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The p140Cap adaptor protein is a scaffold molecule physiologically expressed in few
epithelial tissues, such as the mammary gland, and in differentiated neurons. While
the role of p140Cap in mammary gland epithelia is not still understood, we already
know that a significant subset of breast cancers express p140Cap. In the subgroup
of ERBB2-amplified breast cancers, a high p140Cap status predicts a significantly
lower probability of developing a distant event and a clear difference in survival.
p140Cap is causal in dampening ERBB2-positive tumor cell progression, impairing
tumor onset and growth, and counteracting epithelial mesenchymal transition, resulting
in decreased metastasis formation. Since only a few p140Cap interacting proteins
have been identified in breast cancer and the molecular complexes and pathways
underlying the cancer function of p140Cap are largely unknown, we generated a
p140Cap interactome from ERBB2-positive breast cancer cells, identifying cancer
specific components and those shared with the synaptic interactome. We identified
373 interacting proteins in cancer cells, including those with functions relevant to
cell adhesion, protein homeostasis, regulation of cell cycle and apoptosis, which are
frequently deregulated in cancer. Within the interactome, we identified 15 communities
(clusters) with topology-functional relationships. In neurons, where p140Cap is key in
regulating synaptogenesis, synaptic transmission and synaptic plasticity, it establishes
an extensive interactome with proteins that cluster to sub complexes located in
the postsynaptic density. p140Cap interactors converge on key synaptic processes,
including synaptic transmission, actin cytoskeleton remodeling and cell-cell junction
organization. Comparing the breast cancer to the synaptic interactome, we found 39
overlapping proteins, a relatively small overlap. However, cell adhesion and remodeling
of actin cytoskeleton clearly emerge as common terms in the shared subset. Thus, the
functional signature of the two interactomes is primarily determined by organ/tissue and
functional specificity, while the overlap provides a list of shared functional terms, which
might be linked to both cancer and neurological functions.
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INTRODUCTION

p140Cap/SNIP (Chin et al., 2000; Di Stefano et al., 2004) is
a scaffolding protein encoded by the SRCIN1 gene, and is
localized in epithelial tissues (Damiano et al., 2010), such as the
mammary gland, and in dendritic spines (Jaworski et al., 2009).
In the normal human breast, p140Cap is expressed selectively
in luminal cells of alveoli, whereas no staining is detectable
in ductal epithelial cells or myoepithelial cells (Damiano et al.,
2010). Although its role in the mammary gland is not yet well
established, an oncosuppressive role for p140Cap in breast cancer
has been already proven. p140Cap immunohistochemistry (IHC)
on a large cohort of invasive breast cancers indicate that positive
p140Cap status was associated with good prognosis markers,
such as negative lymph node status, estrogen and progesterone
receptor-positive status, small tumor size, low grade, and low
proliferative status. Positive p140Cap status was also associated
to breast cancer molecular subtypes, being expressed in >85% of
Luminal A tumors, 77% of Luminal B, and only 56% of triple-
negative tumors (Grasso et al., 2017). In patients with ERBB2-
amplified breast cancer, a p140Cap-positive status associates with
a significantly lower probability of developing a distant event,
and a clear difference in survival (Grasso et al., 2017). A well-
characterized model of ERBB2-dependent breast carcinogenesis
is the NeuT mouse (Muller et al., 1988; Boggio et al., 1998).
The NeuT endogenous tumors do not express p140Cap, thus
representing a patient with low or undetectable expression of
p140Cap. We have already generated a transgenic mouse model
in which p140Cap is specifically expressed in the mammary
gland, and we crossed these mice with the NeuT mice. Consistent
with the data obtained in the human breast cancer cohort, the
double transgenic mice p140Cap-NeuT attenuates the phenotype
of NeuT tumors in vivo, resulting in the development of smaller
and lower grade mammary carcinomas (Grasso et al., 2017).
Moreover, we also set-up an additional, transplantable primary
model, the NeuT-TUBO (Rovero et al., 2000). Consistent with
the transgenic model, the lack of p140Cap expression in these
cells renders them suitable to address whether p140Cap gain
of function may affect tumorigenic phenotype. Indeed, p140-
TUBO cells limits tumor cell growth upon transplantation, with
a significantly reduced number of spontaneous lung metastases
(Grasso et al., 2017). Overall, p140Cap dampens ERBB2-positive
tumor cell progression, impairing tumor onset and growth,
and counteracting epithelial mesenchymal transition, resulting
in decreased metastasis formation (Di Stefano et al., 2007;
Cabodi et al., 2010; Grasso et al., 2017).

The specific role of p140Cap in curbing the aggressiveness
of ERBB2-amplified breast cancers may rely on its ability to
impinge on specific molecular pathways. Amongst the functions
of the p140Cap adaptor, is its ability to bind and regulate Src
kinase activation, shifting the balance of active to inactive Src
(Di Stefano et al., 2007). p140Cap impairs adhesion-dependent
integrin signaling (Di Stefano et al., 2007), as well as E-cadherin
dependent cell-cell adhesion, which results in a suppression
of the scattering properties of breast and colon cancer cells
(Damiano et al., 2010). The ability to down-regulate Src kinase
activity was also observed in physiological conditions, in crude

mouse synaptosomal fractions (Repetto et al., 2014), indicating
that this pathway is common to both cancer cells and neurons.
Interestingly, in ERBB2 transformed cells, p140Cap exerts a
suppressive function on migratory and invasive features, with
a negative regulatory impact on the molecular pathways that
ERBB2 exploits for tumor progression, such as the Tiam1/Rac
GTPase axis (Grasso et al., 2017).

Previous work from our laboratory and others indicates that
in neurons, in physiological conditions, p140Cap has a key role
in regulating synaptogenesis, synaptic transmission and synaptic
plasticity (Jaworski et al., 2009; Tomasoni et al., 2013; Repetto
et al., 2014). Acute down-regulation of p140Cap in primary
hippocampal neurons reduces the number of mushroom spines
and proportionally increases the number of dendritic filopodia
(Jaworski et al., 2009; Tomasoni et al., 2013); a defect in synaptic
maturation that can also be observed in p140Cap knockout (KO)
mice (Repetto et al., 2014).

The assembly of multi-protein complexes (interactomes) is
key for triggering signaling mechanisms key for the execution
of basic biological functions. Several examples come from the
assembly of signaling complexes regulating cell migration and
proliferation, in which PPIs are built around adaptor proteins.
These complexes may localize at either the plasma membrane
level, bringing membrane receptors into close proximity of
cellular components, or in the cytoplasm, or in specific organelles.
Molecular interactomes in cells and tissues may be interrogated
using mass spectrometry (MS) combined with bioinformatics
data and analyses. To study protein complexes that underlie
cell organization and its functions, the data from interactome
studies is often represented via static undirected PPI Networks.
Clustering algorithms and parameters can be used to identify
heterogeneous communities within the network, which share
topological properties. These communities often form “modules”
of proteins that functionally co-operate in specific pathways.
Gene-disease and gene-functional annotation data can then
be annotated onto those clusters to test functional/disease
enrichment of the clusters. This can be used to predict
new candidate genes to be associated with known diseases
(Mclean et al., 2016).

Although p140Cap has been shown to recruit and regulate
specific signaling molecules both in breast cancer cells and
in healthy neuronal synapses, the molecular complexes and
pathways underlying p140Cap function in pathological and
physiological conditions are largely unknown. Recently, in a
neuronal context, we reported 351 p140Cap interacting proteins
that were isolated by co-immuno precipitation from mouse
synaptosomes (Alfieri et al., 2017). We showed that those
proteins were involved in key synaptic processes, including
transmission across chemical synapses, actin cytoskeleton
remodeling and cell-cell junction organization. Furthermore, we
found strong association of those proteins with neurological
diseases, such as schizophrenia, autism, bipolar disorder,
intellectual disability, and epilepsy.

Here we exploited the transplantable primary NeuT cell
model, NeuT-TUBO and p140-TUBO cells (Grasso et al.,
2017), to capture the p140Cap molecular complexes and to
pinpoint interactions crucial for regulation of ERBB2-positive
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cancer-specific features. Using biochemical and proteomic data,
and bioinformatics tools, we were able to provide a first
comprehensive analysis of the specific p140Cap PPI network in
NeuT/ERBB2 breast cancer cells.

