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Innate immune signaling and programmed cell death are intimately linked, and
many signaling pathways can regulate and induce both, transcription of inflammatory
mediators or autonomous cell death. The best-characterized examples for these dual
outcomes are members of the TNF superfamily, the inflammasome receptors, and
the toll-like receptors. Signaling via the intracellular peptidoglycan receptors NOD1
and NOD2, however, does not appear to follow this trend, despite involving signaling
proteins, or proteins with domains that are linked to programmed cell death, such as
RIP kinases, inhibitors of apoptosis (IAP) proteins or the CARD domains on NOD1/2. To
better understand the connections between NOD signaling and cell death induction, we
here review the latest findings on the molecular regulation of signaling downstream of
the NOD receptors and explore the links between this immune signaling pathway and
the regulation of cell death.
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ACTIVATION OF THE NOD PATHWAY

Pattern Recognition Receptors
Sensing of pathogen-associated molecular patterns (PAMPs) is the initiating step in an efficient
immune reaction to a bacterial, viral or parasitic threat. The intracellular receptors nucleotide-
binding oligomerization domain-containing protein 1 and 2, NOD1 and NOD2, are members
of the pattern recognition receptors (PRR) and recognize intracellular bacterial peptidoglycans.
The PRR family consists of a range of cytoplasmic or transmembrane stress sensors that recognize
PAMPs and damage-associated molecular patterns (DAMPs).

PRRs are divided into two main groups based on their cellular localization: the
transmembrane/endosome-associated PRRs, consisting of toll-like receptors (TLRs) and C-type
Lectin receptors, and the cytosolic PRRs which are further divided into the RIG-1-like receptors,
AIM2-like receptors and the NOD-like receptors (NLRs) (Bertin et al., 1999; Inohara et al., 1999;
Ogura et al., 2001b). NLRs are characterized by a central 300–400 amino acid long NACHT domain
(also referred to as the NOD or NBD domain) that has predicted nucleoside-triphosphatase activity
and facilitates its oligomerization. On the C-terminus, NLRs bear multiple leucine-rich repeats
(LRRs) that mediate ligand sensing (Figure 1).

The NLRs consists of four subfamilies, based on the nature of their N-terminal effector domain:
The NLRC subfamily is characterized by one or multiple N-terminal caspase activation and
recruitment domains (CARDs) that allow direct interaction with other CARD-containing proteins.
Among the NLRCs, NOD1 and NOD2 represent the two best characterized members and are
sensors of intracellular bacterial peptidoglycan (Girardin et al., 2003a,b). The NOD1 and NOD2
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FIGURE 1 | Domain architecture of NOD-like receptors. NLRs are composed of C-terminal leucine-rich repeats (LRR), an intermediate nucleotide-binding-domain
(NACHT) and variable N-terminal protein-protein interaction domains that divide NLRs into different protein subfamilies: NLRCs contain one to two caspase
activation and recruitment domains (CARD). NLRBs contain multiple baculovirus inhibitor of apoptosis protein repeats (BIR). NLRAs contain at least one acidic
transactivating domain (AD) and the NLRP subfamily harbors a pyrin domain (PYD).

pathways have been associated with a range of autoimmune
disorders, most prominently with inflammatory bowel disease
(IBD). Single nucleotide polymorphisms (SNPs) in the NOD2
gene were the first identified genetic risk factors associated with
Crohn’s disease (CD) (Hugot et al., 2001; Ogura et al., 2001a).

The second key member of the NLR family are the NLRPs,
which are best known for their role in the formation of
large oligomeric complexes, the inflammasomes. Inflammasomes
mediate the processing, activation and secretion of pro-
inflammatory cytokines as well as the induction of pyroptosis
through the recruitment and activation of caspase-1 (Martinon
et al., 2009). NLRPs contain an N-terminal pyrin domain (PYD)
that is also known as a “death fold,” which is evolutionary related
to the death domain (DD) found in cell death-inducing receptors
including Fas, TNFR1 and TRAIL R-1 and R-2 (Fairbrother et al.,
2001). The two smaller subfamilies of NLRs are NLRA and NLRB.
The NLRA (A for acidic transactivating domain) subfamily
only includes one member, class II major histocompatibility
complex transactivator (CIITA), that serves as an activator of
MHC class II antigen presentation (Nickerson et al., 2001).
Members of the NLRBs [B for baculovirus inhibitor of apoptosis
protein repeat (BIR)] have one or multiple N-terminal BIR
domains. The approximately 70 amino acid zinc-binding BIR
domain was first identified through sequence homology among
proteins belonging to the Inhibitors of Apoptosis (IAP) family
and is mostly recognized for its role in promoting cell survival
(Silke and Meier, 2013).

Expression of NOD Receptors
NOD1 and NOD2 both recognize building blocks of bacterial
peptidoglycans and share identical downstream signaling
pathways. One important difference between these two
PRRs is their distinct expression pattern: NOD1 is broadly

expressed in a variety of cells including epithelial cells,
stromal cells and endothelial cells (Inohara et al., 1999;
Park et al., 2007b). In contrast, the expression of NOD2 is more
restricted and highest in the hematopoietic compartment, most
prominently in cells of myeloid origin such as monocytes
(Ogura et al., 2001b), dendritic cells and macrophages
(Pashenkov et al., 2010). Furthermore, expression of NOD2
has also been demonstrated in hematopoietic cells of lymphoid
origin including B cells (Petterson et al., 2011), CD4+ and
CD8+ T cells (Caetano et al., 2011; Lin et al., 2013) and
regulatory T cells (Kerns et al., 2009). Notably, NOD2 is
also expressed by various epithelial cell types, particularly in
Paneth cells located within the ileum of the intestinal tract
(Uehara et al., 2007).

Basal expression levels of NOD1 and NOD2 are generally low
but can be induced by various immunomodulators. In intestinal
epithelial cells, interferon-gamma (IFN-γ) (Rosenstiel et al.,
2003), tumor necrosis factor-alpha (TNF-α), lipopolysaccharide
(LPS) (Kim Y.G. et al., 2008), 1,25-dihydroxycholecalciferol
(Wang et al., 2010), and butyrate (Leung et al., 2009) have been
shown to induce the upregulation of NOD2 mRNA. Additionally,
we and others observed that IFN-γ increases NOD2 protein
levels in bone marrow-derived macrophages and is required for
an effective cytokine response after stimulation with the NOD2
ligand muramyl dipeptide (MDP) (Nachbur et al., 2015; Fekete
et al., 2017; Stafford et al., 2018).

Once expressed, NOD1 and NOD2 reside in the cytosol
and localize to bacterial entry sites at the plasma membrane
(Barnich et al., 2005; Kufer et al., 2008). Both receptors constantly
interact with the actin cytoskeleton, which facilitates their
rapid relocalization upon stimulation (Legrand-Poels et al.,
2007). More recent studies indicate that NOD1 and NOD2
are associated with early endosomes that serve as assembly
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platforms for NOD signaling complexes (Irving et al., 2014;
Nakamura et al., 2014).

