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Sex chromosomes originate as a pair of homologus autosomes that then follow a
general pattern of divergence. This is evident in mammalian sex chromosomes, which
have undergone stepwise recombination suppression events that left footprints of
evolutionary strata on the X chromosome. The loss of genes on the Y chromosome led
to Ohno’s hypothesis of dosage equivalence between XY males and XX females, which
is achieved through X-chromosome inactivation (XCI). This process transcriptionally
silences all but one X chromosome in each female cell, although 15–30% of human
X-linked genes still escape inactivation. There are multiple evolutionary pathways that
may lead to a gene escaping XCI, including remaining Y chromosome homology,
or female advantage to escape. The conservation of some escape genes across
multiple species and the ability of the mouse inactive X to recapitulate human escape
status both suggest that escape from XCI is controlled by conserved processes.
Evolutionary pressures to minimize dosage imbalances have led to the accumulation
of genetic elements that favor either silencing or escape; lack of dosage sensitivity
might also allow for the escape of flanking genes near another escapee, if a boundary
element is not present between them. Delineation of the elements involved in escape
is progressing, but mechanistic understanding of how they interact to allow escape
from XCI is still lacking. Although increasingly well-studied in humans and mice, non-
trivial challenges to studying escape have impeded progress in other species. Mouse
models that can dissect the role of the sex chromosomes distinct from sex of the
organism reveal an important contribution for escape genes to multiple diseases. In
humans, with their elevated number of escape genes, the phenotypic consequences
of sex chromosome aneuplodies and sexual dimorphism in disease both highlight the
importance of escape genes.

Keywords: dosage compensation, X-chromosome inactivation, mammalian evolution, escape from
X-chromosome inactivation, sex chromosomes, gametologues

INTRODUCTION

Sex can be determined through various strategies, either environmentally or genetically. The
evolution of chromosomal sex determination begins as the result of a sex-determining mutation
on an autosome, favoring the loss of recombination at that location (reviewed in Bergero and
Charlesworth, 2009; Bachtrog et al., 2014; Ponnikas et al., 2018). This nascent sex chromosome
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is then present in one sex (the heterogametic sex) but not
the other (the homogametic sex), which retains the ancestral
chromosome pair. Male heterogametic sex-determining systems
(e.g., mammals), are termed XY, while female heterogametic
systems (e.g., birds) are termed ZW. Y and W chromosomes
are generally smaller and more heterochromatic, while X
and Z chromosomes retain much of their ancestral gene
complement (reviewed in Bachtrog et al., 2011). Progressive
recombination suppression promotes further divergence between
the sex chromosome pair: the Y or W chromosome rapidly
degrades while the X or Z chromosome remains protected
by recombination in the homogametic sex. This evolutionary
divergence of the sex chromosomes has been well described in
mammals (Figure 1).

Prototherians (monotremes) and therians (marsupials and
placental mammals) appear to have developed their modern
sex chromosome systems in tandem, following the divergence
between the two lineages about 200 million years ago (MYA)
(Cortez et al., 2014). Monotremes developed their current sex
chromosomes roughly 175 MYA (Cortez et al., 2014): the
male platypus has five X chromosomes (X1−5) and five Y
chromosomes (Y1−5), while the female has two copies of each
X1−5 (Grützner et al., 2004; Rens et al., 2007). Four of the platypus
X chromosomes share homology with the bird Z chromosome
(Veyrunes et al., 2008), with the bird sex-determining gene
(DMRT1) present on X5 (Smith et al., 2009). The best candidate
for the monotreme sex-determining gene is the anti-mullerian
hormone (AMHY) gene on Y5 (Cortez et al., 2014), which is
important in other vertebrate sex-determining pathways (Hattori
et al., 2012). Notably, the therian sex-determining system is
entirely divergent from monotremes, and likely arose just
prior to the split between marsupials and placental mammals
(Potrzebowski et al., 2008; Cortez et al., 2014).