Even though cancer cells and neurons are quite different,
there is growing evidence that metastatic cancer cells could
implement signaling mechanisms common to those used in the
homeostasis of synaptic growth/plasticity (Heine et al., 2015). We
then compared the p140Cap cancer interactome with the synaptic
one, revealing that p140Cap does participate in some common
pathways in the two distinct cellular contexts, which may underlie
shared biological mechanisms between neurons and tumor cells.
To our knowledge this is one of the first examples of an adaptor
protein that participates to biological complexes that are either
specific for organs and tissues, or overlapping to both cancer and
neurological functions.

MATERIALS AND METHODS

Isolation, Identification, and Validation of
p140Cap Interactome in Cancer Cells
ERBB2 Breast Cancer Cell Model
TUBO cells are a transplantable primary breast cancer NeuT cell
model from the BALB/c background. Upon infection with empty
or p140Cap retroviruses, we generated NeuT-TUBO (as control
cells), and p140-NeuT-TUBO cells, as described in Grasso et al.
(2017) (hereafter called mock and p140 cells). Mock and p140
cells were cultured in DMEM 20% FBS. Culture media were from
Invitrogen (Carlsbad, CA, United States). Fetal Calf serum (FCS)
was from EuroClone (Pero, Milano, Italy).

p140Cap Immunoprecipitation
p140Cap antibodies were cross-linked to protein G Dynabeads
(Invitrogen, Carlsbad, CA, United States) as described in Alfieri
et al. (2017). p140Cap Mab-coupled Dynabeads were incubated
with 9 mg of cell extracts from NeuT-TUBO and p140-TUBO
cells, grown at 80% confluency and extracted with Lysis buffer
(150 mM NaCl, 50 mM Tris pH 7.4, 1% NP-40, 1 mM MgCl2. 5%
glycerol) for 2 h at 4◦C. Beads were washed five times with cold
lysis buffer, then resuspended in 45 µl of 2% SDS-PAGE sample
buffer in reducing conditions and incubated at 70◦C for 10 min.
From this 1/9 of the sample was used for Coomassie staining, 1/9
for Western blot analysis of p140Cap to assess the quality of the
immunoprecipitation, and 7/9 was used for MS analysis.

Mass Spectrometry-Based Proteomic Analyses
IPs eluate proteins were stacked in the top of a SDS-PAGE
gel to be able to treat the whole sample in a single band, and
in-gel digested using modified trypsin (Promega, sequencing
grade) as previously described (Alfieri et al., 2017). Resulting
peptides were analyzed by online nanoLC-MS/MS (UltiMate
3000 and LTQ-Orbitrap Velos Pro, Thermo Scientific). For
this, peptides were sampled on a 300 µm × 5 mm PepMap
C18 precolumn and separated on a 75 µm × 250 mm C18
column (PepMap, Thermo Scientific). MS and MS/MS data
were acquired using Xcalibur (Thermo Scientific). Peptides and

proteins were identified and quantified using MaxQuant, version
1.5.8.3 (Tyanova et al., 2016). Spectra were searched against the
Uniprot database (Mus musculus taxonomy, May 2017 version)
and the frequently observed contaminants database embedded in
MaxQuant. Trypsin was chosen as the enzyme and two missed
cleavages were allowed. Peptide modifications allowed during
the search were: carbamidomethylation (C, fixed), acetyl (Protein
N-ter, variable) and oxidation (M, variable). Minimum peptide
length was set to seven amino acids. Minimum number of
peptides, razor + unique peptides and unique peptides were
all set to 1. Maximum false discovery rates (FDR) - calculated
by employing a reverse database strategy - were set to 0.01 at
peptide and protein levels. The matching between runs option
was activated. The MS proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository
(Vizcaino et al., 2016) with the dataset identifier PXD008778.

Statistical analysis was performed using ProStaR (Wieczorek
et al., 2017). In this protocol, iBAQ values were used to be
able to compare those results with those previously obtained
on p140Cap interactome in synaptosome (Alfieri et al., 2017).
Proteins identified in the reverse and contaminant databases,
proteins only identified by site, proteins identified with only 1
peptide and proteins exhibiting less than 3 iBAQ values in one
condition were discarded from the list. After log2 transformation,
iBAQ values were normalized by median centering before
missing value imputation (replacing missing values by the
2.5 percentile value of each column); statistical testing was
conducted using limma t-test. Differentially interacting proteins
were sorted out using a log2 (fold change) cut-off of 1 and a
FDR threshold on remaining p-values of 1% using the Benjamini-
Hochberg method.

Antibodies
Specific mouse monoclonal antibody (Mab) against p140Cap
(clone 2A8) was produced at the MBC, University of Torino,
as previously described (Di Stefano et al., 2007; Repetto et al.,
2013).The antibodies used are as follow: mouse monoclonal
antibodies to anti p140Cap (1:500), anti E-Cadherin (1:1000),
anti Erbb2 (1:1000), anti Vimentin (1:1000) and polyclonal
rabbit anti Skt (1:1000) from the Antibody production facility
of the Dept of Molecular Biotechnology and Health Sciences,
University of Torino; anti α-Catenin (#3236, 1:1000), anti
δ-Catenin (#34989, 1:1000), anti TECPR1 (#8097, 1:1000)
from Cell Signaling, Beverly, MA, United States; anti Iqgap1
(sc-10792, 1:500) from Santa Cruz Biotechnology, Palo Alto,
CA, United States; anti β-Catenin (cat.no 6101531, 1:1000)
from BD transduction Laboratories, Franklin Lakes, NY,
United States; anti Talin (ab11188, 1:1000) from Abcam,
Cambridge, United Kingdom. Mouse and Rabbit IgGs were
purchased from Santa Cruz Biotechnology. Secondaries
antibodies anti-mouse and anti-rabbit were purchased from
Sigma-Aldrich Co., Italy.

Western Blot
Western blots were performed with Mini-PROTEAN R©TGXTM

Precast Gels from Bio-Rad (California 94547 United States)
gradient 4–15% Gels were transferred onto Nitrocellulose
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blotting membrane (GE Healthcare Life Sciences) using Towbin
buffer (25 mM Tris, 192 mM Glycine, 20% Methanol).
Membranes were blocked with Tris–buffered saline TBS (50 mM
Tris ph7–150 mM NaCl) with 5% Milk for 1 h at room
temperature, incubated with primary and secondary antibodies as
indicated below, and then developed with Bio-Rad’s Clarity ECL
on ChemiDoc Touch Imaging System (Biorad). For Western blot,
30 ug of protein extract were used.

BIOINFORMATIC ANALYSES OF MS
DATA

Building the Protein-Protein Interaction
Network and Clustering
p140Cap networks were constructed from 373 proteins for
the cancer interactome and from the previously published
351 proteins for the synaptic interactome. Protein-protein
interactions were obtained by mining publicly available
databases: BioGRID (Chatr-Aryamontri et al., 2015), IntAct
(Kerrien et al., 2012) and DIP (Salwinski et al., 2004). The first
two are gold standard PPI repositories, and were used together
with DIP because they are defined to the same standardized
format (i.e., PSI-MI), which provides a way to filter for a set of
“direct and physical” human interactions obtained in experiment
- interactions not predicted or inferred. Our set of PPIs was
constructed then, by selecting only those MI Ontology terms
which are related to “direct and physical” interactions. We
also included interactions (in our set) from BioPLEX, since the
BioPlex PPIs are already deposited in the Intact and BioGRID
databases. The largest connected component of each network
was split into a set of communities by use of five clustering
algorithms. Those included the Modularity –maximization based
algorithms: agglomerative random walk (wt) (Pons and Latapy,
2006), the coupled Potts/Simulated Annealing “SpinGlass”(sg)
(Reichardt and Bornholdt, 2006; Traag and Bruggeman, 2009),
and the divisive spectral based fine tuning (Spectral) (Mclean
et al., 2016), and Non-Modularity based algorithms, including
information-theoretic based “InfoMAP” algorithm (infomap)
and the Mixed-Membership Stochastic Blockmodel “SVI”
(Gopalan and Blei, 2013).

Function and Disease Enrichment and
Annotation
Throughout this study, overrepresentation of annotation
terms (disease, function, etc.) was estimated by use of the
hypergeometric distribution to test whether the number of
selected proteins is larger than would be expected by chance:

p = 1−
k−1∑
i=0

(M
i
) (N−M

n−i

)
(N

n
) ,

where N is a total number of proteins in the background
distribution, M is the number of genes within distribution that
are annotated to the term of interest, n is the size of the list of
genes of interest and k is the number of genes within the list,

which are annotated to the term. Obtained p-values were adjusted
for multiple testing by Bonferroni correction at 0.05 (∗), 0.01 (∗∗)
and 0.001 (∗∗∗).