Expression levels of NOD1 and NOD2 are held in check
through constant degradation by the proteasome. This is
counteracted by several chaperones including HSP90, SGT1
(Correia et al., 2007; Mayor et al., 2007; Lee et al., 2012) and
HSP70 (Mohanan and Grimes, 2014) which bind and stabilize
NOD proteins. Their importance for NOD signaling has been
demonstrated using small molecule inhibitors that decrease
NOD2 ligand-dependent activation.

A candidate E3 ubiquitin ligase that was shown to ubiquitinate
NOD2 and target it for proteasomal degradation is TRIM27
(Zurek et al., 2012). NOD2 was shown to be modified with
K48-linked ubiquitin chains after overexpression of TRIM27 in
HEK293T cells while siRNA-mediated knockdown of TRIM27
led to the stabilization of NOD2 protein levels. Recently,
NLRP12 was shown to indirectly regulate NOD2 protein levels
in monocytes. NLRP12 activation leads to the sequestering of
HSP90, which in turn promotes K48-linked ubiquitination and
degradation of NOD2 in response to MDP. The significance
of NLRP12 as a regulator of NOD2 signaling was highlighted
by the finding that LPS-primed NLRP12-deficient mice are
highly susceptible to secondary challenge by bacterial MDP
(Normand et al., 2018).

Canonical Activation of NOD1 and NOD2
Upon its discovery, various groups reported that NOD1
is activated by lipopolysaccharides (LPS) and mediates the
activation of NF-κB in a MyD88-independent manner (Girardin
et al., 2001; Inohara et al., 2001; Kobayashi et al., 2002). However,
through the use of ultra-pure LPS, and synthetic NOD ligands,
it has become clear that NOD1 and NOD2 sense distinct
monomeric peptidoglycan (PGN) fragments: NOD1 is activated
by γ-D-glutamyl-meso-diaminopimelic acid (DAP), a PGN
fragment that is present in the cell wall of all Gram-negative and
certain Gram-positive bacteria (Chamaillard et al., 2003; Girardin
et al., 2003a). NOD2 recognizes muramyl dipeptide (MDP), a
PGN fragment found in both Gram-negative and Gram-positive
bacteria (Girardin et al., 2003b; Inohara et al., 2003).

Multiple mechanisms of how MDP and DAP are transported
into the cytosol to activate NOD1/2 have been reported. In
agreement with a role of NODs as sensors of intracellular
bacterial infections, NOD1 activation during infection has
first been reported with the facultatively intracellular pathogen
Shigella flexneri (Girardin et al., 2001). Moreover, extracellular
DAP can be delivered to the cytosol by type III and IV secretion
systems, for instance in Helicobacter pylori (Viala et al., 2004),
or through bacterial outer membrane vesicles (OMVs). OMVs
are small secreted vesicles derived from the outer membrane of
Gram-negative bacteria that are able to penetrate the intestinal
mucus layer and interact with epithelial cells (Sanchez et al.,
2010). Only recently it has been shown that OMVs from probiotic
and commensal strains of Escherichia coli can be endocytosed
by intestinal epithelial cells where they colocalize with NOD1
and trigger its aggregation. OMVs are therefore important
contributors to the maintenance of the intestinal homeostasis
(Canas et al., 2018). On the other hand, there is substantial

findings that OMVs from pathogenic bacteria contribute to their
virulence, for instance of Neisseria gonorrhoeae, Pseudomonas
aeruginosa (Kaparakis et al., 2010), Salmonella enterica (Yoon
et al., 2011), Brucella abortus (Pollak et al., 2012), and Legionella
pneumophilia (Jager et al., 2015; Jung et al., 2016).

Further mechanisms of how NOD ligands translocate to
their intracellular receptors include passive transport through
oligopeptide transporters such as SLC15A1 (Vavricka et al.,
2004; Ismair et al., 2006), or active transport processes such
as phagocytosis of live or fragmented bacteria or through
epithelial junction transfer (Kasper et al., 2010). In accordance
with the localization of NODs to endosomes, endocytosis
is another important entry route for NOD ligands (Lee
et al., 2009; Marina-Garcia et al., 2009). Certain cell types,
in particular dendritic cells express the endosomal peptide
transporters SLC15A3 and SLC15A4, that facilitate this process
(Nakamura et al., 2014).

Once in the cytoplasm, PGN binds to NOD1/2 and induces
a downstream signaling cascade resulting in the induction
of a transcriptional response. In silico modeling of human
and zebrafish NOD2 indicated a hydrophobic pocket on the
concave face of the LRR as a putative binding site of MDP
to NOD2 (Tanabe et al., 2004; Maharana et al., 2014). This
was validated using information gathered from the rabbit
NOD2 crystal structure, where mutating amino acids within the
hydrophobic core of the LRR reduced, respectively abolished
MDP-dependent NF-κB activation (Maekawa et al., 2016). Using
surface plasmon resonance (SPR), Grimes et al. provided the
first biochemical evidence that MDP bound directly to NOD2
with a relatively high affinity (KD = 51 nM) (Grimes et al.,
2012). Interestingly, the affinity of MDP to NOD2 was pH-
dependent and highest in the pH range from 5.0 to 6.5. This
data suggests that in vivo binding could occur in an acidic
cellular compartment, for instance in endosomes. Due to the
high degree in sequence homology, ligand binding of NOD1 is
believed to occur in a similar manner, however a crystal structure
that could confirm this theory is still missing. Nevertheless,
direct interactions between the NOD1 LRR domain and several
agonists, such as TriDAP (L-Ala-D-isoGlu-meso-DAP) have been
demonstrated (Laroui et al., 2011). Notably, in their assay, the
NOD1 ligand TriDAP bound the NOD1 LRR domain with a
KD of 34.5 µM, which raises questions about the physiological
relevance of TriDAP.

