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Exosomes are a group of extracellular microvesicles that deliver biologically active
RNAs, proteins, lipids and other signaling molecules to recipient cells. Classically,
exosomes act as a vehicle by which cells or organs communicate with each
other to maintain cellular/tissue homeostasis and to respond to pathological stress.
Most multicellular systems, including the cardiovascular system, use exosomes for
intercellular communication. In heart, endogenous exosomes from cardiac cells or
stem cells aid in regulation of cell survival, cell proliferation and cell death; and thus
tightly regulate cardiac biology and repair processes. Pathological stimulus in heart
alters secretion and molecular composition of exosomes, thus influencing the above
processes. The past decade has yielded increasing interest in the role of exosomes
in the cardiovascular system and significant contribution of cardiac fibroblast (CF)
and mediated cardiac fibrosis in heart failure, in this review we had overviewed the
relevant literatures about fibroblast exosomes, its effect in the cardiovascular biology
and its impact on cardiovascular disease (CVD). This review briefly describes the
communication between fibroblasts and other cardiac cells via exosomes, the influence
of such on myocardial fibrosis and remodeling, and the possibilities to use exosomes as
biomarkers for acute and chronic heart diseases.
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Abbreviations: α-SMA, α-smooth muscle actin; AP-1, activating protein-1; Azin1, antizyme inhibitor 1; CD, cluster
of differentiation; CFs, cardiac fibroblasts; CM, cardiomyopathy; CVD, cardiovascular disease; DDR2, discoidin domain
receptor 2; DNA, deoxyribonucleic acid; ECM, extracellular matrix; EPC, endothelial progenitor cell; EV, extracellular
vesicle; EXO, exosome; Gal-3, Galectin-3; Hsp, heat-shock proteins; IGF1, insulin-like growth factor-1; IL-10, interleukin-
10; IR, ischemia-reperfusion; Jnk1, c-Jun N-terminal kinases 1; KO, knock out; lncRNAs, long non-coding RNAs; MAPKs,
mitogen-activated protein kinases; MI, myocardial infarction; miR, Micro RNA; MMPs, matrix metalloproteinases; NcRNAs,
non-coding RNAs; NF-κB, nuclear factor κB; NFAT, nuclear factor of activated T-cell; Nm, nano meter; PDGFs, platelet
derived growth factors; PDLIM5, PDZ and LIM domain 5; PPAR-α, peroxisome proliferators-activated receptor alfa;
RAS, renin-angiotensin system; RNAs, ribonucleic acids; ROS, reactive oxygen species; SDF-1, stromal-derived factor-1;
SORBS2, sorbin and SH3 domain-containing protein 2; TGF-β, transforming growth factor-β; TIMPs, tissue inhibitors of
metalloproteinases; TNF-α, tumor necrosis factor-α.
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INTRODUCTION

Intracellular communication is important in proficient and
appropriate organization and function of various cells in
multicellular organs. Multiple fundamental mechanisms are
involved in the interactions between cells or even between
different organs. For example growth factors, chemokines,
adiponectin, small peptides, ECM proteins or sometimes direct
cell-cell interaction are important for cellular communications
(Corrado et al., 2013). However, in the last decade a considerable
amount of experimental evidence has suggested that cells use
a sophisticated method of communication using microvesicles
called exosomes (Corrado et al., 2013; Maia et al., 2018).
Exosomes are 30–120 nm size nanovesicles and have been
identified in multiple cell types including stem cells for
efficient intracellular communications (Mathivanan et al., 2010).
Promising literature has shown that exosomes play a critical role
in the shuttling of extraordinary sets of bioactive and signaling
molecules which include membrane receptors, genetic materials,
enzymes, cytokines and different bioactive materials in cells
(Corrado et al., 2013; Cerezo-Magana et al., 2019). Thorough
knowledge of a critical role for exosomes in the cardiovascular
system is still developing, but establishment of novel tools and
techniques in the past decade have boosted this research area
significantly. Seminal work from others and our group has
suggested that exosome-mediated intracellular signaling plays an
important role in stem cell-mediated cardiac protection both
in ischemic and hypertrophic heart failure (Sahoo et al., 2011;
Mackie et al., 2012; Khan et al., 2015; Tseliou et al., 2015;
Garikipati et al., 2018). Exosomes derived from stem cells provide
an excellent cell-free system to improve cardiac function without
significant immune response. Furthermore, cardioprotective
factors such as miRs (Figure 1) and proteins packaged in stem cell
exosomes may enhance the regenerative potential of stem cells to
improve the endogenous repair process. Recently, it was shown
that exosomes derived from IL-10-depleted EPCs exhibit altered
exosomal content, which ultimately impairs the EPC’s cardiac
repair property (Garikipati et al., 2017). Interestingly, modulation
of miR-375 using a miRNA antagomir in IL-10KO exosomes
partially rescued endothelial cell function (Yue et al., 2017). These
studies clearly indicate that the direct role of exosomes in CVDs
and repair processes and alterations in exosomal contents could
be beneficial in the treatment of heart disease.