Enrichment analysis for functional annotations in the
interactome was performed in R, using the Bioconductor
packages ClusterProfiler for Gene Ontology (GO) and KEGG
enrichment analysis (Yu et al., 2012) and Reactome PA for
pathway over-representation analysis. The default mouse genome
list from Bioconductor was used as a background set. P-values,
adjusted for multiple comparison p.adjust and q-values for FDR
are provided in Supplementary Table S2.

For disease enrichment the annotation data were standardized
using MetaMap (Aronson and Lang, 2010) and NCBO Annotator
(Whetzel et al., 2011; Musen et al., 2012) to recognize terms found
in the Human Disease Ontology (HDO) (Schriml et al., 2012). We
focused on the following disease list (Table 3) trying to cover well
known relevant pathologies as follows.

For neurological conditions: Schizophrenia (SCH),
Alzheimer’s disease (AD), Autistic Spectrum Disorder (ASD),
Autistic Disorder (AUT), Bipolar Disorder (BD), Epilepsy
Syndrome (Epi), Temporal Lobe Epilepsy (TLE), Focal
Epilepsy (Fepi), Parkinson’s Disease (PD), Frontotemporal
Dementia (FTD), Huntington’s Disease (HD) and Intellectual
Disability (ID).

For cancer: Neuroblastoma (NB), Autonomic Nervous System
Neoplasm (ANSN), Peripheral Nervous System Neoplasm
(PNSN), Nervous System Cancer (NSC), Central Nervous System
cancer (CNSC), Malignant Glioma (MG), Stomach cancer (SC).
Gastrointestinal System cancer (GISC), Stomach carcinoma
(SCA), Gastric Adenocarcinoma (GAC), Gastric Lymphoma
(GLC), Breast cancer (BC), Melanoma (MEL), Hepatocellular
carcinoma (HCC), Squamous cell carcinoma (SCC).

Enriched disease ontology terms were then associated with
protein identifiers and the associations stored locally. Enrichment
of disease terms was then calculated using the Topology-based
Elimination Fisher method (Alexa et al., 2006) found in the
topGO package, together with the standardized OMIM and
Ensembl variation gene-disease annotation data mapped onto
the full HDO tree.

The significance of annotation enrichment in each cluster was
tested by Hypergeometric distribution. Enriched association with
P ≤ 0.01 were further tested for their strength of significance
by recording the percentage of P-values found from every
community/annotation combination, lower than or equal to
the observed P-value, when 1,000 random permutations of the
annotation labels were made. P-values found with strength of
significance, 1% were considered statistically significant. P-values
were also tested against a more stringent Bonferroni correction
at 0.05 (∗), 0.01 (∗∗) and 0.001 (∗∗∗) significant levels, and
highlighted throughout enrichment tables.

Identifying the Influential Proteins in the
Network
For concrete clustering algorithms we made use of the boot-strap
procedure (Simpson et al., 2010) and vertex degree to calculate
the vertex’s community membership: the approach is similar in

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 October 2019 | Volume 7 | Article 222

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00222 October 12, 2019 Time: 10:10 # 5

Chapelle et al. p140Cap Interactome in Cancer/Neuron

spirit to the use of within module degree and the participation
coefficient in classify the biological importance of proteins in
Metabolic networks (Guimera and Nunes Amaral, 2005).

To identify influential genes using the topology of the network,
we made use of the semi-local centrality measure Cl(v) of a
vertex v (Chen et al., 2010). Semi-local centrality measure takes
into consideration both a vertex’s degree, its nearest, and next to
nearest neighbors:

Q(u) =
∑

w∈0(w)

N(w)

Cl(v) =
∑

v∈0(v)

Q(u),

where 0(u) is the set of nearest neighbors of u and N(w) the
number of nearest and next to nearest neighbors of vertex w.
We performed unity-based normalization to bring the semi-local
centrality values into the range [0,1].

To measure the influence of a gene due to the clustering
algorithm a we make use of Bridgeness Ba(v) of a vertex v
(Nepusz et al., 2008)

Ba(v) = 1−

√√√√ c
c− 1

c∑
j=1

(
ujv −

1
c

)2

Here u is the community membership of vertex v, that is the
probability of vertex v to belong to a given community:

ujv = [u1v, u2v, ..., ucv],

where
∑

v,j ujv = 1, and c is the number of communities detected
by algorithm. To classify each protein we took the average
Bridging score across each algorithm:

Br(v) =
1
N

N∑
a∈A lg

Ba(v),

where Alg is the set of clustering algorithms, i.e., sg, Spectral,
infomap, and SVI. The Bridgeness measure lies between 0,
implying a vertex belongs to a single community, and 1, implying
a vertex forms a “global bridge” across every community with the
same strength (see section “Materials and Methods” for details).
By plotting Bridgeness against semi-local centrality we can
categorize the influence each proteins has on network structure.

Plotting Bridgeness against local centrality allows us to
partition the proteins into four quadrants, or regions, labeled
1–4. Results of analysis for consensus clustering is shown on
the Figure 6:

1) Bridging proteins with “global” rather than “local”
influence (also been called bottle-neck bridges (Najafi
et al., 2016), connector or kinless hubs (Guimera and
Nunes Amaral, 2005), lie in the range 0 ≤ Cl ≤ 0.5 and
0.5 ≤ Br ≤ 1 (Region 1, Figure 5).

2) Bridging proteins with mixed ’global’ and ’local’ influence
in the network, lie in the range 0.5 ≤ Cl ≤ 1 and
0.5 ≤ Br ≤ 1 (Region 2, Figure 5).

3) Proteins important primarily within one or two
communities (local or party hubs (Nepusz et al., 2008), lie
in the ranges 0 ≤ Cl ≤ 0.5 and 0.1 ≤ Br ≤ 0.5 (Region 3,
Figure 5).

4) Proteins that influence just “locally” in the network
in the range 0.5 ≤ Cl ≤ 1.0 and 0.0 ≤ Br ≤ 0.5
(Region 4, Figure 5).

Due to disassortative mixing, i.e., a preference for high degree
proteins to attach to low-degree proteins, most of the proteins
have 0≤ Br≤ 0.1, i.e., too small to have any effect on the networks
complexes (Region 4). In our study we define the “bridging”
proteins as those found Regions 1 and 2.

Estimating the Overlap Between
Diseases Annotation
We tested our gene-disease annotation (GDA) data on p140Cap
synaptic and Cancer PPI networks, using a network-based
approach to identify the location of disease modules, localized
regions of connections between disease-related proteins, on the
interactome (Menche et al., 2015). We investigated the overlap
and separation of each disease-disease pair by measuring the
mean shortest distance for each disease d, using the shortest
distance between each GDA to its next nearest GDA neighbor.
The overlap, or separation, of each disease-disease pair in the
network could be quantified using:

SAB = dAB −
dAA − dBB

2

where dAA and dBB quantify the mean shortest distances within
the respective diseases and dAB- the mean shortest distances
between diseases. SAB is bound by the diameter of the network.,
i.e., dmax ≤ SAB ≤ dmax, where dmax is 8 for synaptic and 6 for
cancer networks, respectively. The magnitude of SAB depends on
the number of GDAs associated with each disease. Large positive
values imply two well separated diseases, while large negative
values indicate large (i.e., number of GDAs) diseases with a
substantial overlap, often implying that one disease is the variant
or precursor to the other. In general disease-disease pairs with
SAB < −3 or SAB > 0.1 were considered of interest. Each disease-
disease pairs observed SAB value was tested computed against
a full-randomized model: drawing the same number of GDAs
(from the set of all network genes) for each disease at random,
before computing its separationSrand

AB . For each disease-disease
pair, we performed 1000 iterations of the full randomized model.

The difference between the observed and randomized disease
pair separation was quantified using the Z-score:

z − score =
SAB − (Srand

AB )

σ(Srand
AB )

Where Srand
AB and σrand

AB are the random disease-disease pair mean
and standard deviation obtained from 1000 iterations. Negative
(positive) z-scores imply that the disease-disease separation or
overlap is smaller (larger) than expected by chance. To assess the
significance of each disease-disease pairs overlap or separation,
P-values were estimated based on the z-scores above, and tested
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against the stringent Bonferroni correction at the 0.05 (∗),
0.01 (∗∗) and 0.001 (∗∗∗) significance levels.