But how is ligand binding triggering the assembly of the
NOD signaling complex? It was difficult to draw conclusions
about the mode of action of signaling complex assembly
from early models of NOD1 and NOD2, which were based
on the crystal structures of homologous receptors such as
apoptotic protease-activating factor 1 (Apaf-1) (Riedl et al., 2005;
Proell et al., 2008). The recently published crystal structure
of NOD2 provides a more detailed view on how structural
changes impact on ligand binding and signal transduction.
Under steady-state conditions, NOD2 remains in an inactive,
closed conformation with tightly packed subdomains by ADP-
mediated inter-domain interactions (Maekawa et al., 2016).
Ligand binding to the LRRs and the exchange of ADP for
ATP triggers the unfolding of the protein and stabilizes it
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in an active conformation (Maekawa et al., 2016). NOD2
oligomerizes via its NOD and CARD domains and recruits
RIPK2 to form a hetero-CARD complex (Kobayashi et al., 2002;
Fridh and Rittinger, 2012). Recent work showed that multiple
RIPK2 monomers can then bind via homotypic CARD-CARD
interactions to form fibrillar protein assemblies, termed higher-
order signalosomes (Gong et al., 2018; Pellegrini et al., 2018).
Single amino acid mutations in the CARD domain of RIPK2 that
disrupt its oligomerization shut down MDP-dependent NF-κB
responses (Pellegrini et al., 2018). Similar structures have been
reported in other innate immune signaling pathways such as
in the NLRP3, ASC, caspase-1 inflammasome (Lu et al., 2014)
and are believed to facilitate and regulate signal transduction
(Wu, 2013).

Non-canonical Activation of NOD2
While activation of the NOD pathways through PGN stimulation
is well documented, there are more recent reports of activation
through PGN-independent pathways. Keestra-Gounder et al.
(2016) observed that systemic pro-inflammatory responses
triggered by thapsigargin and by infections with the ER-
stress-inducing bacterium Brucella abortus are blunted in
NOD1/2-deficient mice. The underlying mechanisms are
still largely unclear, however, experiments conducted with
a dominant-negative form of TRAF2 suggested that this
process is TRAF2-dependent. The ER stress sensor IRE1
and TRAF2 have been previously shown to interact in
overexpression studies and in yeast-two-hybrid screenings
(Urano et al., 2000) and this interaction could link NF-
κB and MAPK activation with stress pathways (Kaneko
et al., 2003). Furthermore, earlier studies suggested that
members of the TRAF family interact with the adaptor
protein RIPK2, which functions downstream of NOD1 and
NOD2 activation (Thome et al., 1998). NOD2 contains a
predicted TRAF2-binding motif in its nucleotide-binding
oligomerization domain (Schneider et al., 2012) and could
therefore function as the link between ER stress and
inflammatory signaling. A recent study confirmed that
thapsigargin induces NOD-dependent pro-inflammatory
signaling, although this was due to the compound’s inhibition
of the sarcoplasmic or endoplasmic reticulum calcium ATPase
family (SERCA), which is responsible for Ca2+ movement
into the ER and cellular Ca2+ regulation (Molinaro et al.,
2019). Thapsigargin-induced depletion of Ca2+ within the
ER led to a rise in intracellular Ca2+ levels and enhanced
both Ca2+ internalization and endocytosis. This endocytosis
led to internalization of trace peptidoglycan contaminants
in the cell culture grade FCS, which was confirmed using
mass spectrometry.

Several pathogenic scenarios also point toward PGN-
independent activation of the NOD pathway. Neuropathic pain,
mediated by an inflammatory reaction of peripheral macrophages
in mice that underwent nerve injury, results in the activation
of the NOD2 pathway without the evident involvement of
bacterial components (Santa-Cecilia et al., 2019). Furthermore,
increased levels of phosphorylated RIPK2, a hallmark of NOD1/2
pathway activation, has been detected in neoplastic tissue of

triple-negative breast cancer patients (Mertins et al., 2016). Also
in this scenario, it is not directly evident that NOD pathway
activation is a direct result of bacterial components and it will
be interesting to further investigate the mode of activation in
these tissues. It has to be noted though that secreted bacterial
components such as OMVs could well be the underlying factor
for these apparently non-canonical forms of activation of the
NOD pathway.

Signaling Downstream of NOD2
Activation
Binding of PGN to NOD1/2 and subsequent recruitment
of RIPK2 results in the ubiquitination of RIPK2 and the
recruitment of downstream effector proteins including
the IKK complex and TAK1 (Park et al., 2007a; Kim
J.Y. et al., 2008; Figure 2). The exact role of ubiquitin
ligases and the consequence of RIPK2 ubiquitination
will be discussed later. RIPK2 ubiquitination ultimately
leads to the activation of key transcription factors such
as NF-κB and AP-1. Synchronized activation of both
transcription factors is required for the transcriptional
response, as interference with the timing of activation using
a RIPK2 inhibitor resulted in a reduced cytokine response
(Nachbur et al., 2015).

Among the strongest induced genes downstream of NOD
activation are immunomodulatory cytokines, such as TNF,
IL-1β, IL-6, and CC-chemokine ligand 2 (CCL2/MCP-1)
(Kobayashi et al., 2005; Gilmore, 2006; Conforti-Andreoni
et al., 2010). Transcriptomic profiling of MDP stimulated
macrophages revealed a specific gene set downstream of
NOD2 compared to general inflammatory stimuli (Tigno-
Aranjuez et al., 2014). Members of this set are preferentially
involved in immune functions, nucleotide regulation, and
cell metabolism. In endothelial cells and Langerhans cells,
stimulation with MDP resulted in enhanced IL-6 production
and the Th17-differentiation of T cells within the skin (Manni
et al., 2011), suggesting that the transcriptional response
downstream of NOD stimulation varies considerably between
cell types.

While the major outcomes of the NOD1 and NOD2 pathway
primarily occur via the activation of NF-κB transcription factors
and cytokine production, NOD1 and NOD2 activation can also
lead to autophagy induction to clear a bacterial threat. This is
in line with NOD2 localization at early endosomes, and the role
of NOD1/2 in intestinal homeostasis. Activated NOD has been
shown to interact with the autophagy protein ATG16L1 at the
site of bacterial entry, although whether RIPK2 is involved in
this process is under debate. Two studies show the involvement
of RIPK2 in autophagy induction (Cooney et al., 2010; Homer
et al., 2010), while a third study observed autophagy induction
occurring in the absence of RIPK2 (Travassos et al., 2010).
However, the studies agree on the observation that autophagy
induction is independent of NF-κB, using both infection models
as well as purified ligands. Induction of autophagy downstream
of NOD activation can have implications in several pathological
conditions, particularly in Crohn’s diseases where mutations in
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FIGURE 2 | Anti-bacterial signaling mediated by NOD2. Within the family of NLRs, NOD2 represents a particularly well-studied receptor that is activated by binding
to the peptidoglycan fragment MDP in the cytosol and at endosomal membranes. NOD2 recruits the adaptor molecule receptor-interacting serine/threonine-protein
kinase 2 (RIPK2) through CARD-CARD interactions to form large polymers that facilitate the activation of downstream kinases and lead to the initiation of immune
modulatory transcriptional responses through AP-1 and NF-κB transcription factors. RIPK2 is regulated through polyubiquitination by multiple E3 ubiquitin ligases
including X-linked inhibitor of apoptosis protein (XIAP) and the linear ubiquitin chain assembly complex (LUBAC) and by phosphorylation of serine and
tyrosine residues.

the autophagy protein ATG16L1 are among the highest genetic
risk factors to develop the disease.

