
cells or enhancement of the intracellular nNOS expression
may lead to increase in nNOS. In addition, in the genistein-
treated animals, increase in nNOS may take place because of
enhanced number of nNOS expressing cells, as genistein can
lead to increase in the number of neurons in the DGlb area
(Bagheri et al., 2012). However, treatment of genistein did not
enhance expression of iNOS or the number of iNOS expressing
cells, as aggregates of Aβ was found to have no action on the
iNOS expression. It has been further revealed by glial fibrillary
acidic protein (GFAP, a protein which is found in the glial
cells) immunostaining that treatment of genistein can cause
alleviation of astrogliosis mediated by Aβ1−40 injection into the
hippocampal area of rats (Bagheri et al., 2012). Astrogliosis has
significant contribution in case of inflammatory process noticed
in AD. A study has assessed the morphological response of the
astrocytes obtained from the Aβ1−40 and genistein (10 mg/kg)-
treated animals. Generally, astrocyte activation can cause the
increased generation of neurotoxic factors, for example, ROS, NO
and cytokines which can ultimately lead to atrophy of the brain
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and neuronal cell death. In the animals, genistein treatment has
found to improve the hypertrophy of the astrocytes triggered by
the Aβ1−40 treatment in the animals (Bagheri et al., 2013).

CLINICAL STUDIES OF GENISTEIN

In a study by File et al. (2001) reported that long-term
and short-term memory could be considerably improved via
the consumption of a high dietary soy diet (100 mg total
isoflavones/day) in healthy young adults of both sexes for
10 weeks. Nonetheless, clinical studies regarding the therapeutic
potential of genistein for AD treatment are still missing. Since
copious promising pre-clinical data on genistein has been
obtained, therefore further clinical studies can be done on
genistein in the future. In addition, molecular interactions of
genistein against the several other biomarkers of AD identified
including complement receptor 1, clusterin, sphingolipids, and
so on will further aid for better comprehension of the genistein’s
disease-modifying action against AD (Devi et al., 2017).

CONCLUSION

Several studies confirmed the neuroprotective actions of
genistein on Aβ and tau peptide-triggered neuronal death. It has
also been observed that genistein by activating PKC signaling
pathway upregulates the α−secretase as well as downregulates
β−secretase activities and in that way inhibits the formation of

neurotoxic Aβ. Genistein could protect cerebrovascular oxidative
damage by the activation of the Nrf2 signaling pathway by
modulating PI3K activity. Genistein inhibits the ROS release
from the mitochondria as well as block tau hyperphosphorylation
by reducing intracellular calcium. Moreover, genistein can
cause activation of autophagy to eliminate degradation of
hyperphosphorylated tau and Aβ in the brain. Genistein could
also bind to ER and causes upregulation of antioxidant enzymes
and alleviation of tau pathology through regulating CAMK4.
In fact, the neuroprotective effects of genistein are mediated by
increasing antioxidant enzymes, reducing ROS, and suppression
of mitochondrial toxicity, neuroinflammation, and apoptosis.
Therefore, it can be summarized that genistein treatment
might abate the pathogenic events of AD, which recommended
further studies.
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