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Mitochondrial DNA (mtDNA) molecules exist in populations within cells, and may carry

mutations. Different cells within an organism, and organisms within a family, may have

different proportions of mutant mtDNA in these cellular populations. This diversity is often

thought of as arising from a “genetic bottleneck.” This article surveys approaches to

characterize and model the generation of this genetic diversity, aiming to provide an

introduction to the range of concepts involved, and to highlight some recent advances

in understanding. In particular, differences between the statistical “genetic bottleneck”

(mutant proportion spread) and the physical mtDNA bottleneck and other cellular

processes are highlighted. Particular attention is paid to the quantitative analysis of the

“genetic bottleneck,” estimation of its magnitude from observed data, and inference of

its underlying mechanisms. Evidence that the “genetic bottleneck” (mutant proportion

spread) varies with age, between individuals and species, and acrossmtDNA sequences,

is described. The interpretation issues that arise from sampling errors, selection, and

different quantitative definitions are also discussed.

Keywords: mtDNA, bottleneck, development, inheritance, modeling, uncertainty, heterogeneity

1. INTRODUCTION

Mitochondria are vital energy-producing compartments in eukaryotic cells. As a result of their
evolutionary history, they retain small genomes (mtDNA) which encode important respiratory
machinery. In humans and other species, mtDNA molecules are inherited uniparentally, rarely
recombine, and can acquire damaging mutations (Wallace and Chalkia, 2013). As hundreds or
thousands of mtDNA molecules exist in the same cell, mutations may be present in some but not
all molecules: we refer to the fraction of molecules in a cell with a given mutation as the “mutant
proportion”. MtDNA molecules within the same cell can harbor many different genetic variants at
low proportions, a situation called microheteroplasmy (Guo et al., 2013). The mutant proportion
associated with each single genetic variant is of scientific and translational interest, particularly as
some variants (e.g., point mutations) have pathological consequences above a certain “threshold”
proportion (Rossignol et al., 2003; Johnston and Burgstaller, 2019).

If mothers passed an identical mutant proportion onto each offspring, the buildup of mutations
would eventually cause extinction (Muller, 1964). As a result, a developmental process has evolved
to generate cell-to-cell variability in mutant proportion in animal germlines (Carling et al., 2011;
Jokinen and Battersby, 2013; Stewart and Chinnery, 2015; Zhang et al., 2018)1. Thus, while some
oocytes may receive higher mutant proportions, some will receive lower loads. Rather than all of
a mother’s oocytes having 50% mutant proportion, for example, they may range from 20 to 80%
(Figure 1A). Oocytes with lower mutant proportions may then go on to become viable offspring,
avoiding the buildup of mutation over generations. This increase in the oocyte-to-oocyte variance

1Other mechanisms, outside the scope of this article, exist to mitigate mtDNA mutation in other taxa (Johnston and
Burgstaller, 2019).
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Johnston Mitochondrial Bottleneck Mechanisms and Models

FIGURE 1 | The “genetic bottleneck” increases cell-to-cell mutant proportion spread. (A) A mother’s life begins as a single cell, with no associated variance in mutant

proportion (white circles are wildtype mtDNAs, black circles are mutant mtDNAs; inset numbers give mutant proportion). Development increases cell-to-cell mutant

proportion spread in the mother’s developing oocytes. In the next generation, oocytes or offspring with lower mutant proportions may be favored. (B) Different

experimental structures to investigate the generation of mutant proportion spread. (i) Comparing mutant proportion in a mother to her offspring. (ii) Comparing mutant

proportion from a reference measurement to a set of individual oocytes. (iii) Comparing mutant proportion differences in a set of mother-child pairs. (iv) Recording

mutant proportion differences across oocytes or siblings.

of mutant proportion is typically discussed as resulting from
a “genetic bottleneck.” Increasing cell-to-cell mtDNA variance
has also been reported in somatic tissues, suggesting that the
“genetic bottleneck” picture may also apply outside the germline
(Sekiguchi et al., 2003; Wilton et al., 2018).

Oocyte-to-oocyte, and offspring-to-offspring, variance in
mutant proportion is important in the fundamental biology of
inheritance, and in human health and disease. While beneficial
from an evolutionary perspective, this variance makes it hard to
predict mtDNA inheritance patterns. As diseases result from high
mutant proportions (Rossignol et al., 2003; Wallace and Chalkia,
2013), this unpredictability makes clinical planning difficult
for families carrying dangerous mtDNA mutations (Poulton
et al., 1998; Sallevelt et al., 2013). As such, substantial scientific
effort is spent characterizing the processes that give rise to
mtDNA variability.

The picture of the “genetic bottleneck” can be useful as a
simple comparative statistic. However, experimental technology
and mathematical theory has now advanced to the stage
where we can ask (and begin to resolve) questions about the
detailed physical mechanisms behind this genetic behavior.
This article will attempt to compare the effective models
and detailed mechanisms used to understand this important

process, and discuss how these vary through biology and in the
scientific literature.

1.1. Terminology
The “genetic bottleneck” refers to a genetic quantity—an increase
in cell-to-cell variability in mutant proportion. In humans and
other animals, the genetic bottleneck is achieved in part
(though likely not in full) by a “physical bottleneck” (described
further below, and recently reviewed in Zhang et al., 2018).
This “physical bottleneck” is a physical reduction in the copy
number of mtDNA molecules per cell, which occurs during
development. Because the word “bottleneck” appears in both
terms, it is sometimes tempting to view the genetic and physical
bottlenecks as equivalent. This is not generally the case. Unlike
the physical bottleneck, the genetic bottleneck does not directly
correspond to a observable number of molecules that can be
directly measured by some experiment (Birky, 2001; Johnston
and Jones, 2016). A genetic bottleneck of size 10, for example,
does not mean that the physical copy number of mtDNAs per
cell need ever be 10 at any point during development. As such,
the term “mutant proportion spread,” with less physical and
more genetic implication, will be used here as a synonym for
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BOX 1 | Calculation and symbols used for mutant proportion statistics.

Given a set of n heteroplasmy measurements h1, h2, . . . , hn, the

sample mean [h] = 1
n

∑n
i=1 hi . Different ways exist to calculate sample

variance. Typically, the “unbiased sample variance” is used, that is

s2 = 1
n−1

∑n
i=1(hi − sample mean [h])2. The “biased sample variance” is the

mean squared difference from the mean s2n = 1
n

∑n
i=1(hi−sample mean [h])2.

The use of n − 1 rather than n, known as Bessel’s correction, removes

bias in the sample variance. As described in the text, studies calculate

sample var [h] using either s2 (usually for Figure 1Bi,ii,iv) or a mean squared

difference approach more like s2n (for Figure 1Biii).

In the literature, sample variances s2 may also be found represented by

V(h), V (h), or σ 2 (but the latter is usually used for population variance). Sample

means may be written h̄, E(h), 〈h〉, µ (but the latter is usually used for

population mean).