Modern therian sex chromosomes originated from a pair of
autosomes homologous to the chicken chromosome 4 (Lahn
and Page, 1999; Ross et al., 2005). A SOX3 mutation likely
resulted in the sex-determining male gene (SRY), creating de
facto sex chromosomes (Sinclair et al., 1990; Stevanovlć et al.,
1993). Strong selection for linkage between SRY and other male-
specific genes resulted in stepwise recombination suppression
between the ancestral X and Y chromosomes and created
strata of different divergence eras (Rice, 1984; Lahn and Page,
1999; Skaletsky et al., 2003; Ross et al., 2005; Bergero and
Charlesworth, 2009). Throughout evolution, the male-specific
region (MSR) present only on the Y chromosome expanded,
while the X–Y homologous pseudoautosomal region (PAR)
that is essential for proper pairing with the X chromosome
diminished (reviewed in Bergero and Charlesworth, 2009).
The first recombination suppression event appears to have
been an inversion in the last common therian ancestor,
shown as Stratum 1. In placental mammals, an autosomal
region homologous to chicken chromosome 1 (X added
region, XAR) was added prior to the placental radiation,
apparently around the same time as Strata 2/3 were created
through further recombination suppression (Spencer et al.,
1991; Ross et al., 2005; Cortez et al., 2014). Interestingly, more
sophisticated bioinformatic approaches have found evidence
for seven distinct strata within Strata 1–3 (Pandey et al.,

2013), indicative of numerous recombination-suppressing events
within those more distant time frames. The XAR also
underwent successive inversion events, resulting in Stratum
4 and 5 (Lemaitre et al., 2009), and leaving the modern
human PAR (PAR1) (Lahn and Page, 1999; Ross et al., 2005).
A second pseudoautosomal region, PAR2, is present in humans
(Charchar et al., 2003).

As these recombination suppressing events occurred, the Y
chromosome became progressively degraded, with the human
only retaining about 3% of its ancestral genes (Skaletsky et al.,
2003; Bellott et al., 2010). Although there has been speculation
about an impending Y chromosome extinction (e.g., Aitken and
Graves, 2002), the human Y has generally conserved its remaining
genes over the last 25 million years (Hughes et al., 2012).
Not surprisingly, many Y-linked genes are involved in male-
specific processes such as spermatogenesis (Skaletsky et al., 2003);
surviving X–Y pairs (gametologs) are largely involved in dosage-
sensitive processes (Bellott et al., 2014), further discussed below.

Erosion of the Y chromosome leads to gene imbalance in
males compared to the ancestral autosomal gene dosage. Susumu
Ohno hypothesized that male mammals must upregulate their
single X chromosome to match autosomal expression levels
(Ohno, 1967), and that females balance dosage with males
through X-chromosome inactivation (XCI, discussed below).
While Ohno originally referred to XCI as a mechanism of
dosage compensation, some research groups argue that dosage
compensation occurs only in the heterogametic sex (Mank et al.,
2011). Therefore, in this review we will refer to expression balance
between the heterogametic sex chromosomes and the autosomes
as dosage compensation, and that between male and female sex
chromosomes as dosage equivalance.