RIPK2, THE MEDIATOR OF NOD
SIGNALING

RIPK2 Is a Member of the RIP Kinase
Family
As mentioned above, RIPK2 is the central adaptor kinase in the
NOD pathway. RIP kinases represent a class of serine/threonine
kinases that play essential roles in the regulation of innate
immune signaling. Their functions depend on the highly
conserved N-terminal kinase domains and distinct C-terminal
interaction motifs. Amongst the RIP kinases, RIPK1 and RIPK3
are the best-characterized members, which are being extensively
studied due to their involvement in cell death and their role in
chronic diseases and cancer. RIPK1 contains a C-terminal death

domain (DD) that mediates direct binding to death receptors of
the TNF receptor superfamily members including TNFR1, Fas,
and TRAIL, and to adaptor proteins such as FADD or TRADD.
Upon binding, oligomeric protein complexes are formed that can
regulate survival or cell death. Under specific conditions, RIPK1
associates with RIPK3 through their RIP homotypic interaction
motif (RHIM) to activate the pseudokinase mixed lineage kinase
domain-like (MLKL) to induce necroptosis, a pro-inflammatory
form of programmed cell death (Silke et al., 2015).

Receptor-interacting serine/threonine-protein kinase 2
(RIPK2) represents the next best-characterized member of the
RIP kinase family. Compared to RIPK1 and RIPK3, RIPK2
does not have a RHIM or a DD and is therefore unable
to interact with these death receptor complexes. RIPK2 is
composed of an N-terminal kinase domain, an intermediate
domain of unknown function, and a C-terminal CARD that
mediates binding to NOD1/2 via homotypic CARD-CARD
interactions (Inohara et al., 1998; McCarthy et al., 1998;
Thome et al., 1998). Structural data of the kinase domain
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(Canning et al., 2015; He et al., 2017; Hrdinka et al., 2018;
Suebsuwong et al., 2018) and the CARD of RIPK2 (Lin et al.,
2015; Goncharuk et al., 2018) have recently been revealed. The
kinase domain shows a typical kinase fold with the catalytic
center located between a smaller N- and a larger C-lobe.
The C-terminal CARD of RIPK2 displays typical features of
a protein from the death domain family, but unlike other
CARDs or death domains, the CARD of RIPK2 contains an
additional sixth helix. The intermediate domain of RIPK2
is thought to be unstructured and highly flexible, however,
posttranslational modifications in this domain upon stimulation
could suggest so far unappreciated involvement in RIPK2s
signaling function.

RIPK2 is indispensable for NOD-mediated activation of the
NF-κB and MAPK pathways and its recruitment to NOD2 occurs
via CARD-CARD interaction (Girardin et al., 2001; Park et al.,
2007a; Magalhaes et al., 2011). An acidic patch in the NOD1
CARD forms the primary binding interface with basic residues
in the RIPK2 CARD. Using mutational analysis and pulldown
experiments, Manon et al. (2007) identified three acidic residues
(E53, D54, E56) in helix 3 of the NOD1 CARD and three basic
residues (R444, R483, R488) in the RIPK2 CARD as the key
mediators of the NOD1-RIPK2 interaction. A more recent study
proposed that two additional residues in RIPK2 (K443, Y474) are
required for NOD1 binding (Mayle et al., 2014).

The NOD2-RIPK2 interface differs from that between NOD1
and RIPK2. Overexpression of both NOD2 CARDs is required
for a constitutive NF-κB response (Ogura et al., 2001b). Even
though the two CARDs of NOD2 do not act independently,
the N-terminal NOD2 CARD (CARDa) is solely responsible
for binding to RIPK2 (Fridh and Rittinger, 2012). In contrast
to the interaction between NOD1 and RIPK2, the NOD2-
RIPK2 interaction motif is made of two basic residues in the
NOD2 CARDa (R38, R86) and a set of acidic residues on the
RIPK2 CARD (D461, E472, D473, E475 and D492). Intriguingly,
direct interaction between NOD2 and RIPK2 has so far only
been described using recombinant proteins or in overexpression
experiments, which suggests that under physiological conditions
the NOD-RIPK2 interaction is either highly transient or unstable.

Structure and Function of RIPK2
RIPK2 was originally identified as a serine-threonine kinase
based on sequence homology (Inohara et al., 1998; McCarthy
et al., 1998; Thome et al., 1998), but was later reclassified
as a dual-specificity kinase that is also able to phosphorylate
tyrosine residues (Tigno-Aranjuez et al., 2010). Although the
importance of RIPK2 as the central player in NOD signaling
has been demonstrated, the function of its kinase activity is
still under debate. The active state of the kinase domain is
dictated by an invariant lysine within the N-lobe (K47), which
contacts and supports ATP. This interaction is supported by the
formation of a salt bridge within the middle of the αC-helix
(Kornev and Taylor, 2010).

The only substrate of RIPK2 that has been described so far,
is RIPK2 itself. Upon activation by dimerization via the CARD
domains of NOD1/2, RIPK2 autophosphorylates on S176 in
the activation loop of the kinase domain (Dorsch et al., 2006)

and on Y474 in its CARD (Tigno-Aranjuez et al., 2010). In
overexpression systems, mutation of either of those residues
decreased RIPK2’s ability to induce downstream signaling.

By comparing the phosphorylation profiles of wild-type
RIPK2 vs. catalytically inactive mutants (K47A and D164N),
it was observed that besides S176, multiple additional serine
residues within the activation loop can be phosphorylated
(Pellegrini et al., 2017). More phosphorylated residues have
been discovered in large-scale proteomic screenings, however,
their functional relevance remains to be evaluated (Daub et al.,
2008; Oppermann et al., 2009). In vitro auto-phosphorylation
assays indicated that catalytically inactive mutants could still
be phosphorylated by purified full-length RIPK2, suggesting
that autophosphorylation occurs in trans (Pellegrini et al.,
2017), which requires strong interactions between two or
multiple RIPK2 molecules. In line with this theory, biophysical
measurements suggested that the active state RIPK2 is a
stable dimer whilst the inactive kinase is in a monomer-
dimer equilibrium. Supporting this, recently published crystal
structures display the phosphorylated form of RIPK2 as a
side-by-side dimer, suggesting that dimerization plays a critical
role in kinase activation (Tigno-Aranjuez et al., 2010; Tigno-
Aranjuez et al., 2014; Canning et al., 2015; Charnley et al., 2015;
Nachbur et al., 2015; Haile et al., 2016).