RESULTS

Quantitative Proteomic Analysis of
p140Cap Cancer Interactome
We have already shown that upon transplantation in syngeneic
mice, p140-NeuT-TUBO cell-derived tumors showed
significantly limited growth and metastasis formation over
tumors derived from implanted NeuT-TUBO cells (Grasso et al.,
2017), demonstrating that in this breast cancer model, p140Cap is
sufficient “per se” to impair in vivo tumor progression. Therefore
we selected this cellular model to analyze and characterize the
p140Cap interactome, in order to uncover protein complexes
and the embedded functional pathways to which p140Cap
may associate in breast cancer. p140-NeuT-TUBO cells in
cell culture show a significant defect in cell proliferation
associated to a reduced colony size in an anchorage-independent
assay (Supplementary Figure S1), indicating that p140Cap
controls tumor growth also in in vitro conditions. Therefore,
we performed quantitative proteomic analysis of p140Cap
immunoprecipitates from p140-NeuT-TUBO cells, using NeuT-
TUBO (Grasso et al., 2017) negative control (hereafter called
p140 and mock cells). Proteins were immunoprecipitated from
both cell types at 80% confluence with the p140Cap monoclonal
antibody and three separate experiments were performed.
A p140Cap immunoreactive band was observed in the p140Cap
IPs from p140 cells but not from mock extracts (Figure 1A and
Supplementary Figure S2), confirming that p140Cap is present
only in p140 cells, thus making these immunoprecipitates
suitable for the identification of p140Cap interactors by MS over
an empty control.

To identify p140Cap-binding partners, we applied label-free
quantitative MS-based proteomics to the p140Cap IPs from p140
and mock cells. Proteins eluted from the IPs were stacked in
the top of a SDS-PAGE gel to be able to treat the whole sample
in a single band and in-gel digested. The resulting peptides
were analyzed by nanoliquid chromatography coupled to tandem
MS. Stringent statistical analysis allowed us to identify 374 (373
interactors plus p140Cap) proteins enriched in the p140 samples
(Supplementary Table S1), as represented in the Volcano plot
(Figure 1B). Differentially interacting proteins were classified
using a log2 (fold change) cut-off of 1 and a fold-discovery-
rate (FDR) threshold on remaining p-values of 1% using the
Benjamini-Hochberg method.

To validate the proteomic findings, we selected 8 candidate
interactors of p140Cap, performing Western blots with
specific antibodies on p140Cap immunoprecipitates from
p140 and mock cells. We validated the first one in the list
(see Supplementary Table S1), Tecpr1, alias Tectonin beta-
propeller repeat-containing protein 1, involved in autophagy
(Chen and Zhong, 2012); in addition we tested Cadherin-
1, Catenin beta-1, Catenin alpha-1 and Catenin delta-1, all
involved in epithelia cell-cell interaction. We also validated

the NeuT/Erbb2 oncogene and the Ras GTPase-activating-
like protein IQGap1 (Hedman et al., 2015). SKT (Sickle tail
protein), already found in the synaptic interactome (Alfieri
et al., 2017) was also validated. The Western blots are shown
in Figure 1C. Cadherin-1 and Catenin beta-1 have been
already shown to interact with p140Cap in human breast
cancer MCF7 cells (Damiano et al., 2010). We also verified
that Talin and Vimentin, placed low in the interactome,
were not immunoprecipitated with anti p140Cap Mab
(Figure 1D). Further, we performed a reverse validation:
we immunoprecipitated E-cadherin and verified the presence
of p140Cap (Figure 1E). The validation of the proteomic
data across a range of various enrichment levels above the
fixed cut-off gives us confidence that the p140Cap cancer
interactome we isolated contains bona fine p140Cap-interacting
macromolecular complexes.

Functional Characterization of the
p140Cap-Containing Protein Complex in
Breast Cancer
To obtain a functional view of the p140Cap cancer interactome,
we tested its enrichment against Gene Ontology (GO), KEGG
and Reactome databases (Supplementary Table S2). According
to GO Ontology, the 373 p140Cap-interacting proteins were
significantly enriched for a number of GO Cellular Compartment
(CC) terms. In particular the enrichment in “Cell- substrate
junction” (P = 4.96E-39) and “Focal adhesion” (P = 8.47E-39)
terms (were P - p-value, adjusted by multiple testing) indicates
that p140Cap protein complexes mediates cell communication,
which is consistent with the previously described role for
p140Cap in cell-matrix and cell-cell adhesion (Di Stefano
et al., 2007; Damiano et al., 2010). In addition, we found that
the high significance in “Proteasome complex” (P = 1.32E-
27), “Endopeptidase complex” (P = 1.32E-27) and “Extrinsic
component of plasma membrane” (P = 4.73E-12) terms, indicates
a previously unknown role for p140Cap complexes in protein
homeostasis in breast cancer. In the enrichment analysis of GO
Biological Process (BP) terms, the most significantly enriched
terms included “Regulation of mRNA stability” (P = 1.5E-
23), “Response to tumor necrosis factor”(P = 6.93E-14)
and other terms related to regulation of protein translation,
DNA and RNA damage response, apoptosis and cell-cycle.
Particularly significant is the “Wnt signaling pathway, planar
cell polarity pathway” term (P = 2.95E-33), indicating that the
p140Cap interactome may take part in the Wnt mechanism,
a fundamental regulator of cell proliferation in cancer cells
(Basu et al., 2018). This is in agreement with the Reactome
pathway database, which revealed the overrepresentation for
Planar Cell Polarity “PCE/CE pathway” (P = 1.04E-30),
while “AUF1 (hnRNP D0) destabilizes mRNA” (P = 2.47E-
31) term highlights a functional role in RNA degradation.
“Regulation of Apoptosis” (P = 1.29E-30), “Stabilization of
p53” (P = 4.05E-30), “Ubiquitin –dependent degradation of
Cyclin D1” (P = 1.6E-32) are also found highly enriched.
Top enrichment terms are shown in Table 1 and Figure 2,
while the full lists can be found in Supplementary Table S2.
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FIGURE 1 | Identification and validation of p140Cap interactors in p140Cap-TUBO breast cancer cells. Identification and validation of p140Cap interactors.
(A) Validation of the breast cancer cell extracts. Western blot for p140Cap from the three immunoprecipitation of p140Cap from Erbb2 TUBO murine breast cancer
cells. (B) Statistically enriched proteins in the p140Cap IP. The Volcano plot represents the log10 (p-value, y axis) plotted against the log2 (fold change, x axis) for
proteins quantified in p140Cap IPs from mock and p140Cap KO, used as negative control. 373 different proteins, including p140Cap (arrowhead) were found
significantly enriched in p140 samples (FDR ≤ 1%, ≥ 4-fold enrichment) are shown as red dots. (C) Validation of synaptic p140Cap interacting proteins identified in
the interactome. Co-immunoprecipitated proteins are shown on the left. (D) Negative controls by Western blot of Talin and Vimentin. (E) Reverse validation for
p140Cap interacting protein E-Cadherin.
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TABLE 1 | Top enrichment terms for cancer P140Cap interactome.

Annotation Annotation terms P.adjust

type

GO CC Cell-substrate junction 4.96E-39

Focal adhesion 8.47E-39

Proteosome complex 1.32E-27

Endopeptidase complex 1.32E-27

Extrinsic component of plasma membrane 1.20E-12

GO BP Wnt signaling pathway, planar cell polarity pathway 2.95E-33

Positive regulation of ubiquitin-protein ligase activity 2.83E-30

involved in regulation of mitotic cell cycle transition

Regulation of mRNA stability 1.50E-23

TNF- regulated signaling pathway 4.21E-19

Positive regulation of cellular catabolic process 3.05E-16

GO MF Cadherin binding involved in cell-cell adhesion 2.31E-25

Threonine-type endopeptidase activity 3.16E-13

GTP binding 1.02E-10

Reactome Vif-mediated degradation of APOBEC3G 8.20E-32

Regulation of activated PAK-2p34 by proteasome 1.14E-30

mediated degradation

Regulation of apoptosis 1.29E-30

Ubiquitin-dependent degradation of Cyclin D1 1.29E-30

Stabilization of p53 4.05E-30

G1/S DNA damage checkpoints 2.09E-28

As shown in the GO CC terms, also in the Reactome, the
terms Cell-Cell communication (P = 6.04E-05) and Cell-
cell junction organization (P = 0.00047817) are still highly
significative. Taken together, the functional enrichment analysis
from these two distinct sources (GO and Reactome) indicate
that the p140Cap interactors exhibit functions relevant to
cell adhesion, protein homeostasis, regulation of basic cell
features such as cell cycle and apoptosis, which are commonly
deregulated in tumor cells.

Community Structure Reveals the
Topology-Functional Relationships
Within p140Cap Interactome
To examine whether the identified functional terms are
associated with specific sub complexes within the interactome, we
reconstructed the PPI network to perform enrichment analysis
over its community structure.