There have been contradictory findings about dosage
compensation in mice and humans, largely influenced by
the filtering of genes examined (Castagné et al., 2011). Early
microarray studies in mice supported Ohno’s hypothesis (Gupta
et al., 2006; Nguyen and Disteche, 2006), but RNA-sequencing
(RNA-seq) studies in mice and humans have been inconsistent
(reviewed in Mank, 2013; Pessia et al., 2014; Disteche, 2016).
RNA-seq studies that only analyzed highly expressed genes have
supported Ohno’s hypothesis (Deng et al., 2011), although it has
been noted that this filtering may enrich for dosage-sensitive
genes, such as those in large protein complexes (see Pessia
et al., 2012, for further discussion). Similarly, comparisons
including testis-specific genes showed no evidence of global
dosage compensation (Xiong et al., 2010), arguably since average
transcription was decreased (Kharchenko et al., 2011). Notably,
none of these studies considered the evolutionary age of the
genes in question (He et al., 2011). Ohno’s hypothesis specifically
refered to compensation between genes on the ancestral sex
chromosome and their autosomal partners, and so ampliconic or
elsewise added genes (Bellott et al., 2010) might not be expected
to be dosage compensated. Additionally, particularly dosage-
sensitive ancestral genes may have either been translocated to
autosomes or duplicated into paralogous gene families (Hurst
et al., 2015), obviating the need for dosage compensation. When
RNA-seq data was compared between X-linked genes and their
autosomal chicken homologs (Julien et al., 2012), there was no
evidence for global X-upregulation. Intriguingly, evidence for
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FIGURE 1 | Evolution of mammalian sex chromosomes. (A) Current sex chromosomes of the platypus, opossum, mouse, and human, including recombination
locations (black Xs) and homology to current chicken chromosomes (Z chromosome, blue; Chromosome 4, red; Chromosome 1, orange). Divergence times
between lineages (black) and approximate dates of sex-determining mutations (monotremes, AMHY, purple text; marsupials and eutherians, SRY, green text) are
also noted. There is variation in dates in the literature: those shown are from Cortez et al. (2014). See text for further references. (B) Evolutionary progression from
autosomes (light blue, left) to modern human sex chromosomes (right). PARs, light green; Stratum 1, dark green; Strata 2/3, yellow; Stratum 4, fuchsia; Stratum 5,
purple. The XAR/YAR regions from the ancestral chromosome 4 (A) are also noted. MYA, million years ago; PAR, pseudoautosomal region; MSR, male-specific
region; XAR/YAR, X/Y added region.

downregulation of autosomal genes interacting with X-linked
genes was observed, consistent with the need to maintain balance
of expression between the sex chromosomes and the autosomes,
as well as between the sexes.

X-CHROMOSOME INACTIVATION IN
MAMMALS

X-chromosome inactivation is an epigenetic process that occurs
in the early development of therian females, transcriptionally
silencing all but one of the X chromosomes present in each cell.
First proposed in the 1960s (Lyon, 1961), silencing is initiated by
the expression of a long non-coding RNA (lncRNA) on what will
become the inactive X (Xi). The lncRNA spreads in cis to coat the

future Xi, beginning a cascade of epigenetic changes that results
in the formation of a dense heterochromatic Barr body (recently
reviewed in Galupa and Heard, 2018). Once formed, the Xi is
stably inherited through subsequent mitotic cell divisions. XCI
is an imprinted process in marsupials (Richardson et al., 1971),
mediated by expression of the lncRNA Rsx on the paternal X
chromosome (Grant et al., 2012). In placental mammals, XCI
is initiated by the lncRNA XIST (Brown et al., 1991), which
likely evolved from the protein-coding gene Lnx2b (Duret et al.,
2006). The region syntenic to the XIST-containing X inactivation
center is rearranged in marsupials (Davidow et al., 2007) and
Lnx2b remains protein-coding, suggesting that XIST arose after
divergence between marsupials and placentals. The origin of Rsx
is unknown; the syntenic region in eutheria is flanked by HPRT
and FAM122B, and contains the placenta-specific gene PLAC1.
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In placental mammals, XCI is random in embryonic tissues,
although imprinted XCI occurs in the extraembryonic tissues of
mice (Takagi and Sasaki, 1975). Therefore, females are usually
mosaics of cells with either the paternal or the maternal active
X chromosome (Xa). Random XCI requires the existence of
a counting mechanism to ensure that one X chromosome
is always active; this mechanism must distinguish between
two functionally equivalent X chromosomes in the same
nuclear environment. Although numerous models have been
proposed, the factor(s) involved in this mechanism have not
yet been identified (Loos et al., 2016; Migeon et al., 2017;
Mutzel et al., 2019).