While the ability of phosphorylation by RIPK2 was clearly
demonstrated, it is still under debate whether the kinase
function is required for NOD signaling. On the one hand side,
studies utilizing overexpression of RIPK2 suggested that the
kinase activity of RIPK2 is dispensable for NF-κB activation
and cytokine production altogether. The catalytically dead
mutants of RIPK2 (K47A and D146N) could still activate NF-
κB signaling, although this occurred independently of NOD2
engagement with MDP (Inohara et al., 1998; Thome et al.,
1998; Eickhoff et al., 2004; Hrdinka et al., 2018). On the
other hand side, bone marrow-derived macrophages (BMDMs)
from a kinase-dead (K47A) knock-in mouse were defective in
signaling (Nembrini et al., 2009). However, kinase-dead RIPK2
was only expressed at very low levels, which could be the
reason for deficient NOD signaling in this system and suggests
that RIPK2’s kinase activity is required for protein stability
rather than being an intrinsic requirement for NOD signaling.
Recent studies also re-raised questions about the importance
of the regulatory autophosphorylation sites S176 and Y474.
Overexpression of RIPK2 mutants in HeLa cells showed that
wild-type RIPK2 and the S176A mutant resulted in similar
amounts of cytokines following infections with S. flexneri, while
the S176E mutant resulted in reduced cytokine levels (Ellwanger
et al., 2019). In contrast, cytokine production was completely
abolished in cells expressing the RIPK2 Y474F mutant. The
importance of Y474 for signal transduction was also highlighted
in two recent studies that utilized cryo-EM to solve RIPK2
structures. Y474 was found to sit at a critical interface in
the CARD and to mediate intermolecular interactions during
RIPK2 polymerization, which was shown to be essential for
NF-κB activation. Thus, it is not surprising and explains that
a tyrosine to phenylalanine mutation disrupts RIPK2 activity
(Gong et al., 2018; Pellegrini et al., 2018).
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RIPK2 Ubiquitination and Scaffolding
While the importance of the kinase activity of RIPK2 remains
somewhat dubious, it has become clear that its ubiquitination
is a critical determinant of downstream signaling. Ubiquitin is
a small, 8.5 kDa protein that can be covalently attached via
its C-terminus to lysine residues of target proteins or to the
N-terminus of one of the seven lysine residues of a substrate-
attached ubiquitin. The diverse biological outcomes of protein
ubiquitination are dependent on the complex interplay between
the sites of the ubiquitination, chain length, chain type, chain
branching as well as posttranslational modifications on ubiquitin
itself (Komander and Rape, 2012; Swatek and Komander, 2016).

Within the NOD signaling pathway, RIPK2 is the key
substrate for this process. Upon NOD activation, multiple
ubiquitination events have been described on RIPK2, which
are required to induce the activation of NF-κB and MAPK
pathways. Ubiquitination was first observed to regulate the
NOD1 and NOD2 pathways in studies that utilized over-
expression of RIPK2 and Mycobacterium tuberculosis infections
in macrophages. RIPK2 was stably ubiquitinated, and this
ubiquitination was required for optimal cytokine production
(Hasegawa et al., 2008). These results led to several subsequent
studies and today it is widely accepted that polyubiquitin chains
on RIPK2 serve as binding platforms for downstream signaling
proteins that are vital for the activation of NF-κB and MAP
kinases. The key events downstream of RIPK2 ubiquitination
are the recruitment of the NF-κB-activating IkB kinase (IKK)
complex composed of IKKα, IKKβ and NEMO (Inohara et al.,
2000; Yang et al., 2007; Hasegawa et al., 2008), TGF-β activated
kinase (TAK1), which is recruited via the two ubiquitin-binding
scaffold proteins MAP3K7-binding protein 2 and 3 (TAB 2 and 3)
(Kanayama et al., 2004) and the linear ubiquitin chain assembly
complex (LUBAC), which is composed of a catalytic subunit
HOIP and the two regulatory subunits HOIL-1 and SHARPIN
(Gerlach et al., 2011).

IAPs: Critical E3 Ligases of RIPK2
So far K48, K63, M1 and more recently K27 ubiquitin linkages
have been reported on RIPK2 (Damgaard et al., 2012; Panda and
Gekara, 2018). Accordingly, an increasing number of E3 ligases
and DUBs have been described to regulate the RIPK2 ubiquitin
network (Figure 3). Screenings for ubiquitinated lysines within
the kinase domain of RIPK2 suggested that ubiquitination of
K209 is essential for signaling, and a RIPK2 K209R mutant was
unable to activate NF-κB (Hasegawa et al., 2008).

A critical family of E3 ligases regulating NOD signaling are the
IAPs. Cellular IAP1 and -2 (cIAP1/cIAP2), as well as X-linked
IAP (XIAP), have all been reported to regulate NOD signaling
(Bertrand et al., 2009; Krieg et al., 2009). The IAPs represent
a group of cell death regulators and were initially described
as caspase inhibitors, however, only XIAP is able to inhibit
caspases at physiologically relevant concentrations. cIAPs, in
turn, regulate cell death indirectly via their E3 ligase activity
(Yang and Li, 2000). IAPs are defined by the presence of up to
three approximately 70 amino acids long motifs called baculoviral
IAP repeats (BIRs) (Birnbaum et al., 1994), which can mediate

protein-protein interactions. Moreover, cIAP1, cIAP2, and XIAP
contain a ubiquitin-associated domain (UBA) for binding to
polyubiquitin chains and a really interesting new gene (RING)
domain that provides E3 ligase activity (Silke and Vucic, 2014).
The role of cIAP1 and cIAP2 in regulating TNF receptor signaling
complexes is well-established: cIAPs directly ubiquitylate RIPK1
to facilitate activation of MAPK and canonical NF-κB pathways
(Mahoney et al., 2008; Varfolomeev et al., 2008).

The first evidence that the cIAPs play a role in NOD signaling
occurred in 1998. In HEK-293T cells overexpressed cIAPs co-
immunoprecipitated with overexpressed RIPK2 (Thome et al.,
1998). Bertrand et al. (2009) later showed that mice deficient in
cIAP1 and cIAP2 had significantly reduced cytokine production
in response to MDP injection compared to wild-type mice.
Overexpression and pulldown experiments in HEK293T cells
also suggested that cIAP1 and cIAP2 bind to and ubiquitinate
RIPK2 independently of their CARD domains. However the role
of the cIAPs in NOD signaling is controversial and we and
other groups subsequently observed that removal of cIAP1/2
had no significant impact on signaling immediately downstream
of NOD2 (Damgaard et al., 2012, 2013; Stafford et al., 2018).
The discrepancy between the blunted cytokine response to MDP
in vivo in cIAP1 and cIAP2-deficient mice but normal signaling
in ex vivo stimulated BMDMs can be explained by a secondary
autocrine loop that drives cIAP-dependent NF-κB and MAPK
activation through TNFR1 (Stafford et al., 2018).