“genetic bottleneck.” Note that a smaller “bottleneck” leads to
more spread and vice versa. As described below, the “genetic
bottleneck” (mutant proportion spread) may vary with species,
individual, time, mtDNA sequence and other factors. The term
“mutant proportion spread” perhaps captures this fluidity more
than the more rigid “bottleneck.”

We use “mutant proportion” rather than “heteroplasmy”
because a heteroplasmy level over 50% is semantically difficult:
the majority mtDNA type should then strictly be considered
the reference type, and heteroplasmy redefined with respect to
that type.

When taking biological observations and comparing them
to models, population and sample statistics must be considered.
Population statistics are summaries of a quantity—like the
mean and variance—over the entire population of interest—
for example, all oocytes in an organism. Sample measurements
of statistics like mean and variance are those derived from a
limited number of samples of a larger population. Experimental
limitations usually mean that we must consider sample
statistics—for example, a set of 20 oocytes from an organism. By
contrast, quantitative models typically phrase their predictions
in terms of population statistics. Accidents of sampling
may lead to differences between sample measurements and
population statistics.

When considering these statistics, different studies often use
different symbols for the same quantity (Box 1). Here, we will
attempt to make equations as verbally “readable” as possible. We
write sample var

[

h
]

for sample variances, sample mean
[

h
]

for
sample means, var

[

h
]

for population variances and mean
[

h
]

for population means. The sample quantities are computed as
described in Box 1.

2. OBSERVATIONS

The fundamental observation that implies the existence of a
“genetic bottleneck” (mutant proportion spread) is that offspring
have different mutant proportions to their parents (Figure 1A).
mutant proportions also differ from offspring to offspring.
Therefore, at some point(s) between generations, variability in
mutant proportion is induced. Parent-to-offspring differences

in mtDNA mutant proportion were first reported in cattle
(Hauswirth and Laipis, 1982; Ashley et al., 1989; Koehler et al.,
1991). Following this, experimental evidence for a “genetic
bottleneck” (mutant proportion spread) has been found in
animals from flies (Solignac et al., 1984), crickets (Rand and
Harrison, 1986), mice (Wai et al., 2008; Burgstaller et al.,
2018), salmon (Wolff et al., 2011), and penguins (Millar et al.,
2008) to humans (Marchington et al., 1997; Rebolledo-Jaramillo
et al., 2014; Li et al., 2016). Some examples of the variety of
experimental bottleneck studies are compiled in Figure 2.

A mother starts her life as a single fertilized oocyte. As this
is a single cell, there is no cell-to-cell variability in mutant
proportion; there is only a single value. The oocytes that later
develop in that mother, however, may vary substantially in
mutant proportion. This suggests that the reason for offspring
differencesmay be the induction of cell-to-cell mtDNA variability
in germline development.

To compute the size of the “genetic bottleneck” (mutant
proportion spread), we need a set of “before and after”
measurements (Figure 1B). Often, the “before” measurement is
taken from a mother. Different studies have different “after”
observation structures. In animal models and some human
experiments, sets of “after” observations are obtained: for
example, measurements across a set of offspring (Figure 1Bi),
or a set of single-cell oocyte measurements (Figure 1Bii).
Developmental studies aimed at identifying mechanisms rather
than “bottleneck size” may take samples of oocytes or
their precursors at different stages of development. In other
experiments, particularly in human population genetics, a
single “after” observation is taken: for example, a single
offspring (Figure 1Biii). Many before-after pairs are then used
to characterize the population. When a “before” observation is
not available, mutant proportion spread may be characterized
from “after” measurements and some estimate of the “before”
state is constructed (Figure 1Biv). This estimate is often the
sample mean of the “after” measurements, thus assuming that no
selective shift has occurred.

The mutant proportion variability for a system is typically
reported as the sampled variance across a set of “after”
observations sample var

[

h
]

(Figure 1B). Mostmodels describing
mtDNA statistics (see below) predict that the population variance
will follow the form:

var
[

h
]

= h0(1− h0)× . . . , (1)

where . . . is some expression that may vary according to the
model, and h0 is the mutant proportion in the initial “before”
population from which sampling takes place (not the new
“after” population). In other words, most models predict cell-
to-cell mutant proportion variance to depend on initial mutant
proportion h0, and specifically to be proportional to h0(1− h0).

Because most models have the above form, we often work with
a quantity which we here call “mutant proportion spread” but
which is usually called “normalized heteroplasmy variance”:

sample var′
[

h
]

=
sample var

[

h
]

h0(1− h0)
. (2)
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FIGURE 2 | Mutant proportion spreads observed in different systems. Some examples of the diverse mutant proportion spread sample var′ [h] observed

experimentally. Loci in brackets refer to specific human mtDNA mutations; PGC, primordial germ cell.

The reason for working with sample var′
[

h
]

is that its normalized
value does not typically depend on the specific initial mutant
proportion values h0 from one particular experiment. The results
from different experiments, with different values of h0, can then
be more naturally compared.

These variability observations are typically studied from two
different perspectives. First, at the “statistical” level: what is
the distribution of mutant proportions that will arise from a
given mother? This perspective often uses “genetic bottleneck
size” as a single number that reflects the observed sample-to-
sample mutant proportion spread. Second, at the “mechanistic”
level: what physical mechanisms give rise to this distribution
of mutant proportions? This perspective attempts to link the
coarse-grained outcome of the “genetic bottleneck” to specific,

measurable physical rates and properties. In this article, we will
first discuss concepts related to this first perspective, before
surveying recent progress on the second.

3. THE “GENETIC BOTTLENECK”
ABSTRACTED AS SAMPLING EVENTS OR
DRIFT

3.1. Abstracting the “Genetic Bottleneck”
as a Single Sampling Event
For convenience, studies often describe the “genetic bottleneck”
(mutant proportion spread) as the result of a single abrupt
event that creates many new individuals, with different mutant
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FIGURE 3 | Constructing new populations from random sampling of an initial population. (A) Sampling an initial population to construct many new populations of size

N. Smaller N generates more variability between the new populations. (B) Reamplification of sampled populations to the original size can be deterministic (left,

preserving mutant proportion) or stochastic (right, changing mutant proportion). (C) Structures of several distributions related to the study of the “genetic bottleneck”

(mutant proportion spread), parameterized by effective “bottleneck size” N.

proportions, from an initial individual (Figure 3A). In this
case, the resulting “bottleneck size” is simply a readout of
mutant proportion spread, and does not directly correspond
to any physical observable. In particular, it is not generally
equal to the minimum copy number of mtDNA molecules (the
“physical bottleneck”) (Birky, 2001; Jokinen and Battersby, 2013;
Johnston and Jones, 2016; Zhang et al., 2018). This is because
the “genetic bottleneck” folds together all mechanisms that can
influence mutant proportion spread—the physical bottleneck,
cell divisions, random mtDNA dynamics, and so on. The
specific number associated with “genetic bottleneck size” may
therefore be substantially lower than the physical bottleneck
during development.