Using combined mouse and human PPI data collected from
three data sources (see section “Materials and Methods”) we
built a PPI network for the 374 proteins obtained for the cancer
interactome. The network analysis is solely based on our set
of PPIs filtered from the Intact, BioGrid and DIP databases:
these PPIs are the “direct and physical” human PPIs found from
experiments. The resulting network was analyzed with respect to
node centrality measures (Supplementary Table S3) including:
Degree, Betweenness (Bet), Closeness, Clustering Coefficient
(CC), Page Rank (PR), Semi-Local centrality (SL), and mean
shortest path (SP). For the remaining analysis, we took the
Largest Connected Component (LCC) of the PPI proteome
network: 348 nodes and 1630 edges. The LCC was clustered using

FIGURE 2 | Heatmap of the Reactome Pathway enrichment analysis
clustering. Color intensity is based on the average relative protein abundance
in MS. Blocks with numbers correspond to respective cluster on the PPI
network where this group of proteins belongs.

several algorithms (see “Materials and Methods”, Supplementary
Table S3). Hereafter, we show the results of the SpinGlass
(sgG1) algorithm, which gives a reasonably small number of
communities (Heine et al., 2015), as detailed in Figure 3.
For each community structure, degree of nodes is reflected
by their diameter.

We performed enrichment analysis for the independent
communities with respect to the protein function, protein
domain and disease enrichment. For clarity, we named the
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FIGURE 3 | Community structure of p140Cap protein complex in breast cancer obtained by spin-glass algorithm. Fifteen distinct communities are highlighted in
different colors; clusters that overlap with synaptic network (1 and 2) are circled.

communities/cluster of cancer network from C1 to C15. We
found distinct network communities significantly associated
with specific functions (Figure 3 and Supplementary Table S3,
where it is possible to sort out the genes belonging to each
cluster looking at the column sgG1). For example, the Cluster
2, C2 (comprising 39 proteins) contains key known molecules
for p140Cap signaling, including p140Cap itself (SRCIN1),
Src, ERBB2 and ERBB2IP (ERBIN), and is highly enriched
with kinase domain containing proteins (P = 1.5E-06), which
suggests that these components of the p140Cap interactome
plays a major role in signaling cascades. This cluster is also
associated with the most of the tested cancer-related terms,
e.g., “Breast cancer” (P = 2.2E-04), “Melanoma” (P = 5.82E-
05), “Colon cancer” (P = 1.84E-03), “Stomach carcinoma”

(P = 9.07E-03), “Malignant glioma” (P = 2.1E-04), and with one of
synaptopathologies -“Autism spectral disorder” (P = 2.28E-03).
From a functional perspective, C2 is enriched in the following
GO BP terms: Cell junction assembly (P = 4.2E-04), “Adherens
junction organization” (7.27E-06), ‘Fc gamma receptor signaling
pathway” (P = 6.04E-03), “Ephrin receptor signaling pathway”
(P = 1.77E-02) and “Actin filament bundle assembly” (P = 2.5E-
02) (Supplementary Table S4). Notably, C2 contains 7 proteins
shared with synaptic dataset, namely: p140Cap, ERBB2IP, and
the cell adhesion proteins such as the Junction plakoglobin
(JUP), a common junctional plaque protein, together with the
Catenin beta-1 and Catenin delta-1. In addition C2 also contains
two proteins involved in intracellular membrane trafficking, the
GTPase-activating protein (GAP) RP2 involved in trafficking
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between the Golgi and the ciliary membrane, and the RANBP9,
a protein associated with the small GTP binding protein RAN,
which is essential for the translocation of RNA and proteins
through the nuclear pore complex.

Cluster 1 (C1) contains another 14 proteins, shared with
synaptic interactome, among them, Actinin B, FLII, and SIPA1L1,
all involved in actin cytoskeleton remodeling, several members of
the F-actin capping protein (CAPZA1, CAPZA2, ADD1, ADD3),
and Myosin 6 (MYO6) as a reverse-direction motor protein that
moves toward the minus-end of actin filaments, PKP4 (which
plays a role as a regulator of Rho activity during cytokinesis and
may play a role in junctional plaques), TOM1L2 with a role in
protein transport. We also detected in C1 the Skt protein, which
belongs to the same family as p140Cap, and Flotillin, a protein
that localizes to the caveolae, and plays a role in vesicle trafficking.
Similar to C2, we find that C1 is overrepresented with “Ephrin
receptor signaling pathway” (P = 1.17E-02) and “Actin filament
bundle capping” (P = 2.2E-04) (Supplementary Table S4).

Other communities also aggregate functionally related
proteins together. For example, cluster 10 (C10) contains
39 proteins, among which the proteasome and ubiquitin
-related proteins dominate. Moreover, C10 is enriched
with the majority of the Reactome terms that were found
enriched in entire p140Cap interactome, e.g., “Regulation of
Apoptosis”, “Regulation of mitotic cell cycle”, “Signaling by
Wnt”, and other terms related to DNA damage response,
protein polyubiquitination, EGF, TNF, and NF-KappaB
signaling pathways.

Cluster 5 (C5) contains 60 proteins, the majority of which
are ribosomal and is associated with “Eukaryotic translation”-
related terms, while C15 (21 proteins) is enriched in chaperone-
related proteins (P = 6.54E-11) and associated with Protein
folding (P = 4.49E-09). Cluster 7 (C7) (34 proteins), is associated
with “Small GTPase Ras signaling” (P = 3.4E-02) and “Nuclear
transcribed mRNA catabolic process” (P = 3.65E-08) terms and,
simultaneously, with both cancer and neurological diseases, e.g.,
“Breast cancer” (P = 7.9E-04), ”Focal epilepsy” (P = 9.29E-03) and
“Stomach carcinoma” (P = 2.23E-02); likewise C9 is enriched with
“Bipolar disorder” (P = 4.3E-03), “Schizophrenia” (P = 3.89E-03)
and “Central nervous system cancer” (P = 1.75E-02) terms.

Using the p140Cap synaptic interaction from Alfieri et al.
(2017), we constructed the corresponding neuronal PPI network
(351 interacting proteins with a LCC of 201 nodes and 458
edges). This network was split to communities the same way
as above, resulting in 15 clusters (Figure 4). As expected,
in the neuronal network we found clusters associated with
synaptic transmission and assembly (Neuronal Cluster N1, 32
proteins), and neurotransmitter secretion (N2, four proteins)
(Supplementary Table S4).

When compared to cancer interactome, two communities
were found to overlap significantly: C2 in cancer network
corresponds to N13 in the synaptic one (P = 0.03) while
C1 corresponds to N4 (P = 0.05). N13 contains proteins
common to C2, such as Cadherin 6, Catenin alpha-2,
Catenin beta-1, Catenin delta-1, JUP and Erbb2IP associated
with cell junction assembly (P = 3.44E-05) and adherens
junction organization (1.06E-04) functions. Similar to

C2, we find the N13 cluster is enriched with cancer-
related terms, such as SCC, Malignant Glioma (MG) and
Hepatocellular Carcinoma.

Thus, the mixed enrichment for cancer and neural diseases
terms over the similar clusters likely indicates shared molecular
mechanisms for both types of diseases based on common
signaling pathways.

Influential Network Components Are
Associated With Disease Terms
To investigate influential nodes in our clustered PPIs from
both interactomes we estimated the topological property
Semi-local centrality Clv (Chen et al., 2010) and the
clustering measure Bridgeness Bv (Nepusz et al., 2008) as
described in Methods. We considered genes influential
when found to be topologically important i.e., when they
affect or influence other clusters than those they belong
to (see section “Materials and Methods” for details). This
property enables them with potential to participate in
several communities simultaneously and, thus, facilitate
spreading signals, which is especially important for
disease mechanisms.

In total in cancer network we found 38 (36 + 2) Bridging
proteins, confidently grouping in Regions 1 and 2 (Figure 5).
Region 1 includes bridging proteins with “global” rather than
“local” influence, while Region 2 - bridging proteins with mixed
“global” and “local” influence in the network (e.g., GRB2), which
means they influence the network and its clusters both locally and
globally (Figure 5).