While recent studies argue against a critical role of cIAPs
in NOD signaling, XIAP has emerged as a critical mediator
of RIPK2 ubiquitylation and NOD signaling. The addition of
K63-linked ubiquitin chains on RIPK2 is dependent on XIAP
(Krieg et al., 2009; Damgaard et al., 2012). Using mouse and
human cell lines devoid of XIAP, it was shown that XIAP is
an indispensable component of the NOD signaling pathway
and is required for the majority of ubiquitination on RIPK2.
SPR recently revealed a direct interaction between the RIPK2
kinase domain and the BIR2 of XIAP (Goncharov et al., 2018).
Consistently, IAP antagonists specifically targeting XIAP’s BIR2
disrupted this interaction, and impair RIPK2 polyubiquitination
and downstream activation of MAPK and NF-κB pathways
(Goncharov et al., 2018; Hrdinka et al., 2018). Adding to
the first discovered ubiquitination site K209, Goncharov et al.
also described further XIAP-dependent ubiquitination sites
(K410/K538) on RIPK2 that, when mutated, reduce NF-κB
activation and cytokine production.

Other E3 Ligases and Deubiquitinases in
the NOD Pathway
Ubiquitination of RIPK2 by XIAP is a vital step for subsequent
recruitment of LUBAC (Damgaard et al., 2012), which is the
only protein complex described so far to have the ability to add
linear ubiquitin chains to substrates (Fiil et al., 2013; Tokunaga,
2013). It is not entirely clear whether linear ubiquitin chains are
added on a previously non-ubiquitinated lysine residue of RIPK2,
or as branching on a pre-existing ubiquitin chain. Cells lacking
LUBAC subunits fail to fully activate NF-κB, which highlights the
importance of LUBAC for efficient NF-κB and MAPK activation
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FIGURE 3 | RIPK2 ubiquitination regulates NF-κB and MAPK activation by NOD1 and NOD2. Upon ligand binding to NOD1 or NOD2, RIPK2 is rapidly ubiquitinated
with K63- and M1-linked polyubiquitin chains. The K63-specific E3-ligase XIAP and the Linear-Ubiquitin Assembly Complex (LUBAC) have been shown to be
essential for downstream responses including activation of NF-κB and MAPK pathways in vitro and to induce robust PGN-dependent immune responses in vivo.
Other E3 ligases are able to bind and ubiquitinate RIPK2 such as cellular inhibitor of apoptosis protein-1 and protein-2 (c-IAP1 and c-IAP2), pellino3, itchy E3
ubiquitin protein ligase (ITCH), TNF receptor associated factor 2, 5, and 6 (TRAF2, TRAF5, and TRAF6) and zinc and ring finger 4 (ZNRF4). Deubiquitinases
negatively regulate NOD signaling by removing ubiquitin from RIPK2. Amongst them are A20, OTU deubiquitinase with linear linkage specificity (OTULIN), ubiquitin
carboxyl-terminal hydrolase CYLD, and histone H2A deubiquitinase MYSM1.

after NOD2 stimulation, possibly by recruiting and facilitating
activation of the IKK complex.

Additional E3 ligases that mediate ubiquitination of RIPK2 to
positively regulate NOD signaling have been reported: The TNF
Receptor Associated Factors (TRAF) -2, -5, and -6, which are
key adaptors in the TNFR1 signaling pathway contain a RING
domain with E3 ligase activity. All three of these proteins have
been linked to NOD signaling (Xie, 2013). So far there is no
evidence for E3 ligase activity of TRAF2 and TRAF5 during
NOD signaling, however, TRAF6 has been reported to directly
contribute to RIPK2 ubiquitination. The knockdown of TRAF6
by siRNA in HEK293T cells reduced ubiquitination of RIPK2
and the induction of NF-κB following NOD2 stimulation (Yang
et al., 2007). In another study, TRAF6 was not required for NOD
signaling since TRAF6-deficient mouse embryonic fibroblasts
(MEFs) still activated NF-κB and MAP kinases in response to
NOD1 agonists (Hasegawa et al., 2008).

The E3 ligase Pellino3 was identified as another positive
regulator of the NOD2 pathway, by mediating K63-linked
ubiquitination of RIPK2. BMDMs from Pellino3-deficient mice
displayed a lower activation of NF-κB and MAPK pathways and
produce fewer cytokines after stimulation with MDP (Yang et al.,
2013). Of note, the authors found a lower expression of Pellino3
protein in the colons of patients with Crohn’s disease, supporting
the theory that Pellino3 is an important mediator of NOD2
signaling in the gut.

E3 ubiquitin-protein ligase Itchy homolog (ITCH) was also
reported to be a direct E3 ligase for RIPK2, by adding K63-
linked ubiquitin chains in in vitro ubiquitination assays and
pulldown experiments (Tao et al., 2009). BMDMs from ITCH
knock-out mice failed to ubiquitinate RIPK2 and had reduced
activation of NF-κB and MAPK pathways and consequently
reduced expression of NF-κB target genes after MDP-stimulation.

More recently, ZNRF4 was identified as a negative regulator
of NOD2-dependent NF-κB activation in a genome-wide

RNAi screening in HEK293T cells. ZNRF4 induced K48-linked
ubiquitination of RIPK2 and promoted RIPK2 degradation.
Moreover, ZNRF4 knockdown macrophages produced higher
amounts of pro-inflammatory cytokines in response to MDP
and ZNRF4 knockdown mice displayed reduced tolerance to
secondary exposure to MDP and L. monocytogenes (Bist et al.,
2017). To sum up, these data suggest that ZNFR4 could be part
of a negative feedback loop to turn off prolonged and aberrant
NOD2 signaling after pathway activation.

The removal of ubiquitin by linkage-specific DUBS fine-tunes
NOD1 and NOD2 signaling. A20 was the first DUB identified
to negatively regulate NOD2 signaling by cleaving non-K48-
linked ubiquitin chains (Hitotsumatsu et al., 2008). OTULIN
was shown to limit M1-linked ubiquitination of RIPK2 and
antagonize LUBAC after NOD2 activation and subsequent NF-κB
and MAPK signaling (Fiil et al., 2013). The ubiquitin carboxyl-
terminal hydrolase CYLD targets both M1- and K63-linked
ubiquitin linkages to limit NOD2 signaling (Hrdinka et al.,
2016). Panda et al. showed that RIPK2 is also ubiquitinated
with atypical K27-linked chains and Histone H2A deubiquitinase
MYSM1 is a DUB that specifically removes K27-, K63- and M1-
specific chains to dampen NOD2 signaling. Supporting a role in
NOD signaling, MYSM1-deficient mice injected intraperitoneally
with MDP exhibited higher recruitment of neutrophils to the
peritoneum and peripheral organs (Panda and Gekara, 2018).