Numerically, heart consists mainly of CFs (Zhou and Pu,
2016) and during ischemic/hypertrophic insults these fibroblasts
become activated and involved in cardiac fibrosis and remodeling
(Travers et al., 2016). Bang et al. (2014) have shown that
fibroblast-derived exosomes have the ability to enhance cardiac
myocytes hypertrophy in pressure-overloaded myocardium. The
constituent analysis of these exosomes indicates that they are
rich in passenger strands of miR such as miR-21∗, a major
signaling molecule which leads the hypertrophic signaling in
heart. Interestingly, inhibition of miR-21 significantly reduced
the cardiac hypertrophy and remodeling in this study (Bang
et al., 2014). Furthermore, elevated level of miR-155 was
found in macrophage-derived exosomes during heart injury
(Wang et al., 2017). Intriguingly, Wang et al. (2017) has

suggested that miR-155 in macrophage exosomes has potential to
enhance proliferation and differentiation of resident fibroblasts
and further exacerbate inflammation. These findings suggest
that targeting selective molecules in cardiac fibroblast-derived
(CF)-exosomes or inhibition of exosome secretion could be
potential therapeutic approaches in heart failure treatment. It is
also possible that exosomes from other cells such as immune
cells can stimulate transition of naïve fibroblasts to activated
myofibroblasts. Very limited literature is available regarding the
activated fibroblasts exosomes and exosome-mediated paracrine
signaling in cardiac fibrosis and remodeling. We hope that future
rigorous studies on CF exosomes and mediated intercellular
communications in the heart (between CFs and other cells
or vice versa) will provide better understanding to develop
novel therapies for CVDs. In this review article, we explore
the current understanding of CFs; cardiac fibrosis; exosomes;
exosomal biogenesis, structure, composition and involvement
in cardiac fibrosis during heart failure. Additionally, we will
discuss possibilities of exosomes as biomarkers for cardiac
fibrosis and remodeling.

CARDIAC FIBROBLASTS AND CARDIAC
FIBROSIS

Excessive cardiac fibrosis is a major problem in nearly all types
of heart disease and significantly attributed by activation and
excessive proliferation of CFs (Ali et al., 2014; Travers et al., 2016).
During development, the CF population changes dramatically
and regulates cardiomyocyte proliferation through multiple
signaling pathways (Banerjee et al., 2007; Ieda et al., 2009).
However, during disease states, excessive ECM proteins such
as collagen accumulate and expand in the cardiac interstitium,
which disrupts heart contractile capacity and impairs its systolic
and diastolic function (Janicki and Brower, 2002; Berk et al.,
2007; Kong et al., 2013). Upon cardiac insult, for example
acute MI, cardiomyocytes die and a massive inflammatory and
fibrogenic responses are triggered to develop a fibrotic scar
as a reparative response (Frangogiannis, 2012; Humeres and
Frangogiannis, 2019). Activated CFs, termed myofibroblasts,
are phenotypically modified cells with differential expression
of excessive ECM proteins including collagens, MMPs, and
their inhibitors (Cleutjens et al., 1995; Kawaguchi et al., 2011).
As compared to CFs, myofibroblasts are more contractile and
express significantly more α-SMA and periostin. At an early
stage of cardiac stress, these changes contribute to an adaptive
repair process but eventually lead to adverse cardiac remodeling
and progression toward heart failure (Tomasek et al., 2002;
Hinz, 2007, 2010; Shinde et al., 2017). With or without cardiac
injury, aging, chronic kidney disease, diabetes and obesity may
also trigger cardiac fibrosis and remodeling (Biernacka and
Frangogiannis, 2011; Cavalera et al., 2014; Hayer et al., 2018).
The homeostasis of collagen turnover is tightly regulated by
CFs and any imbalance in collagen metabolism leads to cardiac
fibrosis (Janicki and Brower, 2002; Rathod et al., 2016). Cardiac
fibrosis is mainly categorized into four types, based on the
location and cause. The most prevalent two forms are the reactive
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FIGURE 1 | MicroRNAs packaged in exosomes regulate cardiac biology. Exosomal content is dependent on the parent cells and its physiological status. More
specifically, exosomes derived from macrophages and fibroblasts are enriched in miRs which are involved with profibrotic and inflammatory signaling. In contrast,
stem/progenitor cells derived exosome contains cardio protective miRs.