In the limited species examined to date, not all X-linked genes
are silenced by XCI. Genes that are still expressed from the
Xi are considered to “escape,” while genes that are silenced are
“subject.” Some escape genes consistently escape inactivation,
while others exhibit variable escape and are only expressed
in some cell types or individuals. Conventionally, genes are
considered to escape if they are expressed at a level that is
at least 10% of the Xa allele (Carrel and Willard, 2005). The
exclusively paternal marsupial XCI has 14–30% of X-linked genes
escaping inactivation (Al Nadaf et al., 2011; Wang et al., 2014;
Whitworth and Pask, 2016). Humans also have considerable
expression from the Xi, with at least 15% consistently escaping
and another 15% variably escaping XCI (Balaton et al., 2015).
Mice appear to be more stringent in their silencing with only 3–
7% of X-linked genes consistently escaping XCI, although more
variable escape genes are being described (reviewed in Carrel and
Brown, 2017). When discussing escape from XCI, it is generally
unknown if escape occurs from reactivation or avoidance of an
initial silencing signal.

GENES THAT ESCAPE FROM XCI

An Evolutionary Perspective on Why
Genes Escape XCI
There is no single model that satisfactorily explains the variability
in both extent and specific genes that escape inactivation across
species. There are likely multiple evolutionary paths that can
result in ongoing expression from the Xi. Those X-linked genes
that retain Y homology are argued to have critical dosage
sensitivity that did not allow loss of expression from either the Y
or the Xi (Bellott et al., 2014). However, not all genes that escape
XCI need to be dosage-sensitive. Other X–Y gametologues with a
more recent addition to the sex chromosomes, or a more recent
divergence between them, may have neither lost Y expression
nor gained X silencing capacity. Additionally, over half of the
genes that escape from XCI lack functional Y gametologs (Balaton
et al., 2015). Escape for these genes could simply reflect that the
acquisition of features favoring silencing may not have occurred.
If escape genes have DNA sequences that promote expression
from the Xi then a flanking dosage-insensitive gene may also
be expressed as a bystander effect. Additionally, selection might
favor expression from the Xi in females. Below, and in Figure 2,
we outline aspects of these scenarios, and conjecture which escape
genes might be so explained.

Y Homology
The presence of Y homology is clearly a strong driver for escape,
albeit for only a subset of genes. The most complete block of Y
homology is the PAR, and in humans there is both a short arm
PAR (PAR1) and a smaller long arm PAR (PAR2) (Figure 1). As
initially proposed by Lyon, escape for these genes would allow
dosage equivalence between males and females (Lyon, 1962).
All of the genes examined to date within PAR1 do escape from
XCI, although they generally show some male-bias in expression
(Balaton et al., 2015; Tukiainen et al., 2017). Surprisingly, some
PAR2 genes are silenced on both the Xi and the Y (Ciccodicola
et al., 2000), highlighting another route to equalize expression
between the sexes.

Outside of the PARs, ongoing Y homology still strongly
correlates with escape from XCI, most strikingly for those
genes that have retained functional Y gametologs (Carrel and
Willard, 2005). In an analysis of eight mammals, convergent
survival of 36 ancestral X–Y genes was observed (Bellott et al.,
2014). The remarkable longevity of these pairs was argued to
result from either acquisition of male-specific function, or the
need to preserve dosage of critical regulatory genes. Indeed,
many of the long-lived X-Y gametologous genes are involved
in transcription/translation or chromatin modification, and 10
of the 17 ancestral gametologs in humans are known to escape
XCI (Bellott et al., 2014; Balaton et al., 2015). These findings
have been supported by a recent study that used the conservation
of miRNA targeting to demonstrate that remaining X–Y pairs
are more dosage sensitive than escape genes without gametologs
(Naqvi et al., 2018).

Beyond Y Homology
As discussed above, the step-wise loss of recombination left
footprints of evolutionary strata on the X chromosome. There
is a clear correlation between these strata and the likelihood of
escape from inactivation, with the more recently diverged genes
being more likely to escape (Carrel and Willard, 2005). It has been
suggested that elements that favor silencing accumulated on the
X chromosome once it diverged from the Y chromosome. The
potential nature of these elements will be discussed in section
“Elements That Influence Escape From XCI.”