SIGNALING OUTCOMES OF NOD
ACTIVATION

NOD2 Signaling and Disease
Inflammatory bowel disease, particularly Crohn’s disease, is the
most commonly associated pathology associated with NOD2
signaling (Caruso et al., 2014; Philpott et al., 2014). However
there is compelling evidence that deregulated NOD1/2 signaling
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is associated with inflammation-associated diseases such as
early-onset sarcoidosis, uveitis, neuropathic pain, rheumatoid
arthritis or solid cancers (Caruso et al., 2014; Kim et al., 2016) and
more recently with allergic asthma (Miller et al., 2018) and type
2 diabetes mellitus (T2DM) (Amar et al., 2011; Schertzer et al.,
2011; Denou et al., 2015; Cavallari et al., 2017). Most of these
disease associations have been reviewed extensively elsewhere
(Kanneganti et al., 2007; Chen et al., 2009; Philpott et al., 2014;
Mukherjee et al., 2019), and we focus here briefly on the most
recent understanding of how NOD signaling can contribute to
IBD or T2DM.

A clear hot spot for NOD2 related pathologies is the intestinal
tract. The two key players in NOD2 signaling, NOD2 and
RIPK2 are both highly expressed in intestinal epithelial cells
as well as in resident immune cells in the gut. NOD2 seems
to have an important role in gut homeostasis as there is
evidence that NOD2 directly regulates colonic epithelial cell
growth and survival. Nevertheless, NOD2-deficient mice do
not have intestinal inflammation and display normal myeloid
and lymphoid cellularity in the gut, at least in the absence of
stimulation (Kobayashi et al., 2005). However NOD2-deficient
mice do have reduced clearance upon oral or intragastric bacterial
challenge (Kim et al., 2011). In vitro, primary colonic epithelial
cells induced cell death in response to treatment with the
NOD2 ligand MDP, while cells from NOD2-deficient mice were
protected and shRNA-mediated knockdown of NOD2 in human
colonic carcinoma cells resulted in increased levels of apoptosis
(Cruickshank et al., 2008).

Several studies show an intimate link between NOD signaling
and TLR signaling in the gut: NOD2 can significantly inhibit
TLR4 signaling in enterocytes of the neonatal small intestine
resulting in marked protection from the induction of TLR4-
dependent apoptosis (Richardson et al., 2010). Furthermore,
NOD2-deficient mice have exacerbated antigen-specific colitis
that is dependent on TLR2 function (Watanabe et al., 2006).
Subsequently it was shown that NOD2 protects in mouse models
of experimental colitis via a cross-tolerance mechanism that
dampens TLR responses (Hedl et al., 2007; Watanabe et al., 2008;
Hedl and Abraham, 2011b), which relies on the induction of
interferon regulatory factor 4 (Watanabe et al., 2014).

In experimental models of type 2 diabetes mellitus (T2DM),
alterations in the intestinal barrier lead to increased intestinal
permeability and translocation of PAMPs to the bloodstream,
a phenomenon named metabolic endotoxemia (Cani et al.,
2007). It is a well-established concept, that chronic exposure
to low levels of bacterial components in the plasma, such as
LPS or MDP, promotes inflammation and contributes to the
development of hepatic insulin resistance. Therefore, it is not
surprising that NOD1 and NOD2 agonists have been identified
as modulators of insulin sensitivity. Intriguingly, the activation
of either NOD1 or NOD2 leads to different outcomes in mouse
models of T2DM: NOD1/2 double-knockout mice (Schertzer
et al., 2011) and NOD1 knockout mice (Amar et al., 2011)
were protected from HFD-induced insulin resistance. This effect
was due to the role of NOD within immune cells, as bone
marrow chimeras using bone marrow from NOD1-deficient
mice transplanted into wild-type mice were protected against

glucose and insulin tolerance (Chan et al., 2017). Unlike NOD1-
knockout mice, animals deficient in NOD2 showed no protection
to insulin resistance during HFD and even had increased
adipose tissue and liver inflammation as well as exacerbated
insulin resistance (Denou et al., 2015). Accordingly, injections
of mice with the NOD2 ligands MDP and Mifamurtide reduced
insulin resistance in mouse models of HFD-induced obesity
and insulin resistance after endotoxic shock, while the NOD1
ligand FK565 worsened glucose tolerance (Cavallari et al., 2017).
This divergence between the roles of NOD1 and NOD2 could
be explained by the differential tissue and cellular distributions
of the receptors.

Pharmacological Inhibition of the NOD2
Pathway
Given the involvement of NOD2 and RIPK2 in a range of
diseases, inhibition of RIPK2 could have an application in
inflammatory diseases driven by dysregulated NOD signaling
pathways. Kinase inhibitors with significant activity toward
RIPK2 are already approved for clinical use, such as the multi-
tyrosine kinase inhibitor ponatinib and the EGFR inhibitor
gefitinib (Canning et al., 2015). Over the last years, significant
efforts have been put towards the development of more specific
RIPK2 inhibitors and multiple compounds have been successfully
tested in mice. Two groups independently developed highly
specific RIPK2 inhibitors, that could efficiently block cytokine
production in vivo after intraperitoneal administration of MDP
(Goncharov et al., 2018; Hrdinka et al., 2018). Furthermore,
a specific RIPK2 inhibitor WEHI-345, was used to protect
against the onset of paralysis in the experimental autoimmune
encephalomyelitis (EAE) model for multiple sclerosis (Nachbur
et al., 2015). These experiments also showed that even though
RIPK2 kinase inhibitors bind into the ATP-binding pocket
and block its kinase activity, their real mode of action is by
blocking NOD signaling through disruption of the RIPK2-
XIAP interaction. Lastly, GlaxoSmithKline has tested their RIPK2
kinase inhibitor GSK-559 in Phase 1 clinical trials for IBD,
however, they have recently terminated their RIPK2 program.

An alternative approach to inhibit the NOD pathway is to
antagonize the critical E3 ligases IAPs. However, compounds that
target cIAPs and XIAP are not tolerated in the clinic as they
induce an inflammatory response in vivo (Lawlor et al., 2015).
Until recently, all reported compounds with activity toward XIAP
were pan IAP inhibitors (Condon et al., 2014). Recently new
compounds that only target XIAP have been developed and could
be promising tools to block NOD signaling without inducing cell
death (Goncharov et al., 2018). Similar to RIPK2 inhibitors, these
new compounds antagonize NOD signaling by disrupting the
RIPK2-XIAP interaction.

IS NOD SIGNALING LINKED TO CELL
DEATH?

As discussed in detail above, signaling downstream of NOD1/2
harbors many proteins and protein domains that are closely
associated with cell death signaling. A link between NOD
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signaling and cell death induction seemed therefore likely ever
since NOD signaling was studied.