The goal in this perspective is typically to characterize the
“genetic bottleneck” (mutant proportion spread) under different
conditions. These may involve, for example, different genetic
features, different populations, and different species. Knowledge
of the value associated with the “genetic bottleneck” (mutant
proportion spread) in these cases can inform fundamental
biology and clinical planning (Sallevelt et al., 2013).

The concept underlying this approach is a model of “random
sampling.” Here, we start with an initial population of mtDNA,
with mutant proportion h0. To create one instance of a final
population—for example, the population in one oocyte in the
next generation—we randomly sample that initial population.
Specifically, we pick at random one member of the initial
population and put an mtDNA molecule of that type in our final
population. If we are sampling “with replacement,” we retain
the picked member in the original population. The alternative
is sampling “without replacement,” which involves removing the
picked member from the source population so it cannot be
picked again.

If we use N picks with replacement to construct one new
population, and another N picks with replacement to construct
a second new population, and so on, the new populations will
likely differ (Figure 3A). This is because we are likely to choose

different numbers of eachmtDNA type when we are constructing
the new populations.

Quite how different the new populations will be depends on
N, the number of picks. If we just pick N = 1 mtDNA from
our source population for each new population, different new
populations may differ substantially: each will contain only one
mtDNA type, so some populations will have a mutant proportion
of 0 and some a mutant proportion of 1. By contrast, if N is high,
we drawmany samples from our initial population, and are likely
to end up with new populations that look rather like the initial
one (with mutant proportions close to h0). We can immediately
see that our mutant proportion spread (genetic bottleneck) will
decrease as N decreases (Figure 3A).

This process is called binomial sampling. The actual variance
between our new populations is well-known from theory, and is

var
[

h
]

=
h0(1− h0)

N
. (3)

A common picture of the “genetic bottleneck” is exactly this N.
That is, if we observe a certain mutant proportion spread across
cells or samples, we work out how large or small N would have
to be to generate that amount of spread through this binomial
sampling, and call this number the “genetic bottleneck.”

How we estimate N depends on the structure of our
experiment (Figure 1B). First consider the case where we have
a single “before” measurement and a set of “after” measurements
(for example, a mother mutant proportion and a set of offspring
(Figure 1Bi) or oocyte (Figure 1Bii) mutant proportions). Take
the sample variance sample var

[

h
]

of the “after” measurements.
Call the “before” measurement h0. Then the definition of
“bottleneck size” is often taken to be

N =
h0(1− h0)

sample var
[

h
] =

1

sample var′
[

h
] (4)

based on this binomial sampling picture. If h0 is not known,
as in Figure 1Biv, it is sometimes estimated to be equal to
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FIGURE 4 | Estimating the “genetic bottleneck” from different data sources. (A) Simulated data, comparing estimates of “bottleneck size” N using either 16 “after”

measurements (“Variance”) or 16 sets of single “after” measurements (“MSD”). Estimates are performed in the presence of different levels of selection (s = 1, no

selection; decreasing s is increasing selective pressure). (B) Uncertainty in a “bottleneck size” estimate using mean [h] = 0.5, var [h] = 0.01, and different numbers of

samples n. Particularly for n < 10, bottleneck size estimates can have large uncertainty.

sample mean
[

h
]

. That is, the assumption is made that no shift in
mutant proportion has taken place due to selection or accidents
of sampling.

The idea here is to convert a less intuitive quantity
sample var′

[

h
]

into a more intuitive one (an effective number
of segregating units). However, this binomial sampling picture
has some issues. First, it does not correspond to a plausible
biological mechanism. Development does not involve a single,
abrupt sampling event. How reamplification of mtDNA back
to its original level takes place is rarely considered (Figure 3B),
although models for reamplification do exist (see below). Second,
and related, a binomial sampling regime predicts a binomial
distribution for final mutant proportion (Figure 3C). For a small
value of N, this means that mutant proportion can only take one
of a restricted set of values. For example, if N is 4, we would
only expect mutant proportions of 0, 25, 50, 75, and 100% after
sampling. Other models have been proposed to address these
shortcomings (see below).

Next, consider the case where we have a set of paired
“before” and “after” observations (for example, the mother-
single offspring pairs in Figure 1Biii). The prevailing approach
to calculate a “bottleneck size” here is via an expression derived
in references (Millar et al., 2008; Hendy et al., 2009) based on

N =
h0(1− h0)

sample mean
[

(h− h0)2
] . (5)

Here, the spread of “after” measurements sample var
[

h
]

=
1

n−1

∑

i(hi − sample mean
[

h
]

)2 has been replaced by the mean
square difference between the “before” and “after” measurements

1
n

∑

i(hi − h0)2. That is, the approach assumes that the average

“after” measurement sample mean
[

h
]

is equal to the “before”
measurement h0—in other words, that no shifts in mean mutant
proportion act between generations. If selection is in fact present,
Equations (4) and (5) give different results, and Equation (5)
quickly fails to capture the true bottleneck size even in abstracted
systems (Figure 4). Because Equation (5) deals with squared
differences, selective shifts in different directions do not “cancel
out” but rather reinforce the resultant discrepancy.

3.2. The “Genetic Bottleneck” Abstracted
as Several Sampling Events or Drift
A single binomial sampling event does not represent a real
biological mechanism. To improve this picture, some studies
consider the “genetic bottleneck” (mutant proportion spread)
as arising from a series of sampling events, modeling cell
divisions that randomly partition mtDNA molecules between
cells. Early work on mtDNA inheritance (Solignac et al., 1984;
Rand and Harrison, 1986; Ashley et al., 1989; Howell et al.,
1992) drew on a classical result from Sewall Wright (Wright,
1942, 1984) to this end. This result describes the spread of
allele frequencies due to “accidents of sampling” in repeated
generations, where the individuals in one generation are a
random sample from the previous generation. For mtDNA, this
“Wright equation” predicts

var
[

h
]

= h0(1− h0)

(

1−
(

1−
1

N

)kn
)

, (6)
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FIGURE 5 | Relationship between different quantities related to mutant proportion spread. (A) Mutant proportion spread with different sampling parameters.

Horizontal axis gives “bottleneck size” N. Vertical axis gives corresponding mutant proportion spread sample var′ [h] (from Equation 6 with g = kn). Different traces are

for different numbers of sampling events g. To convert a sample var′ [h] value to a “bottleneck size” N, choose the number of sampling events g and read off the

corresponding value (distribution sketches at the far left give illustrations of the Kimura distribution for the various sample var′ [h] values). (B) Mutant proportion spread

with summary parameter b, from simulated sampling dynamics. Horizontal axes gives “bottleneck parameter” b. Vertical axis gives corresponding mutant proportion

spread sample var′ [h]. Behavior at different N and g are now “folded together,” collapsing on the same line.

where k is the number of random samplings per generation (for
example, the number of cell divisions in germ line formation)
and n is the number of generations. The reader will notice that
if kn = 1, describing a single sampling event as above, Equation
(4) is recovered.