Selection could also favor escape from XCI if there is a female-
specific benefit to ongoing expression from the Xi. Notably, the
acquisition of an invasive placenta coincides evolutionarily with
the addition of the XAR, which harbors an excess of escape genes.
This change in reproductive biology required female eutherian
immune systems to both be able to tolerate fetal antigens
and defend against parasites and pathogens during pregnancy.
The “pregnancy compensation hypothesis” recently proposed
that sex-specific differences in both autoimmune diseases
(female-biased) and most cancers (male-biased) in industrialized
environments are due to adaptions that occured to faciliate
successive pregnancies in ancestral conditions (Natri et al., 2019).

Elements That Influence Escape From
XCI
The progressive sequestering of recombination between the sex
chromosomes likely coincided with different rates of acquisition
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FIGURE 2 | Human escape genes and possible underlying evolutionary reasons for their ongoing expression from the Xi. On the left is an ideogram of the X
chromosome showing the genes that escape XCI (green) or variably escape XCI (purple) with lines appearing darker when multiple genes are nearby (data from
Balaton et al., 2015). Circles to the right of the chromosome reflect locations of escape genes with features highlighted in the table to the right. The color of the dots
matches the table, with PAR1 genes shown as an oval, given their abundance. ∗As tabulated in Balaton et al. (2015); 8 Includes three ancestral X genes; δ Includes
four ancestral X genes.

for genetic elements that favor the spread of silencing. Escape
genes may be more prevalent in the XAR due to a paucity of
silencing elements in this region. Notably, escape genes are still
expressed from older areas of the X chromosome and so must
have also acquired genetic elements that still allow expression
from the Xi. Domains of silencing and escape require boundaries
between the different regions of closed versus open chromatin.
Here we discuss the evidence for silencing, escape, and boundary
elements, and the potential effects of the physical structure
of the Xi. To date, these features have only been studied in
humans and mice.

Silencing Elements
The autosomal portion of an unbalanced X;autosome
translocation is able to establish stable silencing, although
less efficiently than the X chromosome itself, which led to the
proposal of “waystations” that propagate the silencing signal
along the X chromosome (Gartler and Riggs, 1983). These
waystations would need to be present in greater frequency on the
X chromosome compared to the autosomes; Mary Lyon was the
first to suggest that waystations could be repeat elements such
as LINEs (Lyon, 1998). Bioinformatic studies have supported
this “repeat hypothesis,” demonstrating that LINEs are generally
depleted around escape genes and enriched near subject genes,
relative to the rest of the genome (Bailey et al., 2000; Wang et al.,
2006). This pattern has held for autosomal genes on X;autosome
translocations, suggesting a functional relationship rather than
an evolutionary coincidence of both acquisition of repetitive
elements and silencing (Bala Tannan et al., 2014; Cotton et al.,
2014). LINEs are densest in the oldest strata of the human X
(Ross et al., 2005), consistent with the notion of the accumulation
of silencing elements over evolutionary time. The mouse, which
has fewer escape genes, also has a greater density of LINEs

(Ngamphiw et al., 2014). Additionally, pre-existing features of
heterochromatin such as polycomb repressive complex marks
are strongly associated with genes that become silenced and
therefore may also act as waystations (Cotton et al., 2014;
Loda et al., 2017).

Intrinsic Escape Elements
A number of genes, particularly those with Y gametologs,
consistently escape from XCI across multiple species, arguing
that their escape is controlled by conserved elements that were
present in the ancestral sex chromosomes. Definitive support for
intrinsic escape elements was obtained from integrating a BAC
transgene containing an escape gene (Kdm5c) in four random
locations on the mouse Xi (Li and Carrel, 2008). Escape status was
recapitulated in that Kdm5c always escaped, while the flanking
genes present in the BAC remained subject to XCI. The ongoing
expression of a primate-specific escape gene (RPS4X) that was
observed upon integrating a human BAC transgene onto the
mouse Xi demonstrated that such elements could be recognized
across species (Peeters et al., 2018). This finding validates the use
of mouse models to delineate escape elements present in humans
or other mammals.