The candidate bridging protein subset was analyzed with
respect to function and disease annotation. Proteins from
Region 1 were significantly enriched with Breast Cancer (23/41,
P = 2.07E-04) and Gastro Intestinal System cancer (GIS)
(23/41, P = 2.7E-03) terms, and Nervous System Cancer
(CNS) (9/41, P = 0.03) (Figure 5, where cancer terms are
highlighted in red). Of those, 17 proteins were associated
with both cancer and synaptic terms (Figure 5, highlighted in
blue, Supplementary Table S5). Among them, we found: (a)
regulators of actin cytoskeleton remodeling and cell motility
(Actinin B, RAC1 CDC42, PPFIA1 alias Liprin); (b) cell
adhesion proteins (RAP1B involved in junctional adhesion,
JTJP2 encoding a zonula occludens member, and MLLT4
also known as Afadin which, probably together with the
E-cadherin-catenin system, plays a role in the organization
of homotypic, interneuronal and heterotypic cell-cell adherens
junctions); (c) modulators of the Wnt/b-catenin pathway (MCC
that suppresses cell proliferation and TNIK, a serine/threonine
kinase that acts as an essential activator of the Wnt signaling
pathway); (d) SQSTM1 also called p62, a multifunctional
protein that binds ubiquitin and regulates activation of the
nuclear factor kappa-B (NF-kB) signaling; (e) a key growth
factor receptor adaptor such as GRB2; (f) the heat shock
chaperones HSPA5, HSPA8; (g) antiapoptotic proteins such as
DDX3X and CSNK2A1, the catalytic subunit of a constitutively
active serine/threonine-protein kinase complex that regulates
numerous cellular processes, such as cell cycle progression,
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FIGURE 4 | The community structure of p140Cap network in the synaptic compartment and the overlap with cancer set. Similar as for cancer network, distinct
communities are highlighted by different colors. Two communities overlapping with cancer network are circled.

apoptosis and transcription. Additional proteins like GAPDH,
and a major pre-mRNA-binding protein HNRNPK, were also
detected as bridging proteins.

Bringing into consideration each Bridging protein’s
annotation (Region 1) with GO Biological Process (BP), we
identified significant overlap between GIS and CNS cancer
terms and following functional terms (see section “Materials and
Methods”): small GTPase mediated signal transduction (P = 5.5E-
4, 3.7E-4), Ras protein signal transduction (GO:0007265
P = 2.2E-03, 2.0E-04), innate immune response (GO:004087
P = 1.0E-04, 2.6E-02), axon guidance (GO:0007411 P = 1.9E-03,
2.6E-02) and neurotrophin TRK receptor signaling pathway

(GO:0048011 P = 1.7E-02, 2.5E-03) (Supplementary Table S5).
This overlap might indicate the pathways involved in disease.

Disease Modules Overlap on the
p140Cap Interactomes
A simplistic view of the two interactomes would suggest
that the disease enrichments for neurological or cancer terms
would segregate into the tissue specific regions of the network.
Conversely the neurological disease and cancer related terms
overlapping with each other on the PPI networks, would suggest
common signaling pathways impacting on shared biology. We
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FIGURE 5 | Distribution of influential/bridging proteins in cancer p140Cap networks estimated from consensus clustering results. Proteins were divided into four
quadrants or regions labeled 1–4: (1) Bridging proteins with ’global’ rather than ’local’ influence (also been called bottle-neck bridges. (2) Bridging proteins with mixed
“global” and “local” influence in the network. (3) Proteins important primarily within one or two communities. (4) Proteins that influence just “locally” in the network.
Red color corresponds to Bridging proteins annotation with cancer- related diseases only, blue – to proteins annotated with both cancer and neurological diseases.

tested the gene-disease annotation (GDA) data on p140Cap
synaptic and Cancer PPI networks, using a network based
approach to identify the location of disease modules, localized
regions of connections between disease-related proteins, on
the interactome (Menche et al., 2015). We tested the overlaps
between GDA data on PPI network with independent method
based on network topology (see “Materials and Methods” for
details). Here, by definition, “Disease modules” are localized
regions of connections between disease-related proteins in
interactome (Menche et al., 2015). The full list of diseases and
abbreviations is shown in Table 3.

Within the cancer terms we found significant overlap between
Breast Cancer and Gastrointestinal System Cancer (P = 4.03E-6),
Breast Cancer and Stomach Cancer (1.56E-4), Breast Cancer and
Malignant Glioma (P = 2.42E-5), Melanoma and SCC (1.41E-5),
Melanoma and Malignant Glioma (P = 1.92E-5) (see the full list
of disease-disease pairs in Supplementary Table S6).

Similarly to what we found on Bridging proteins and
communities level, the neurodegenerative diseases, such as
Alzheimer’s disease (AD), Epilepsy (Epi), Parkinson disease
(PD), Huntington disease (HD) and Frontotemporal Dementia
(FTD) show repeated evidence of overlapping with cancer related
terms. This includes not only CNS cancer terms, such as
Neuroblastoma (NB), Autonomus Nervous System Neoplasm
(ANSN), Peripheral Nervous System Neoplasm (PNS), Neural
System Cancer (NSC), Central Neural System Cancer (CNSC),
Malignant Glioma (MG) but also Gastrointestinal cancer terms:
Stomach Cancer (SC), Gastrointestinal Cancer (GISC), along
with Breast Cancer (BC), Melanoma (MEL) and Squamous Cell
Carcinoma (SCC).

We found these overlaps most significant for Alzheimer’s
Disease with Neural System Cancer (P = 1.9 × 10-4), Peripheral
Nervous System Neoplasm (P 5.8 × 10-3), Autonomus Nervous
System Neoplasm (P = 8.8E-03), NB (P = 0.01) and Malignant
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Glioma (P = 0.02). AD is also found to overlap significantly
with SCC (P = 0.02), BC (P = 5.2E-4) and Melanoma
(P = 1.0E-3). Of the other neurological disease, Schizophrenia
annotations overlap with Stomach Cancer (1.92E-5) and
Parkinson disease overlaps significantly with SCC (P = 0.02)
(Supplementary Table S6).

Comparison of Cancer and Synaptic
p140Cap Interactomes
Figure 6 shows the generalized functional profiles for both
interactomes based on the proteins investment into primary

biological function, such as Processing of Genetic Information,
Metabolism, Signaling, Transport, etc., which in turn are
subdivided to lower level KEGG categories (Liebermeister
et al., 2014). Here, size of category/pathway depends on
accumulated abundances of proteins, participating in the
respective pathways. The categories are equivalent for both
interactomes, however, the dominant terms are evidently
different. While “Genetic Information Processing” (mainly with
“Translation” and “Folding, Sorting and Degradation” terms)
makes the largest impact in cancer interactome (Figures 6A,C),
in the synaptic dataset the most prominent category is
“Environmental Information Processing”, equally distributed

FIGURE 6 | Proteomaps for cancer and synaptic sets. As shown in Liebermeister et al. (2014), upper figures correspond to high-level KEGG functional division for
p140Cap Cancer (A) and Synaptic (B) proteome; Bottom figures correspond to respective lower hierarchy terms for Cancer (C) and Synaptic (D) proteomes.
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between “Signaling molecules and interactions” and “Signal
transduction terms” (Figures 6B,D). Metabolism category in
general is equally represented in both interactomes, but specific
terms, such as “Biosynthesis” and “Central Carbon Metabolism”
are more represented in cancer. In the synaptic interaction,
Cellular Processes like “Cytoskeleton” and “Vesicular transport”
are more prevalent.

This is also reflected in the GO and Reactome pathway
enrichment analysis performed on both protein lists. Most of
enriched terms appear to be context–specific, however, a few
of them are shared between the lists. In particular, for GO
CC (Cellular Compartment) the most enriched terms for both
networks are “Actin cytoskeleton”(P = 1.62E-28), “Cell-substrate
junction” (P = 4.96E-39), “Cell-cell adherens junction” (P = 2.5E-
26) (see Table 2 for comparison Supplementary Table S2 for
the full list of enriched terms). Similarly, the most enriched BP
(Biological Process) terms for both networks is “Actin filament
organization” (P = 2.06E-18), while the common Reactome and
KEGG pathways include Rho GTPase signaling and cell-cell
adherens and junction (Table 2).

Direct comparison of two lists of proteins found in cancer
model cells (here) and in neurons (Alfieri et al., 2017;
Supplementary Table S1) identified 39 genes in common (P = E-
22) (Supplementary Table S1), which correspond to “shared”
interactome. Within the network models, the majority of these
proteins are concentrated in clusters C1 and C2 of breast cancer
network, and N4 and N13 of synaptic network, respectively. As
would be expected, they are associated with GO terms common
for both interactomes (Table 3). Pathway enrichment analysis

performed on the 39 overlapping genes confirmed that all the
terms listed above are significantly enriched (Table 4).