For convenience, some studies have since defined new
“bottleneck parameters” to simplify this expression. One choice
is to set α = (1 − 1/N)k. Another more recent alternative is to
define b = exp(−g/N). Here g = kn represents an amalgamated
number of samplings, and the exponential form is used for
algebraic convenience because exp(−g/N) ≃ (1−1/N)g . In these
cases, Equation 6 becomes:

var
[

h
]

= h0(1− h0)
(

1− αn
)

≃ h0(1− h0)
(

1− b
)

. (7)

The advantage of using these “bottleneck parameters” is that they
fold together two unknown quantities: the number of generations
and the effective population size. Under Equation (6), readouts
of “bottleneck size” (mutant proportion spread) using N are
contingent on a particular choice of g, the number of generations
for which the bottleneck applies (Figure 5A). Readouts using
b (and α) absorb this dependency, providing a simple readout
of mutant proportion spread that makes no assumptions about
the number of sampling events (Figure 5B). Given a number of
generations, N can be recovered from b via N = −g/ ln b.

An approximation of the cell-to-cell distribution of mutant
proportion under these repeated-sampling models is the so-
called Kimura distribution (Wonnapinij et al., 2008) (Figure 3C).
Strictly, the assumptions involved in deriving this approximation
rely on N being large (Kimura, 1955). However, the Kimura

distribution reproduces intuitive behavior for the distribution of
mutant proportion under drift, and several studies use a fit to the
Kimura distribution to estimate b (Wonnapinij et al., 2008; Otten
et al., 2018).

The relationship between these quantities N, b, g, and
sample var′

[

h
]

is illustrated in Figure 5, which may serve as
a reference for comparison of reported “genetic bottleneck”
(mutant proportion spread) statistics in different studies.

3.3. Drift Manifest Through Random
Replication
One issue with a simple sampling picture is that it predicts a
set of cellular mtDNA populations consisting of N molecules.
In most circumstances, this N value is much lower than the
size of typical cellular populations. For example, in animal
germline development, the number of mtDNA molecules per
cell is amplified several orders of magnitude from a minimum
copy number back to a functional level (Cree et al., 2008; Wai
et al., 2008; Cotterill et al., 2013; Zhang et al., 2018). If this
reamplification happened perfectly deterministically, no further
change in var

[

h
]

would occur. However, cell biology is rarely
deterministic, and there is good reason to believe that this
reamplification process involves a random component (Birky,
1994; Chinnery and Samuels, 1999; Capps et al., 2003; Johnston
et al., 2015).

Several recent studies have considered models for this
reamplification (Johnston and Jones, 2015; Wilson et al., 2016).
Most are based on the idea of random mtDNA replication. That
is, an mtDNA molecule is randomly chosen from the current
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population, and replicated. Then a new mtDNA molecule is
randomly chosen and replicated, and so on until the desired
population size is achieved. This is a modified Moran model
(Moran, 1958) (the usual Moran model involves removing one
molecule per replication, so that overall population size remains
constant), also known as a Pólya urn model (Eggenberger and
Pólya, 1923; Johnson and Kotz, 1977).

In the limit of infinite reamplification, the model gives rise
to a beta distribution for mutant proportion spread (Figure 3C).
Infinite reamplification may not seem realistic, but actually the
structure of this distribution is quickly stabilized after a relatively
small number of replications, so the simple infinite limit is
similar to more reasonable cases. However, results also exist for
intermediate cases, and their exploration may be a fruitful area
of future research. The beta distribution takes two parameters,
α and β , intuitively corresponding to the number of mutant
and wildtype molecules in the cell before any replication. If we
α = h0N and β = (1 − h0)N, the mean of the beta distribution
is mean

[

h
]

= h0 as expected, and the variance of the beta
distribution is

var
[

h
]

=
h0(1− h0)

N + 1
. (8)

3.4. Uncertainty
The “genetic bottleneck” (mutant proportion spread) is a readout
of variance. Revealing trends in cell-to-cell variance is more
challenging than revealing trends in average behavior, and
requires more data. Wonnapinij et al. (2010) have drawn
attention to the challenging nature of obtaining reliable estimates
of mutant proportion spread. Uncertainty in estimated mutant
proportion spread is often large, challenging precise estimates of
the “bottleneck size” and leading to variability in these estimates.
Even in the case of no technical error (see below), sampling
errors can lead to large variability in estimates of “bottleneck size,”
particularly if fewer than 10 samples are used (Figure 4B).

Uncertainty in readouts of variance can be an unintuitive
quantity. We are perhaps more used to thinking about mean
values as the quantity of interest, with variance around a mean
value corresponding to uncertainty. However, we can—and
should—also describe and estimate the uncertainty associated
with an observation of variance.

One way to estimate uncertainty in sample var
[

h
]

involves
assuming that mutant proportion samples are drawn from a
normal distribution. This is not generally the case (as seen in
Figure 3C), but is a simple illustration that may be applied
when spread is low. Confusingly, there are two expressions in
circulation for the sampling error in this case. Which of these
values gets used depends on how the variance was computed. If
the variance is calculated using an estimate of the mean taken
from the same dataset (employing Bessel’s correction, as with
many “after” measurements), Wonnapinij et al. (2010) cite:

SE
[

sample var
[

h
]]

= var
[

h
]

×
√

2

n− 1
, (9)

for the standard error in sample var
[

h
]

, where n is the number
of samples used to characterize sample var

[

h
]

. If the mean is

estimated from a different source (omitting Bessel’s correction, as
with mean-squared-difference calculations using a single “after”
measurement), an estimate of the variance of the sample variance
is (var

[

h
]

)2(n−1)/n2, as quoted in reference (Millar et al., 2008),

corresponding to a standard error of var
[

h
]

×
√

(n− 1)/n2.
The standard error associated with a variance measurement
can then be estimated by using var

[

h
]

≃ sample var
[

h
]

in
these expressions.

However, for wide spreads or means close to 0 or 1, mutant
proportion distributions do not have normal structure. In this
case (Wonnapinij et al., 2010), cite a more general result:

SE
[

sample var
[

h
]]

=

√

1

n

(

D4 − (var
[

h
]

)2 ×
(

n− 3

n− 1

))

(10)
where D4 = (n − 1)/n3 × ((n2 − 3n + 3)µ4 + 3(2n −
3)µ2

2), and µ2 = 1/n
∑n

i=1(hi − h0)2, µ4 = 1/n
∑n

i=1(hi −
h0)4. While more complicated in structure, all these quantities
can readily be worked out from the set of observed mutant
proportion measurements.

All these expressions have the standard error of sample var
[

h
]

scale roughly with the observed value divided by
√
n. Thus, unless

a large number n of samples are used to characterize mutant
proportion spread, the associated uncertainty in sample var

[

h
]

can be rather high. As “bottleneck size” estimates depend
on 1/sample var

[

h
]

, the corresponding uncertainty can be
enormous for low sample sizes (Figure 4B).