Boundary Elements
Boundaries between subject and escape regions on the X
have been argued to be established by CTCF sites (Giorgetti
et al., 2016), which are well established to create topologically
associating domain (TAD) boundaries, marking regions of
the genome that are enriched for within-domain interactions
(Gómez-Marín et al., 2015). However, since there are over 2000
CTCF sites on the X, there must also be other factors involved in
determining what designates escape regions (Ding et al., 2014).
The BAC transgene studies mentioned above provided evidence
for sequences inhibiting the spread of euchromatin: when the
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integrated escape region was truncated, spread of escape to
flanking genes that are normally subject to XCI was observed
(Horvath et al., 2013). In addition to serving as boundaries, CTCF
has been reported to associate with promoters of escape genes
(Loda et al., 2017), as has the YY1 transcription factor (Chen et al.,
2016; Loda et al., 2017).

Boundary elements may be present between the clusters
of escape and subject genes in humans; this clustering is an
important contributor to the greater number of genes that escape
inactivation in humans relative to mice. These escape clusters are
notably larger on the human short arm and roughly coincide with
TADs (Marks et al., 2015). In mice, only one or two genes within
these regions escape XCI (reviewed in Balaton and Brown, 2016).
The additional escape genes in these TADs in humans may be
due to a “bystander” effect in which adjacent genes also escape
because they lack proximal silencing elements or boundaries,
features presumably acquired within the mouse TADs. To date,
it is unknown whether the clustering patterns in humans or mice
is the norm in other mammals.

Physical Structure of the X
The physical structure of the Xi likely also influences which genes
escape from inactivation. The Xi is comprised of a gene-rich outer
rim and repeat-rich internal core (Clemson et al., 2006). Upon
silencing, subject genes transition inward, whereas the escape
genes remain more peripheral (Chaumeil, 2006). Chromosome
conformation capture techniques have allowed determination of
the detailed structure of the Xi (Rao et al., 2014; Deng et al.,
2015). Both mouse and human have an Xi that forms two
major “superdomains,” with the “hinge” region containing the
microsatellite Dxz4/DXZ4 (Deng et al., 2015). DXZ4 has been
shown to bind CTCF exclusively on the Xi (Chadwick, 2008;
Horakova et al., 2012). Intriguingly, deletion of the Dxz4/DXZ4
region leads to loss of Xi superstructure but has a limited effect
on transcription from the Xi in either species; paradoxically,
the mouse deletion resulted in a tendency for less escape from
XCI for variable escape genes (Darrow et al., 2016; Giorgetti
et al., 2016). It is possible that the different locations of the
hinge between humans and mice might allow greater escape from
XCI in humans, where the superdomains are less symmetrical.
Additionally, the mouse X chromosome is acrocentric whereas
the human X is submetacentric (Figure 1); the need to “traverse”
the centric heterochromatin might reduce the strength of the
X inactivation signal on the human short arm. Other species
have differing centromere locations, including an acrocentric
configuration in buffalo (Raudsepp et al., 2012), reinforcing
that determining XCI status across eutheria has the potential to
provide considerable insight into how genes escape from XCI.

Approaches for Studying Escape From
XCI Across Species
Currently the inactivation status of genes has only been
extensively studied in humans and mice. Challenges to studying
escape in bulk cell samples across species include random XCI
in eutherian females, and the lower expression from the Xi
compared to the Xa. We will discuss approaches used in humans
and mice, and their potential for studies across eutheria.

The first extensive survey of escape from inactivation in
humans utilized somatic cell hybrids (Carrel and Willard, 2005),
in which expression from the human Xi could be distinguished
from the Xa by separation of the human chromosomes in a
mouse background. While this could be used for other eutheria,
hybrids bring their own challenges, including loss of XIST
localization (Clemson et al., 1998; Hansen et al., 1998) and
reactivation of repetitive elements (Ward et al., 2013). Carrel
and Willard (2005) also took advantage of expressed single
nucleotide polymorphisms (SNPs) to examine allele-specific
expression in clonal fibroblast cell lines. More recently, while
surveying post-mortem tissue samples [the Genotype-Tissue
Expression (GTEx) study], a female with completely non-random
inactivation was identified, allowing a similar study of multiple
tissues (albeit in a single female) (Tukiainen et al., 2017). In
mice, to obtain samples with non-random inactivation, groups
have studied extra-embryonic tissues (Mugford et al., 2014),
clonal cell lines (Berletch et al., 2015), or engineered Xist
mutations (Marks et al., 2015). The GTex study also investigated
escape using single-cell RNA-seq (scRNA-seq). As each cell has
only a single Xa, the presence of biallelic expression indicates
escape from XCI, and clonal cell populations are not required.
Therefore, this approach could be applied to other species.
Currently scRNA-seq is often focused on cell identification rather
than deep gene-wide reads that would be informative for XCI
status, but new bioinformatic and sequencing approaches are
being developed. In mice defined crosses between divergent
strains or species with unique polymorphisms allows for
greater informativity from allelic expression analyses. Limited
heterogeneity in livestock, such as cows, could reduce the
informativity of allelic expression assessment of XCI in other
species (Couldrey et al., 2017).