Thus, the functional signature of two interactomes is
determined primarily by its context: organ/tissue and condition
specificity; while the overlap provides a list of shared functional
terms, which are likely to be associated with p140Cap’s core
molecular function.

DISCUSSION

Due to the role of p140Cap as a scaffold protein, and to the results
obtained analyzing the interactome in the synaptic compartment
(Alfieri et al., 2017), we reasonably assumed that in breast cancer
cells p140Cap would also bind to a large number of intracellular
proteins, influencing breast cancer biology. Proteomic analysis
of p140Cap interactome in the ERBB2 breast cancer model
uncovered the 373 interacting proteins described here. Amongst
these, we found an enrichment in several Gene Ontology terms
involved in cell-substrate junction, focal adhesion organization
and cell-cell adhesion and in Reactome terms (i.e., Regulation of
apoptosis), including functions relevant to cell adhesion, protein
homeostasis, regulation of cell cycle and apoptosis. In other
words, the complex was enriched for molecules whose functions
are associated with those frequently deregulated in cancer.

In the ERBB2 cell model chosen for this analysis, p140Cap
is causal in impairing in vivo tumor growth and metastasis
formation. This model as well the double transgenic mice
p140-NeuT are consistent with the overall improved prognosis

TABLE 2 | Top enrichment terms specific either for synaptic p140Cap interactome (column 1) or for cancer p140Cap interactome (column 2), and common for both
(column 3).

Annotation Synaptic p140Cap interactome Cancer p140Cap interactome Overlap

GO CC Excitatory synapse Proteosome complex Actin cytoskeleton

Postsynaptic density Endopeptidase complex Cell-substrate junction

Ionotropic glutamate receptor complex Extrinsic component of plasma membrane Cell-cell adherens junction

GO BP Modulation of synaptic transmission Wnt signaling pathwayPlanar cell polarity pathway Neurotrophin TRK receptor
signaling pathway

Innate immune response

Actin filament organization

Synapse organization Regulation of mRNA stability Axon guidance

Neurotransmitter transport Response to TNF Actin binding

GO MF Receptor signaling complex scaffold activity Heat shock protein binding GTPase regulator activity

PDZ domain binding Protein binding involved in cell-cell adhesion Calmodulin binding

Scaffold protein binding G-protein beta/gamma-subunit complex binding Tight junction

KEGG Endocytosis Proteasome Regulation of actin cytoskeleton

Glutamatergic synapse Pathways in cancer Adherens junction

Long-term potentiation Ribosome Ras signaling pathway

Signaling by Rho GTPases

Reactome Trafficking of AMPA receptors p53-Independent DNA Damage Response RHO GTPases activate CIT

Unblocking of NMDA receptor, glutamate binding and
activation

AUF1 (hnRNP D0) destabilizes mRNA Cell-Cell communication

Interaction between L1 and ankyrins Ubiquitin-dependent degradation of Cyclin D1 Cell junction organization

Ras activation uopn Ca2 + influx through NMDA receptor Regulation of Apoptosis Adherens junctions interactions

GABA receptor activation Regulation of DNA replication
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TABLE 3 | Disease enrichment values for p140Cap cancer and synaptic PPI networks.

Cancer Synaptic

PPI network PPI network

Disease HDO ID N P-value BC B-Y N P-value BC B-Y

Schizophrenia (SCH) DOID:5419 55 1.5E-4 0.2 71 6.3E-20 ∗∗∗ 1.9E-15

Alzheimer’s disease (AD) DOID:10652 47 1.8E-4 0.2 41 5.2E-7 ∗∗ 3.5E-3

Autism spectrum disorder (ASD) DOID:0060041 11 0.5 1 24 1 1

Autistic disorder (AUT) DOID:12849 11 0.5 1 24 1.1E-7 ∗∗∗ 1.7E-3

Bipolar disorder (BD) DOID:3312 18 0.8 1 28 2.6E-4 0.6

Epilepsy syndrome (Epi) DOID:1826 19 0.3 1 24 0.3 1

Temporal lobe epilepsy (TLE) DOID:3328 1 0.9 1 11 5.8E-7 ∗∗ 3.5E-3

Focal epilepsy (Fepi) DOID:2234 2 0.8 1 13 0.1 1

Parkinson’s disease (PD) DOID:14330 29 5.2E-6 ∗ 0.02 14 0.02 1

Frontotemporal dementia (FTD) DOID:9255 11 9.6E-4 0.7 10 1.3E-4 0.3

Huntington’s disease (HD) DOID:12858 5 0.4 1 4 0.3 1

Intellectual disability (ID) DOID:1059 15 0.3 1 29 2.2E-7 ∗∗∗ 2.2E-3

Neuroblastoma (NB) DOID:769 14 0.2 1 11 0.1 1

Autonomic nervous system neoplasm (ANSN) DOID:2621 14 0.2 1 11 0.1 1

Peripheral nervous system neoplasm (PNSN) DOID:1192 17 0.1 1 12 0.1 1

Nervous system cancer (NSC) DOID:3093 44 0.2 1 25 0.1 1

Central nervous system cancer (CNSC) DOID:3620 23 0.4 1 14 0.2 1

Malignant glioma (MG) DOID:3070 43 0.1 1 23 0.06 1

Stomach cancer (SC) DOID:10534 22 0.01 1 4 0.9 1

Gastrointestinal system cancer (GISC) DOID:3119 129 0.2 1 58 0.2 1

Stomach carcinoma (SCA) DOID:5517 18 0.06 1 3 0.9 1

Gastric adenocarcinoma (GAC) DOID:3717 7 0.6 1 1 0.9 1

Gastric lymphoma (GLC) DOID:10540 1 0.4 1 − − −

Breast cancer (BC) DOID:1612 108 2.8E-7 ∗∗∗ 2.8E-3 43 0.4 1

Melanoma (MEL) DOID:1909 52 1.3E-8 ∗∗∗ 3.9E-4 23 0.03 1

Hepatocellular carcinoma (HCC) DOID:684 69 3.2E-8 ∗∗∗ 4.8E-4 28 0.2 1

Squamous cell carcinoma (SCC) DOID:1749 54 1.1E-6 ∗∗ 8.3E-3 22 0.2 1

Enrichment values for our set of common synaptopathies and cancers for p140Cap PPI proteome networks using combined OMIM/geneRIF/Ensembl variation annotation
data mapped into the full Human Disease Ontology (HDO) ontology tree (17,731 genes annotated onto 3457 HDO terms) for the cancer (321 significant genes annotated
onto 1346 HDO terms), synaptic (212 significant genes annotated onto 955 HDO terms) networks. Where enrichment values were calculated using the Topology-based
Elimination Fisher method (Alexa et al., 2006), and N gives the number of disease genes found in each network. Multiple hypothesis corrections using the Bonferroni test
(BC), at the 0.001 (∗∗∗), 0.01 (∗∗) and 0.05 (∗) significance levels, and the Benjamini and Yekutieli (B-Y) (Benjamini and Yekutieli, 2001)procedure is shown for each network.

observed in the human ERBB2-positive breast cancer cohort
(Grasso et al., 2017). Included in those proteins found to interact
with p140Cap, E-cadherin and the Catenin beta-1, have been
already found associate to p140Cap by co-immunoprecipitation
experiments in MCF-7 cells, a typical luminal A breast cancer
model (Damiano et al., 2010). Taken together, these data indicate
that these two interacting proteins can associate to p140Cap in
at least two different breast cancer subtypes (ERBB2-positive
versus Luminal A subtypes). Therefore, we can assume that the
proteins identified in the breast cancer interactome, are “bona
fide” interactors, and that the p140Cap-dependent interaction
may affect their biological functions.

We already know that in MCF7 cells, the presence of p140Cap
exerts a critical role in E-cadherin stabilization at the cell
membrane (Cabodi et al., 2010), while in the ERBB2 model
here described p140Cap expression determines an increased
expression of E-Cadherin at the cell surface in in vivo tumors.
The increase in E-Cadherin expression at the cell membrane is
accompanied by a reversion of the so-called “cadherin switch”
(that is, increase of the mesenchymal marker N-cadherin and

a concomitant decrease of the epithelial marker E-cadherin),
which is a canonical hallmark of EMT in cancer (Hanahan and
Weinberg, 2011; Lamouille et al., 2014; Bill and Christofori,
2015), further confirmed by the concomitant decrease in EMT
markers (Grasso et al., 2017). Moreover, to further demonstrate
that the binding with p140Cap may affect the function of
specific interactors, it has been recently shown that Catenin
beta1 regulates presynaptic function through its direct binding
to p140Cap (Li et al., 2017). Overall, from these data we could
suggest that through binding to p140Cap, these interactors may
modulate their proper function in the tumors.