These expressions are based on the statistics of sampled
variances, and assume that the sample mutant proportion
values themselves have no associated uncertainty (in other
words, there is no technical error associated with the genetic
measurement). Technical error should also be included in
the uncertainty associated with these estimates. Several studies
include considerations of technical error in their estimates of
mtDNA statistics (Bendall et al., 1996; Millar et al., 2008; Li et al.,
2016; Wilson et al., 2016). This is typically achieved through
simple uncertainty propagation, that is, considering an observed
variance to be a combination of natural variance and technical
variance. The technical variancemay either be quantified through
experimental calibration (Millar et al., 2008) or as part of a
statistical inference process (Bendall et al., 1996; Li et al., 2016;
Wilson et al., 2016).

3.5. Results
Early reports of the size of the genetic bottleneck (mutant
proportion spread) varied substantially across organisms.
Contributing to this variability was the fact that different studies
used different values of kn in Equation (6). These different
values reflected, for example, estimates of the number of cell
divisions involved in germline development in different species.
More recently, it has become more common to set kn = 1 and
assume a single binomial sampling event, or to use a “bottleneck
parameter,” usually b, to summarize mutant proportion spread
as above. Figure 2 summarizes the mutant proportion spreads
observed in several key experimental studies across species.
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The rapid intergenerational shifts observed in cattle
(Hauswirth and Laipis, 1982; Koehler et al., 1991) have
given rise to the highest mutant proportion spread values so
far observed. Insects appear to have lower mutant proportion
spreads (Solignac et al., 1984; Rand and Harrison, 1986). In
mice, several experiments have observed the increase of mutant
proportion spread through germline development (Jenuth
et al., 1996; Wai et al., 2008). Fish show similar behavior
(Wolff et al., 2011).

Mutant proportion spread in humans was observed some
time ago (Bendall et al., 1996; Marchington et al., 1997), but
its magnitude remains debated. Variability in the behavior of
mutant proportion spread was quickly apparent. Blok et al.
found dramatic skew toward extreme mutant proportions in
transmission of the 8993 mutation (Blok et al., 1997). Lutz et al.
(2000) found evidence for variable mutant proportion spread
in a human family; while they did not provide quantitative
estimates they noted that the different spreads they observed
suggest a varying “bottleneck size” which could be very small.
Bendall et al. (1996) used a Bayesian approach to show that it
was unlikely that their study families had the same “bottleneck
size.” More recently, two large-scale population-genetic studies
suggest rather different “bottleneck sizes” (Rebolledo-Jaramillo
et al., 2014; Li et al., 2016). Pathogenic mutations seem to involve
more mutant proportion spread, particularly the 8993 mutation
(Blok et al., 1997; Monnot et al., 2011; Wilson et al., 2016;
Otten et al., 2018). Ongoing preimplantation genetic diagnoses
approaches continue to provide data on mutant proportion
spread at different developmental stages (Monnot et al., 2011;
Treff et al., 2012; Sallevelt et al., 2013). Pallotti et al. (2014)
performed a meta-analysis of 3243 bottlenecks along with their
own experiments and found reasonable consistency in mutant
proportion spread. Notably, different studies still use different
protocols for reporting a “bottleneck size,” sometimes setting
g(= kn) = 24 or g(= kn) = 1 in Equation (6).

While not a focus of this article, we note that genetic
bottlenecks (increasing mutant proportion spread) (Sekiguchi
et al., 2003; Wilton et al., 2018) and physical bottlenecks (Cao
et al., 2007; Otten et al., 2016; Floros et al., 2018) have also been
reported in somatic tissues.

4. THE “GENETIC BOTTLENECK” AS A SET
OF PHYSICAL PROCESSES

In parallel with statistical characterization of the “genetic
bottleneck” (mutant proportion spread), related research
attempts to understand the physical processes that give rise to
an observed “genetic bottleneck” (mutant proportion spread) in
a given system. The goal here is typically to identify biological
mechanisms and potential targets for intervention.

A plausible physical mechanism for the “genetic bottleneck”
(mutant proportion spread) must account for both physical and
genetic observations over time during development. The physical
observations involve mtDNA copy number per cell and the
occurrence of cell divisions; the genetic observations involve
cell-to-cell variability in mutant proportion. An example from a

meta-analysis of mouse observations is shown in Figures 6A,B.
The joint prediction of these physical and genetic observations
is very important because it constrains the mechanisms that
are possible—for example, the size of the physical bottleneck,
the timing of cell divisions, and the rate of reamplification all
influence the resulting genetic statistics of mtDNA populations.

While not a focus of this article, the specific genetic players
behind the physical processes below are increasingly being
revealed, and have been reviewed in, for example, references
(Carling et al., 2011; Jokinen and Battersby, 2013).

4.1. The Physical Bottleneck During
Development
One process that occurs during germline development in animals
is a physical reduction in the number of mtDNA molecules per
cell (Zhang et al., 2018). This reduction is observed in animals
including mice (Cao et al., 2007; Cree et al., 2008; Wai et al.,
2008), fish (Wolff et al., 2011; Otten et al., 2016), sheep (Cotterill
et al., 2013), and humans (Floros et al., 2018). For some time after
fertilization, cell divisions repeatedly halve the cellular mtDNA
population, with little compensatory replication. This halving
leads to a pronounced drop in mtDNA copy number per cell
(Figure 6Ai). A fertilized oocyte typically contains manymtDNA
molecules [hundreds of thousands in mice (Cree et al., 2008;
Wai et al., 2008); around a million in humans (Floros et al.,
2018)]. The size of the physical bottleneck—that is, the lowest
copy number of mtDNA per cell during development—remains
debated, but is often orders of magnitude lower; Zhang et al.
(2018) have recently provided a survey of mtDNA reduction
in different species. In mice, the lowest copy number may lie
between 200 and 1,000 (Cao et al., 2007, 2009; Cree et al.,
2008; Wai et al., 2008; Johnston et al., 2015) (Figure 6Aii).
In humans, mean copy numbers around 1400 are observed in
progenitor germ cells (Floros et al., 2018). In zebrafish, decreases
from tens of millions to hundreds of mtDNAs per cell are
observed (Otten et al., 2016). The copy number ofmtDNAduring
development seems to depend on genetic characteristics of the
mtDNA (Monnot et al., 2013), potentially making the physical
bottleneck sequence-dependent.

Pictured as drawing a random selection of mtDNA molecules
from a larger population, copy number reduction provides
a way to generate variability between cells. Additionally, the
magnitude of variability generated through other random
sampling processes is amplified by low copy numbers.