In the absence of polymorphisms, comparisons of expression
in females relative to males correlates with escape (Tukiainen
et al., 2017), although this approach is limited in sensitivity,
and hormonally induced gene expression reduces robustness.
Extension to aneuploidies can improve sensitivity, but is
confounded by impacts of the aneuploidies themselves (discussed
further below). By using DNA methylation as a surrogate
for inactivation, comparison of males to females has been
quite informative, particularly for those genes with CpG-rich
promoters that become highly methylated on the Xi (Cotton
et al., 2015). Such analyses, while not directly examining
expression, need neither clonal populations nor polymorphisms,
and thus would be amenable to exploration of additional
species. DNA methylation of candidate escape genes provided
evidence for escape in moles and cow (Yen et al., 2007).
As a caveat, marsupial DNA methylation is not differential
at promoters, but rather shows hypomethylation in flanking
regions (Waters et al., 2018). Other “marks” of an Xi can also
be used to identify XCI status – such as RNA polymerase
occupancy (Kucera et al., 2011) or ATAC-seq open chromatin
(Qu et al., 2015) – but these have not been used frequently.
Assessment of expression by in situ hybridization (RNA-FISH)
allows the examination of expression from the Xa or Xi within
individual nuclei. Biallelic signals (indicative of escape from
XCI) were observed in elephant, human, and mouse for several
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candidate escape genes, although a substantial proportion of
cells showed only a single focus of expression (Al Nadaf et al.,
2011). This could be a result of the challenge of detecting
low levels of expression from the Xi, or a reflection of
heterogeneous Xi expression as observed in other studies (e.g.,
Garieri et al., 2018).

IMPLICATIONS OF ESCAPE FROM XCI

Sex-Chromosome Aneuploidy
Sex chromosome aneuplodies occur in approximately 1/500
births and so are among the most common chromosomal
abnormalities in humans (Nussbaum et al., 2001). This is
presumably due to reduced phenotypic consequences, as all but
one X chromosome is silenced, and the Y chromosome has both
a reduced number and testis-specialization of genes.

Turner syndrome (TS) results from the absence of a
second sex chromosome, although mosaicism and rearranged
X chromosomes (such as an isochromosome) are observed in
a significant proportion of cases. Strikingly, the vast majority
of 45,X conceptuses are spontaneously aborted, which has been
argued to reflect a need for some level of mosaicism (Kelly
et al., 1992). In spite of this loss, TS is observed in ∼1/2,000
newborn females, leading to infertility, cardiovascular defects,
and other neurological and physical abnormalities (Granger
et al., 2016). Mice show far less phenotypic consequence of the
absence of a second sex chromosome, which may be due to the
reduced number of genes that escape inactivation (reviewed in
Berletch et al., 2011).

Klinefelter syndrome, usually 47,XXY but sometimes
48,XXXY or 49,XXXXY, occurs in ∼1/650 male births and is
accompanied by the inactivation of all but a single X. While
infertility and tall stature are common, additional phenotypic
consequences vary widely, contributing to an overall increase in
morbidity and mortality (Kanakis and Nieschlag, 2018). In mice,
the presence of imprinted X inactivation in the extraembryonic
tissues causes an extra maternally derived X chromosome to be
detrimental to early development (Shao and Takagi, 1990).