The putative role of p140Cap in proteasome complex,
regulation of mRNA stability and DNA damage checkpoint
opens new perspectives on functional different roles of p140Cap
in breast cancer cells. Indeed, we recently provided the first
evidence that the SRCIN1/p140Cap adaptor protein is a key
player in neuroblastoma as a new independent prognostic
marker for patient outcome and treatment (Grasso et al.,
2019). In neuroblastoma cells p140Cap increases cell sensitivity
to chemotherapy-induced DNA damage (Grasso et al., 2019),
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TABLE 4 | Functional enrichment for 39 shared proteins.

Term ID Ontology Description p-value p.adjust

GO:0034330 GO BP Cell junction organization 3.22E-09 4.15E-06

GO:0048013 GO BP Ephrin receptor signaling pathway 4.09E-08 2.64E-05

GO:0034332 GO BP Adherens junction organization 2.54E-07 1.09E-04

GO:0034329 GO BP Cell junction assembly 4.38E-06 1.05E-03

GO:0030837 GO BP Negative regulation of actin filament polymerization 5.74E-06 1.05E-03

GO:0051016 GO BP Barbed-end actin filament capping 8.71E-06 1.4E-03

GO:0034113 GO BP Heterotypic cell-cell adhesion 1.55E-04 9.08E-03

GO:0005913 GO CC Cell-cell adherens junction 1.38E-07 8.27E-08

GO:0005925 GO CC Focal adhesion 3.84E-07 2.30E-07

GO:0005924 GO CC Cell-substrate adherens junction 3.84E-07 2.30E-07

GO:0015629 GO CC Actin cytoskeleton 1.06E-06 6.34E-07

GO:0045121 GO CC Membrane raft 2.68E-03 1.6E-03

GO:0050839 GO MF Cell adhesion molecule binding 5.95E-08 7.32E-06

GO:0003779 GO MF Actin binding 2.06E-07 7.79E-06

hsa04520 KEGG Adherens junction 5.09E-05 2.06E-03

hsa04611 KEGG Rap1 signaling pathway 5.16E-03 4.29E-03

hsa04810 KEGG Regulation of actin cytoskeleton 3.18E-03 5.16E-03

hsa04530 KEGG Tight junction 1.37E-03 1.59E-02

hsa04144 KEGG Endocytosis 5.11E-03 4.8E-02

2682334 REACTOME EPH-Ephrin signaling 1.45E-07 1.00E-05

418990 REACTOME Adherens junctions interactions 2.82E-08 3.89E-06

421270 REACTOME Cell-cell junction organization 3.39E-07 1.56E-05

4420097 REACTOME VEGFA-VEGFR2 Pathway 1.62E-04 3.2E-04

1266738 REACTOME Developmental Biology 2.42E-04 3.34E-03

5626467 REACTOME RHO GTPases activate IQGAPs 9.45E-04 1.0E-02

suggesting that p140Cap could interact with proteins involved in
DNA damage sensitivity in breast cancer cells.

Community analysis based on network topology suggests that
the p140Cap interactome comprises 15 functionally independent
clusters. This subdivision into clusters allows us to identify
subsets of proteins that preferentially contribute to specific
functions. For example, Cluster C2 contains p140Cap and the
tyrosine kinases Src and Erbb2, reinforcing the concept that
p140Cap can associate and regulated tyrosine kinases (Di Stefano
et al., 2007; Bagnato et al., 2017), which play key roles in breast
cancer transformation and progression.

Our study provides a first look at similarities and differences
between the p140Cap protein’s interactomes in healthy
specialized tissue (brain synaptosome) compared to an
aggressive ERBB2 breast cancer model. Comparing across
studies is notoriously difficult but the following features gave
us confidence: the two p140Cap interactome were both from
murine tissue/cells, generated with the same reagents and
procedures. We compared both interactomes with the same
set of bioinformatics methods including GO enrichment and
protein – protein interaction (PPI) network analysis and found
distinct signatures for both of them. While the interactome
obtained in breast cancer is clearly enriched with terms related to
Genetic Information processing, including pathways related to
cell cycle, apoptosis, DNA damage, transcription and translation,
the proteome obtained in brain is enriched with environmental
information processing, including signal transduction and
information flow through the synapse. We found that the

majority of interacting proteins are clearly different between
these two conditions, which likely reflects their tissue, organ
and cell specificity. In other words, both proteomes reflect their
underlying biological context more obviously than they do each
other, despite the common bait protein used to isolate them.

However, 39 proteins are common. When compared to the
total mouse genome 24,402 (genes with protein sequence data,
taken from MGI website) the probability of observing an overlap
of this size from two independent datasets is very low (P = 2.68E-
22). However, one may argue that datasets are not independent
as they have common bait – p140Cap. If we try to estimate the
probability of cancer set given we know the neural one:

P (cancer set | neuronal set) = P (cancer set AND neuronal set)/P
(neuronal set),

we end up with P = 5.63E-10, which is again, very significant.
Overall, comparing the list of cancer interactors of p140Cap

with the full list of proteins identified in synapse, there are about
160 interacting proteins in cancer that were not identified in
synapse, indicating that the cancer interactome could be cell-
type specific. On the other hand, other 200 interacting proteins in
cancer are also expressed in the synaptic compartment, but do not
interact with p140Cap in the synapse. Thus, we can hypothesize
that some tissue-specific proteins could be the key regulators of
p140Cap interactome.

Despite the relatively small number of common genes,
several selected pathways are shared between the two proteomes,
e.g., “Actin cytoskeleton”, “Cell-substrate junction”, “Cell-
cell adherens junction”, “Fc receptor signaling pathway”,
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“Actin filament organization” and “Rho GTPase signaling”,
“Neurotrophin TRK receptor signaling pathway”.

Comparison of main network properties and community
structure of two networks along with their relationship with
cellular functions, signaling pathways and diseases revealed, as
would be expected given the differing biology, that both networks
have distinct community structures associated with condition-
specific functions. However, we found common pathways
assigned to two specific communities in cancer and synaptic
network, which contain the majority of the 39 common proteins.

Notably, the shared pathways listed above feature enrichment
for both neurodegenerative diseases and cancer. Some function-
disease pairs persist in both interactomes, e.g., “Cell junction
assembly” and “Adherens junction assembly” usually co-occur in
the same communities alongside cancer –related terms. This may
indicate that despite their diversity there are common signaling
molecular mechanisms underpinning the function of both
interactomes. Similar trends in function-disease overlap were
observed for identified Bridging proteins that are likely providing
the core signaling framework for p140Cap interactome, and
disease-disease relationships studied over PPI network.

Overall, through a bioinformatics approach, these results
provide the first interactome profile of p140Cap and the
underlined pathways in breast cancer cells, paving the way
to experimentally address their role in the tumor suppressing
properties of p140Cap in breast cancer.
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FIGURE S1 | In vitro characterization of p140Cap-TuBo cell line.

FIGURE S2 | (A–C) Panels represent three distinct TUBO cell extracts that were
immunoprecipitated using p140Cap monoclonal antibody. A: exp 1, B: exp 2; C:
exp 3. The immunoprecipitates and the corresponding cell extracts
(30 micrograms) were run on a 4–15% SDSPAGE and the nitrocellulose
membranes were cut according to the molecular weight, in order to decorate the
upper part with the p140Cap antibodies and the lower part with the Tubulin
antibodies for loading controls. On the left, we show the merge between the
colorimetric WB with the chemiluminescent WB, obtained at the ChemiDoc
Imaging System from BIO RAD. Membranes were all exposed for 30 sec.

TABLE S1 | List of proteins identified and quantified in co-IP eluates from
NeuT-TUBO (Mock) and p140-TUBO cells (Oep).

TABLE S2 | Enrichment results for cancer and synaptic p140Cap interactomes
based on GO (MF, BP, CC), KEGG and Reactome ontologies.

TABLE S3 | Community structure for cancer and synaptic p140Cap interactomes.
Columns B and C contain the lists of genes and their IDs, columns D-I, R, and S
their cluster membership obtained with respective clustering algorithm (spin glass
in column I). Columns J to Q contain disease and function annotation terms for
each of the genes, T- BG contain the network characteristics of the genes.

TABLE S4 | Enrichment results for clusters for cancer and synaptic p140Cap.
Spreadsheet 1 contain the specific and overlapping terms for both networks.

TABLE S5 | Bridgeness values for cancer and synaptic p140Cap networks.

TABLE S6 | Disease overlap for cancer and synaptic p140Cap networks.
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