4.2. Random Replication of a Subset of
mtDNA Molecules
In this mechanism, at some point(s) in germline development,
a random subset of a cell’s mtDNA population is allowed to
replicate, while all others are eventually subject to degradation
or loss (Wai et al., 2008). This subset may be, for example, those
mtDNAs within a certain distance of the nucleus (Wallace, 2018).
As the random subset chosen will differ in different cells, this
process imposes a natural sampling inducing variance between
cells. A smaller subset of molecules will lead to more mutant
proportion spread.
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FIGURE 6 | Flexibility in the physical processes underlying the “genetic bottleneck.” (A) Physical mtDNA dynamics (copy number per cell) in mouse germline

development. (i) repeated cell divisions after fertilization with little compensatory mtDNA replication lead to a drop in copy number to a minimum “physical bottleneck”

(ii). Copy number is subsequently reamplified (iii) through later development. (B) Dynamics of sample var′ [h] in mouse germline development. In (A,B), datapoints

(black) are amalgamated from references (Jenuth et al., 1996; Cao et al., 2007; Cree et al., 2008; Wai et al., 2008); shading shows posterior distributions from the

most-supported “birth-death-partitioning” model, involving random mtDNA turnover and partitioning at cell divisions (Johnston et al., 2015). (C) Observations of

physical and genetic dynamics (A,B) are best fit by a model that allows a flexible “physical bottleneck” (left, posterior distribution) which can be compensated by a

flexible amount of mtDNA turnover (right, posterior distribution). Figure uses results from Johnston et al. (2015).

Wai et al. observed a sharp increase in mutant proportion
spread in mice aged between 4 and 8 days (as in Figure 6B)
(Wai et al., 2008; Samuels et al., 2010). Using microscopy, they
showed that only a subset of mtDNA molecules was involved in
replication at a given time. They propose this subset replication
model as the mechanism by which variability is generated at
this development stage (folliculogenesis, Figure 6Aiii). Johnston
et al. (2015) suggest that this observation is also compatible
with random mtDNA turnover (see below), where a non-fixed
subset of mtDNAs is expected to be involved in replication at any
given time.

The random replication model described above, connected to
the beta distribution, can describe the dynamics of the subset-
replication model. Care must be taken here to ensure that
physical copy number dynamics are reproduced: for example,
the small amount of replicating mtDNAs must balance the large
number of degrading mtDNAs as copy number is amplified
(Figure 6Aiii).

4.3. Random Partitioning of mtDNA
Molecules at Cell Divisions
This mechanism is possible during specific times when cells are
undergoing divisions. At division, a “parent” cell distributes its

population of mtDNA to its two “daughter” cells. The assignment
of each mtDNA molecule to one or the other daughter may
follow a random process (Birky, 2001; Huh and Paulsson, 2011;
Johnston et al., 2012). In this case, each division will increase the
cell-to-cell mutant proportion variability between daughter cells.
If mtDNAmolecules are partitioned in clusters, this increase will
be faster (Cao et al., 2007). Larger clusters will lead to more
mutant proportion spread.

Whether the “unit of inheritance” of mtDNA is a single
molecule or a cluster is a debated question. MtDNA within
mitochondria is packaged into complexes called nucleoids. These
were thought to contain around 5–10 mtDNA genomes (Jacobs
et al., 2000; Cao et al., 2007; Khrapko, 2008), suggesting that
clusters of mtDNA may be the natural state. However, evidence
from microscopy suggests that nucleoids may only contain
around 1 mtDNA genome (Kukat et al., 2011). Model selection
for mouse germline development (Johnston et al., 2015) and
human transmission (Li et al., 2016) both suggest that single
mtDNA molecules are the unit of inheritance.

Observations in rhesus monkeys (Lee et al., 2012) showed a
dramatic induction of variance by the 8-cell stage, presumably
due to random partitioning of mtDNAs over the first three cell
divisions. In this study, mtDNA admixtures in oocytes were
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created by fusing two cytoplasm halves from different oocytes.
Cell divisions then immediately followed the construction
of these admixed oocytes. It is thus not inconceivable that
physical heterogeneity in the distribution of mtDNA molecules,
remaining from the cytoplasm fusion, may contribute to this
high mutant proportion spread. For example, if the fusion
process created a “north hemisphere” containing exclusively one
mtDNA type and a “south hemisphere” containing exclusively
the other, and the first cell division occurred along the “equator,”
the resultant cells would then immediately have maximum
mutant proportion differences. Natural systems may be expected
to have more physically mixed mtDNA populations, and so
potentially show less extreme mutant proportion spreads in these
early stages.

The “repeated sampling” approaches above attempt to model
cell divisions during development as a series of random
binomial samples. Partitioning dynamics can also be embedded
in stochastic models of mtDNA replication and degradation
(Johnston and Jones, 2015, 2016). Much of this work assumes
binomial partitioning; however, recent work in yeast has
suggested that partitioning of mtDNA is tighter than binomial
sampling (Jajoo et al., 2016). Mathematical results do exist for
more controlled partitioning, or the partitioning of clusters of
mtDNA (Johnston and Jones, 2015) but are often complicated,
so simulation is often used to make quantitative predictions in
these cases (Johnston et al., 2015; Li et al., 2016).

4.4. Random Turnover of mtDNA Molecules
MtDNA replicates and degrades quasi-independently of the cell
cycle. The noisy environment of the cell means that these
processes have a random component (Birky, 1994; Chinnery
and Samuels, 1999; Capps et al., 2003; Johnston et al., 2015).
The ongoing action of this random turnover creates cell-to-cell
mutant proportion variability. For example, two cells that start
with identical mtDNA populations will diverge over time, as
different molecules undergo replication and degradation. Faster
turnover, or turnover of clusters, will lead to more mutant
proportion spread.

To account for the full set of processes that an individual
mtDNA molecule may undergo, several stochastic modeling
approaches have been developed (reviewed in Hoitzing et al.,
2017). These approaches model every individual mtDNA
molecule in a cell and subjects them to the physical processes
that we may expect to occur during development. Typically,
these processes will have a random component, so that if the
model is simulated twice, the precise outcomes will differ. These
differences can be used to characterize the variability supported
by different mechanisms.

A well-known model involves “relaxed replication,” that is,
replication of mtDNA independent of the cell cycle (Birky,
1994). Models of this process typically involve mtDNAmolecules
degrading with a fixed rate, and replicating randomly with a
rate that depends on population size (Chinnery and Samuels,
1999; Capps et al., 2003). This model generates variability
over time because of these random dynamics. Cree et al.
propose this mechanism, amplified by the physical bottleneck,

to generate mutant proportion spread in mouse development
(Cree et al., 2008).

More recently, the different ways that the cell could control
this replication rate have recently been explored in detail using
“birth-death” models (Johnston et al., 2015; Johnston and Jones,
2016; Hoitzing et al., 2019). Strikingly, this work showed that no
matter how the cell controls mtDNA replication, if there is some
mutant proportion, the variance of this mutant proportion will
increase linearly over time.