NOD1, NOD2, and RIPK2 harbor one or multiple highly
conserved CARDs, which are known to recruit caspases, the
key mediators of apoptosis. It is therefore not surprising that
all these proteins have initially been associated with caspase
binding and with programmed cell death. Indeed, overexpression
studies with NOD2 showed that it could bind to multiple caspases
via its CARD, and was able to directly activate caspase-9 and
induce apoptosis (Inohara et al., 1999). This was attributed to the
analogy to Apaf-1, the well-characterized activator of caspase-9
in the intrinsic apoptosis pathway. Similarly, NOD1 was able to
directly activate Caspase-9 in a RIPK2-dependent manner. This
was somewhat surprising as also RIPK2 was shown to interact
with Caspase-9, but not to activate it. It was therefore suggested
that RIPK2 needs to interact with NOD1 for caspase-9 activation
(Bertin et al., 1999).

An indirect link between NOD signaling and apoptosis
was suggested in early studies on RIPK2, which showed that
overexpressed RIPK2 could potentiate CD95-induced apoptosis
via caspase-8 and caspase-10 (Inohara et al., 1998). ATP binding
to RIPK2 was critical for this function as the mutation of
K38 resulted in reduced cell death after CD95L stimulation.
Notably, RIPK2 also interacted with various members of the
death receptor machinery, including cellular FLICE (FADD-like
IL-1β-converting enzyme)-inhibitory protein (c-FLIP), cIAP1
and cIAP2 and members of the TNFR-associated factor (TRAF)
family (Thome et al., 1998). These findings suggested that
RIPK2 may play a role in the regulation of cell death,
which was supported by experiments conducted in MCF-7
breast carcinoma cells, where overexpression of RIPK2 induced
apoptosis (McCarthy et al., 1998). The cell death-inducing
function of RIPK2 was dependent on the CARD and could be
blocked with the caspase inhibitor zVAD.

The strongest evidence that suggests direct involvement of
NOD signaling pathways in regulating caspase functions stem
from observations that NOD1 and NOD2 can induce IL-1β

through NF-κB and MAPK pathways in multiple human and
mouse cell populations, including myeloid-derived cells (Li et al.,
2004; Watanabe et al., 2004; Abraham and Cho, 2009). Moreover,
there is evidence that NOD2 directly activates caspase-1 in certain
cell lines (Damiano et al., 2004; Ferwerda et al., 2008; Hsu
et al., 2008; Marina-Garcia et al., 2008). In human monocyte-
derived macrophages (MDMs), activation of NOD2 leads to rapid
IL-1β processing and autocrine signaling, a process that was
essential for robust cytokine production (Hedl and Abraham,
2011a). The authors measured early MAPK activation, which
was dramatically reduced by blocking IL-1β signaling and by
inhibiting caspases using zVAD. Since the effects were visible
already before transcription, translation, and secretion of IL-1β

would be expected to occur, a model where NOD2 stimulation
activates caspase-1, leading to the rapid processing of preformed
pro-IL-1β, which in turn mediates early MAPK activation was
suggested (Hedl and Abraham, 2011a).

A surprising finding was presented later, when it was shown
that Bid, a well-characterized pro-apoptotic member of the Bcl2
family, was shown to be required for NOD signaling, as cells and

mice deficient in Bid were not able to react to MDP (Yeretssian
et al., 2011). However this finding was refuted shortly after
(Nachbur et al., 2012) and Bid has since not been linked to NOD
signaling, nor has it come up in screens for regulators of the NOD
signaling pathway (Warner et al., 2014).

While there seems to be no direct link between NOD signaling
and apoptosis, there is a strong link between NOD signaling
and autophagy, the disassembly of damaged or unnecessary
cellular components, that can result in death. In the context
of NOD signaling, autophagy is more likely to be a cellular
defense mechanism for bacterial clearance rather than a cell
death mechanism.

Taken all together, initial experiments that linked NOD
signaling with cell death could not be confirmed when
endogenous protein levels and physiological ligands were used in
later experiments. While overexpression studies are an important
tool to determine molecular mechanisms of cell signaling, it has
become clear that one has to be cautious when assessing the
effects of overexpressed proteins on cell death. The last decade
has seen many advances in establishing the links between innate
immune signaling pathways and cell death, using mainly myeloid
cells and relevant ligands. It has become clear that the link
between NOD signaling and cell death is not as straight forward
as initially thought, despite the indisputable involvement of cell
death-related proteins and cell death-promoting domains.

CONCLUSION AND PERSPECTIVES

The title of this research topic is “Connecting the dots between
inflammatory signaling and the working of cell death.” Here
we have dissected the molecular mechanisms of signaling
downstream of the intracellular PGN receptors NOD1/2. We
have found that a critical point of difference between the NOD
pathway and other innate immune signaling pathways is its
failure to connect these dots. This is somewhat surprising.
Not only do most inflammatory signaling pathways directly or
indirectly induce cell death, but also have early studies implicated
that activation of the NOD signaling pathway results in caspase
activation and apoptosis. The development of new reagents and
model systems has led to studies using endogenous proteins and
specific means to stimulate the NOD pathways, as well as the use
of relevant cell types. This is in contrast to earlier studies that
were largely based on overexpression of members of the NOD
pathway. In these newer work, the initial findings that NOD1/2
activation leads to any form of cell death could not be confirmed.

So what is different between the NOD pathway and other
cell death-inducing inflammatory pathways? One reason could
be that the NOD pathway is not exclusively pro-inflammatory
at all. The best evidence is the strong association of NOD2
mutations with Crohn’s disease: These are prominently loss of
function mutations within NOD2, suggesting that NOD signaling
has an anti-inflammatory role. Conversely, hyperactivation of
the NOD pathway is described in other inflammatory diseases
and elevated RIPK2 activation, a hallmark of NOD signaling,
is observed in many pathologies, intriguingly also in patients
with IBD. Therefore, the NOD pathway rather plays an
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immunomodulatory role, rather than a pro-inflammatory. A cell
that induces inflammation needs to be shut down rapidly to avoid
hyperactivation of an inflammatory response, and a potent way
to do so is to induce programmed cell death in this cell. If NOD
signaling is, however, not as inflammatory at all, there is no
need to self-destruct and hence the missing link between NOD
signaling and cell death.

Despite the missing link between cell death and NOD
signaling, this pathway has emerged as an important contributor
to human pathologies. Therefore, significant efforts have been
put toward better understanding the molecular mechanisms of
NOD signaling. The focus for the development of therapeutics
interfering with NOD signaling has been the kinase RIPK2,
and several ATP competitive inhibitors have been developed
by commercial and academic entities. The most recent data
show convincingly, however, that the kinase activity of RIPK2
is dispensable for downstream signaling, and the critical role of
RIPK2 is its scaffolding function in the pathway. Therefore, the
understanding of protein-protein interactions and the ubiquitin

network on RIPK2 and other members of the NOD pathway is
pivotal for the development of novel therapeutics in this space.
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