interstitial and the replacement fibrosis. Interstitial fibrosis
mainly describes the expansion of endomysium and perimysium,
is caused by progressive deposition of extracellular proteins in
the interstitial space, and leads to cardiomyocyte death. Whereas,
replacement fibrosis occurs by necrosis of cardiomyocytes and
is associated with systolic ventricular dysfunction, hypertrophic
CM and myocarditis (Hashimura et al., 2017; Liu et al., 2017;
Frangogiannis, 2019). A third category is infiltrative interstitial
fibrosis, which occurs due to infiltration of inflammatory cells
in right ventricles of systemic sclerosis-associated pulmonary
arterial hypertension (Overbeek et al., 2010). The fourth type,
termed endomyocardial fibrosis, is a primary cause of congestive
heart failure in children under 2 years of age and underlying
causes for this type are not well established but include infections,
autoimmunity, genetic factors, and nutritional deficiencies etc.
(Rohit et al., 2013; Duraes et al., 2019). The pathophysiology
of cardiac fibrosis is mostly attributed to excessive synthesis
and accumulation of ECM proteins by activated myofibroblasts.
Even though cardiac fibrosis is involved in most forms of CVD,
clinical interventions targeting cardiac fibrosis are not yet in
hand. Cell population heterogeneity and lack of identification
of cell-specific markers add to the complexity of designing and
improving therapeutic intervention to reduce cardiac fibrosis.

Origin and Activation of Fibroblasts
Regardless of etiology, the origin of myofibroblasts remains
controversial (Kong et al., 2014). Recent studies with lineage

tracing strategies have suggested that cardiac fibrosis is primarily
mediated by resident fibroblasts; however, other cell types
(Figure 2) including monocytes/macrophages, endothelial cells,
and hematopoietic fibroblast progenitors may also contribute
to pathological fibrosis in heart (Ali et al., 2014; Kong
et al., 2014; Moore-Morris et al., 2014, 2018). Endothelial
cells and α-SMA-expressing mesenchymal cells have been
shown to significantly contribute to fibrosis via their canonical
Wnt-mediated endothelial-to-mesenchymal transition (EndMT)
(Aisagbonhi et al., 2011). We have recently shown that bone
marrow cells migrate to heart and transdifferentiate into
myofibroblasts after myocardial damage, and thus contribute to
tissue remodeling. In our study, we found that inflammatory
stimulus acts as a catalyst for enhanced mobilization and homing
of these bone marrow progenitor cells (Verma et al., 2017). In
heart, cardiomyocytes/fibroblasts/resident macrophages secrete
several chemokines such as SDF-1 which play an important role
in migration of these cells to the heart (Mollmann et al., 2006;
Chu et al., 2010). In addition to bone marrow cells, cardiac
endothelial cells may also become myofibroblast-like cells by
a process called EndMT and may be involved in pathological
fibrosis during hypertrophic heart failure (Zeisberg et al., 2007).

Stimulator of Cardiac Fibrosis
Inflammatory stimulus and cardiomyocyte death are often the
initial factors which stimulate a profibrotic signaling cascade
in resident fibroblasts which secrete excess ECM proteins
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FIGURE 2 | Cellular sources of cardiac fibroblasts (CFs). In addition to
resident fibroblasts, CF can originate from endothelial cells, through
endothelial-to-mesenchymal transition (EndMT), from bone marrow
stem/progenitor cells, from perivascular cells or from fibrocytes. Their
activation and differentiation to become activated fibroblasts/myofibroblasts
are highly dependent on pathological stress on the heart.