There are reports of sex chromosome aneuploidy in other
mammals, and by reviewing this literature in comparison to
genome assemblies, Raudsepp et al. suggest the viability of XO
individuals is strongly correlated with a smaller PAR (Raudsepp
et al., 2012). They fail to detect a similar correlation with
X chromosome trisomy, implicating the PAR genes in early
developmental failure rather than a PAR contribution to non-
disjunction. In addition to the rare literature reports of cats with
sex-chromosome monosomy, there is also a scientific and lay
literature describing male tortoiseshell or calico cats. As black
and orange coat color are X-linked alleles, these felines are
therefore presumably XX. These have been shown to be both
39,XXY and chimeras (reviewed in Lyons, 2015). Interestingly,
the karyotyping of intersex marsupials has suggested that while
the Y chromosome is testis-determining, the development of a
scrotum or pouch is more likely controlled by a gene(s) on the
X chromosome, likely through dosage of a gene that escapes X
inactivation (reviewed in Deakin et al., 2012).

Escape Genes and Disease
Due to the complexity of comparing XX females and XY
males, the X chromosome is often excluded from genome-
wide association studies, limiting our understanding of its
relationship to complex diseases. Conversely, X-linked mutations
in hemizygous males are readily detected, and thus a high
density of monogenic traits have been assigned despite the
relatively low gene density. The X chromosome is subject
to unique evolutionary pressures: it spends more time in
females, yet the hemizygosity in males allows immediate
expression (and therefore positive or negative selection) of
new mutations. Thus, the X chromosome has a unique
repertoire of genes, and has been described as a “smart
and sexy” chromosome due to genes involved in brain and
gametogenesis (Graves et al., 2002, reviewed in Disteche, 2016).
There are over 141 known X-linked intellectual disability
genes, with potential for another 80 currently only mapped
as syndromes (Neri et al., 2018). Strikingly, duplications
and consequent phenotypes have been observed for the
majority of these genes, suggesting that there is considerable
dosage sensitivity.

The X chromosome is home to a variety of immune-
related genes. Auto-immunity is often more common in females
(reviewed in Natri et al., 2019), and is also more prevalent in
Klinefelter males than XY males. Furthermore, most cancers
are more prevalent in males than females, and immunological
differences have been argued to be a contributor to this sex
differential (Natri et al., 2019). Additionally, for X-linked genes
with tumor-suppression function, only a single mutation in
males would result in loss of function. If the gene is subject
to XCI, females would also lose function through a single
Xa mutation. However, if this gene escapes XCI, then females
would be protected through their Xi copy resulting in a lower
prevalence in females. This scenario was recently developed into
the EXITS hypothesis (escape from X inactivation for tumor
suppressors) to explain the male predominance for many cancers
(Dunford et al., 2017).

CONCLUDING THOUGHTS

The evolution of divergent sex chromosomes led to dosage
imbalances – both between the ancestral autosomes and the
sex chromosomes, and between males and females. While Ohno
proposed up-regulation of the residual X-linked genes (dosage
compensation) and silencing of one X chromosome in females
(dosage equivalence), studies in the last 50 years have revealed
unexpected alternatives. In humans over 25% of genes escape
from XCI, and over half of these do not have Y gametologs.
Although multiple controlling elements have been suggested,
it is currently unknown what DNA sequences, chromatin
features, or ultrastructural contributions allow genes to escape
from XCI. Identification of these elements will provide insights
into heterochromatin, and may inform therapeutics aimed at
reactivating X-linked genes, silencing autosomes, or avoiding
host silencing of gene therapies. In mice, the use of sex-reversed
mice to assess the “four core genotypes” allows researchers to
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distinguish the impact of the sex chromosomes from sex of
the animal, and has revealed chromosomal contributions to
many diseases (Burgoyne and Arnold, 2016). Since humans have
more escape genes, these contributions could be even larger and
thus understanding expression from the sex chromosomes is an
important facet in delineating the abundant sex differences in
human disease. As the ancestry of X-linked genes led to their
ability to escape, exploring dosage compensation and dosage
equivalence in more species could provide clues to the balance
of features involved.
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