Specifically, in a population of N mtDNAs, random turnover
of molecules with rate β over time t gives rise to the behavior

sample var′
[

h
]

=
2fβt

N
, (11)

so that, for example, a year of mtDNA turnover, with average
rate one degradation event per week, in a cell with 1,000 mtDNA
molecules would give a mutant proportion spread of (2 ×
52)/1, 000 = 0.104. This would be interpreted as a “bottleneck
size” around 9.6. In followup theoretical developments (Aryaman
et al., 2019), the factor f in Equation (11) has been shown to
be the fraction of unfused mitochondria, that is, mitochondria
containing mtDNAs subject to mitophagy (Youle and Narendra,
2011; Diot et al., 2016). Mitochondrial quality control, linked
to fission-fusion dynamics, contributes to the turnover of
mitochondria in the cell (Twig et al., 2008) and provides one
way that mitochondrial dynamics may influence both mean and
variance dynamics of mtDNA populations (Hoitzing et al., 2015;
Johnston, 2018; Latorre-Pellicer et al., 2019). Higher rates of
quality control related turnover can result in higher cell-to-
cell mutant proportion variance (Johnston et al., 2015) [and, if
mitochondria associated with one mtDNA type are preferentially
degraded, this selective pressure will also influence mean mutant
proportions (Twig et al., 2008; Hoitzing et al., 2015)]. Equation
(11) provides a coupling between the physical fission-fusion
dynamics of mitochondria and the time behavior of mtDNA
mutant proportion spread (Hoitzing et al., 2015; Johnston, 2018;
Aryaman et al., 2019).

4.5. Combinations of Mechanisms
Several of these processes are conceptually linked. For example,
when a cell divides, it loses around half of its mtDNA content,
immediately restricting the subset of mtDNAs that are available
for replication. If mtDNA molecules are involved in ongoing
random turnover, only a subset of molecules will be replicating
at any given time (Johnston et al., 2015).

In each of these cases, a smaller mtDNA population acts to
amplify increases in mutant load spread, because the influence
of random events is less “smoothed out” in small populations.
Therefore, we can end up with the same amount of spread by
either (i) generating a smaller amount and amplifying it more
through small population size; or (ii) generating a larger amount
and amplifying it less. Indeed, analysis of mouse data suggests
that the same amount of spread can be achieved with a small
physical bottleneck and less mtDNA turnover (less generation,
more amplification) or a large physical bottleneck and more
mtDNA turnover (more generation, less amplification) (Johnston
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et al., 2015) (Figure 6C). This flexibility may help reconcile
differing reports on the size of the physical bottleneck (Cao
et al., 2007, 2009; Cree et al., 2008; Johnston et al., 2015). It is
not inconceivable that some mechanism may allow the cell to
sense and control this choice, so that, for example, embryos with
slightly lower mtDNA turnover have their mtDNA populations
depleted more to compensate.

To consider these mechanisms together, the birth-death
framework above was coupled to a description of cell divisions to
provide a detailed stochastic model of germline development in
mice (Johnston and Jones, 2015; Johnston et al., 2015). Compared
to other detailed models, this birth-death-partitioning model
provided the best fit to a meta-analysis of existing physical
and genetic data. The best model for cell-to-cell spread of
mutant proportion had two components: a contribution from
partitioning at cell divisions and a contribution from ongoing
drift due to mtDNA turnover.

The birth-death-partitioning model provides closed-form,
though complicated, expressions for full distributional details
of mutant proportion at all times through development, which
well-predicted independent experimental observations of mutant
proportion distributions in oocytes (Johnston et al., 2015).
The combined birth-death-partitioning model was also used
to provide an update to the Wright equation (Equation 6)
to include random mtDNA turnover (Johnston and Jones,
2016), predicting:

sample var′
[

h
]

= 1−
(

1−
1

N

)g

+
4t

3Nτ
, (12)

where N is now a physical mtDNA copy number, g a physical
number of cell divisions, t is time and τ is the timescale of
mtDNA degradation. Append:

The final term in Equation (12) estimates the ongoing increase
in mutant load spread due to mtDNA turnover, increasingly
linearly with time t.

5. RECENT TOPICS

5.1. Model Selection and Predictions
We have discussed a range of different proposed mechanisms
for the “genetic bottleneck” (mutant proportion spread). A
comparatively recent set of studies has attempted to identify
the mechanisms that are most supported by data. This has
been attempted through the use of model selection (Kirk
et al., 2013), a process that compares the statistical support for
different mechanisms while guarding against overfitting. Li et al.
used likelihood-based model selection with a human dataset to
provide support for a “genetic bottleneck” (mutant proportion
spread) that varies for different sequences and involves individual
mtDNAs (rather than clusters) as segregating units (Li et al.,
2016). Johnston et al. used likelihood-free model selection for
mouse data to identify themechanism(s) most supported by data.
They found little support for partitioning of clustered mtDNA,
and most support for the birth-death-partitioning model above,
which was further supported by followup experiments (Johnston
et al., 2015). A theoretical comparison of different models for

mtDNA control (Johnston and Jones, 2016) revealed the above
principles of increasing variance that hold regardless of which
specific mechanism is true. More recently, large-scale inter-
generational data from mice was used in a statistical framework
to identify which processes influence mtDNA statistics during
development and aging (Burgstaller et al., 2018).

These detailed mathematical models present the opportunity
to refine the prediction of mutant proportion distributions. The
birth-death-partitioningmodel predicted distributional details of
oocyte mutant proportion in developing mice (Johnston et al.,
2015). Based on the picture of increasing mutant proportion
spread in aging oocytes, a simple model involving a variation
of a logit-normal distribution for mutant proportion predicted
distributional details of mutant proportion in mouse litters
(Burgstaller et al., 2018).

5.2. Sequence-Specific Behavior in Mutant
Proportion Spread
Substantial recent attention has been focussed on whether the
genetic bottleneck (mutant proportion spread) is sequence-
specific. Evidence for this hypothesis includes observations
from different pathological mtDNA mutations (Monnot et al.,
2011; Wilson et al., 2016; Otten et al., 2018). Consideration
of different human variants in a population genetic context
also suggests that the magnitude of the genetic bottleneck
(mutant proportion spread) depends on the specific variant
under investigation (Li et al., 2016). A particularly striking
difference appears to exist between the 3243 and 8993 mutations
(Monnot et al., 2011; Wilson et al., 2016; Otten et al., 2018).
The aforementioned population study (Li et al., 2016) also found
a variable-size bottleneck to be most statistically supported for
non-pathological mutations.

As discussed throughout, sequence-specific proliferative
advantages of one mtDNA type over another can confound
attempts to analyse the genetic bottleneck (mutant proportion
spread). A sequence-specific increase in mutant proportion
spread can arise without a proliferative difference between
sequences: for example, if one sequence experiences both
higher replication and degradation rates, increasing random
turnover without an overall selective advantage. Conversely,
under some experimental designs, sequence-specific differences
in the behavior of mean mutant proportion (i.e., proliferative
differences) could be interpreted instead as differences in mutant
proportion variance if it is assumed that no proliferative
differences exist (as in Figure 4A). Further theoretical work
unpicking the behavior of mtDNA statistics as mean and variance
change together will be useful in interpreting these observations.

5.3. Ongoing Increase of Mutant Proportion
Spread During Aging
Recent large-scale intergenerational data in mice has shown an
ongoing increase in mutant proportion spread in oocytes over
time in adult mice (Figure 7). This increasing oocyte-to-oocyte
spread of mutant proportion with age has been directly observed
in mouse oocytes (Burgstaller et al., 2018), and has been shown to
be more statistically supported than a constant-spread model in
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FIGURE 7 | Increasing mutant proportion spread in oocytes with mouse age. Data from Burgstaller et al. (2018), reporting sample var′ [h] in sets of individual oocytes

from mice of different ages. HB and LE label two genetic models, involving admixtures of wild-derived haplotypes HB and LE, respectively with haplotype C57Bl/6N.

Error bars are derived using Equation (10); “model fit” accounts for this uncertainty and “naive fit” simply fits the bare observations. In all cases a significant linear

increase in sample var′ [h] with time, following Equation (11), is observed.

independent observations in flies, mice, and humans (Johnston
and Jones, 2016).

The mechanism(s) behind the ongoing shrinking of the
genetic bottleneck (increasing mutant proportion spread)
remains unclear (Johnston et al., 2015; Zhang et al., 2018).
However, random turnover of mtDNA may be a reasonable
candidate mechanism (Johnston et al., 2015; Johnston and Jones,
2016; Burgstaller et al., 2018). The cumulative action of stochastic
replication (and degradation) is to generate cell-to-cell spread in
mitochondrial statistics, including in mutant proportion. Other
processes like diversifying selection, physical clustering, and
even mutagenesis could all contribute to the observed increase
in spread.

These results are from systems involving cellular admixtures
of two main haplotypes. Other results suggest a consistent
picture, for example, showing an increasing number of
heteroplasmic sites in children from older mothers, which the
authors suggest is likely attributable to oocyte aging (Rebolledo-
Jaramillo et al., 2014). Another study found non-uniform changes
in heteroplasmy with age in humans (Sondheimer et al., 2011).

In light of this observation, this article would advocate an
additional careful analysis of the contribution of maternal age
to observed mutant proportion patterns. As we expect the
genetic bottleneck (mutant proportion spread) to decrease with
age, any systematic differences in age between these compared
variances could confound other relationships. Conversely and
more positively, appropriate accounting for age would help
increase the statistical power of these comparisons.

6. THE PROBLEM OF SELECTION

Throughout the above, we have alluded to the problems that
systematic selection for one or more mtDNA types can cause
in these analyses. Theory describing the influence of selection
has been established, but is complicated (Johnston et al., 2015).
In particular, if approaches that assume the absence of selection

are used when it is in fact present, errors can arise in estimates
of genetic properties and physical mechanisms. As pointed out
above, these issues may lead to dramatic underestimation of
“bottleneck size,” and cannot be assumed to “cancel out.”

Several of the results above are valid only in the absence of
selection: when no mtDNA type experiences an advantage over
any other. This is known to be false for many mtDNA pairings
in many somatic tissues, where selection for one mtDNA type
over another is often observed (reviewed in Burgstaller et al.,
2014). Selection in the germline has been more debated, but
evidence is increasing. In several studies, the transmission of
pathological mutations seems to be subject to selective pressure.
The maximum level of transmission for the 3243 mutation in
humans has appeared to be limited (Monnot et al., 2011; Otten
et al., 2018), and selection against severe mtDNA mutations has
been observed in mice (Fan et al., 2008). Recent observations
in mice (Burgstaller et al., 2018; Latorre-Pellicer et al., 2019)
and humans (Wei et al., 2019) have indeed observed selection
at different loci. Burgstaller et al. (2018) suggest that selection
may act in different directions at different developmental stages
(very recently supported by Latorre-Pellicer et al., 2019), and
that these directions may either cancel out or provide a net
selective shift. Mathematical theory for the behavior of mutant
proportion spread when selection is present remains less well-
developed and represents an important future theoretical target.
The birth-death-partitioning approach in references (Johnston
et al., 2015; Johnston and Jones, 2016) can account for selection
but are mathematically complicated. Otten et al. (2018) have
proposed a truncated Kimura distribution to describe a selective
regime where mutant proportions above a certain value are
prohibited, and found that it is supported by observations of the
3243 mutation.

Comparison to the Kimura distribution is often used to
argue for an absence of selection. However, this approach must
be interpreted with caution. Depending on the mechanism of
selection, Kimura-distributed samples may be observed even
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when selection has occurred. In particular, as approaches using
the Kimura distribution sometimes use several “after” but no
“before” measurements, it is possible that an early shift in mutant
proportion will not be detected.

7. CONCLUSIONS

7.1. The Variable “Genetic Bottleneck”
This article has attempted to review the various models
and mechanisms that have been considered for the “genetic
bottleneck” (mutant proportion spread). Some diversity
in reported mtDNA behavior comes from the choice of
analysis protocol: the use of bottleneck parameters, rather than
bottleneck sizes that allow a choice of “generation number,”
can help avoid this. The reporting of sample var′

[

h
]

, the
fundamental observation from which these statistics are derived,
and its associated uncertainty, will also help interpretability
and comparison.

Ongoing research has provided evidence that the “genetic
bottleneck” (mutant proportion spread) varies with age, species,
individual, and genetic features. Intriguingly, the coupling of
physical and genetic behavior of mitochondria (Equation 11; Tam
et al., 2013; Aryaman et al., 2019) suggests that heterogeneity
in mitochondrial dynamics may induce heterogeneity in
mutant proportion.

A diverse range of studies on the mtDNA bottleneck
continues to provide a wealth of insight into this important
process. However, the very diversity of this research risks
confusion arising, particularly around aspects of the prevailing
terminology. This article has attempted to clarify some of the
concepts involved, to serve as a reference for the increasingly
interdisciplinary community working in this field.

Some takehome messages for reference include:

• The “genetic bottleneck” is a readout of mutant proportion
spread that is generally not an observable physical
quantity, and is measured reported in diverse ways through
the literature;

• Observations of mutant proportion spread can have
substantial uncertainty both from sampling and technical

error, particularly if under 10 samples are used (when the
standard error can approach half the observation);

• The physical mechanisms underlying the “genetic bottleneck”
(mutant proportion spread) include a combination of
copy number reduction (a physical bottleneck), random
replication and degradation of mtDNA molecules, and
random partitioning at cell divisions;

• The magnitude of the physical bottleneck appears to be
flexible, as flexibility in mtDNA turnover can compensate to
produce the same effects on mutant proportion spread;

• The presence of mtDNA selection complicates estimates of
mutant proportion spread, and different experimental designs
report different statistics in this case;

• The “genetic bottleneck” (mutant proportion spread) likely
varies by species, individual, age, and mtDNA sequence.
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