(Tomasek et al., 2002). The potential mechanism and type of
profibrotic stimulation which leads this process mostly depends
on the type of cardiac injury. Many different growth factors
(TNFα, PDGFs, TGFβ), cytokines (IL-1, IL-10, IL-11), renin
angiotensin system (RAS), and microRs are key modulators in
initiation and progression of cardiac fibrosis (Saxena et al., 2013;
Thum, 2014; Frangogiannis, 2015, 2019; Tao H. et al., 2016;
Verma et al., 2017). RAS and TGFβ signaling are perhaps the
most studied among all fibrotic pathways. Regardless of the type
of cardiac injury, components of RAS are mostly produced by
macrophages and resident fibroblasts and ultimately stimulate
cardiac fibrosis by TGFβ signaling pathway. Upon activation,
TGFβ modulates cellular functions in various cells including
cardiomyocytes and fibroblasts and promotes the myofibroblast
phenotype via canonical and non-canonical pathways (Kong
et al., 2014). TGFβ-independent activation of human fibroblasts
to myofibroblasts has also been studied and is involved in
cardiac remodeling (Baranyi et al., 2019). Other than these
stimulators, the roles of metalloproteinases (MMPs), TIMPs, and
NF-κB are also well established in mediating cardiac fibrosis
(Creemers et al., 2001; Kumar et al., 2011; George et al.,
2016). As myofibroblasts are a major source of excessive ECM
production, in addition to fibroblasts, macrophages also play
an important role in ECM production and remodeling. Upon
cardiac injury, macrophages adopt a more fibrotic M2 phenotype
which has reduced expression of inflammatory cytokines like
TNFα and interleukin-6 (IL-6) and increased secretion of IL-
10, IGF1, TGFβ, and Gal-3 that are really key for ECM
remodeling (MacKinnon et al., 2008; Suthahar et al., 2017).
Non-immune cells like cardiomyocytes and CFs secrete pro-
inflammatory cytokines to which myofibroblasts mostly respond
and leads to excessive cardiac fibrosis (Yamauchi-Takihara et al.,
1995; Porter and Turner, 2009; Aoyagi and Matsui, 2011).
In addition to these inflammatory and profibrotic factors,
GSK3β, β-catenin, TGFβ/SMAD-4, Wnt/β-catenin, MAPKs, and

AKT signaling molecules and pathways play pivotal roles in
cardiac fibrosis by regulating ECM metabolism, cardiomyocyte
survival and proliferation, and maintaining wound healing after
cardiac injury (Deb, 2014; Ma et al., 2018; Singh et al., 2019;
Umbarkar et al., 2019; Figure 3). Among intracellular pathways,
oxidative stress is a key factor that enhances cardiac fibrosis by
triggering fibroblast proliferation and fibrotic signaling in heart.
ROS generation has a dual role in cardiac fibrosis as studies
reported both matrix-degradation and matrix-synthesis effects.
High ROS levels increase TGFβ production and enhance CFs
proliferation; paradoxically, high ROS also stimulates MMPs
which facilitate ECM degradation (Siwik et al., 2001; Purnomo
et al., 2013). Intriguingly, in the last decade, the role of ncRNAs,
such as microRNA (miRNA), circular RNA and lncRNA, have
been explored extensively in cardiovascular research and are
suggested as an important trigger for various cardiovascular
events including cardiac fibrosis and remodeling. Among these,
microRNs are the most extensively studied NcRNA and play
a critical role in regulation of fibroblast proliferation and
fibrosis (Thum and Condorelli, 2015; Piccoli et al., 2016).
For example, miR-21 is expressed in all heart cells and well
characterized as profibrotic miRNA. It targets the expression of
sprouty homology 1 (SPRY1), PTEN, and TGFβ receptor III
(Huang et al., 2015). In contrast, miR-29 has been shown to
reduce fibrosis by down-regulating expression of ECM genes,
though in other studies miR-29 expression decreased during
heart failure (van Rooij et al., 2008). Other miRNAs like
miR-126, miR-15, miR-499, miR-24, miR-378, miR-1, miR-133,
miR-26, miR-22, miR-199, miR-23, and miR-208 have also
been studied considerably in different heart failure models
(Montgomery et al., 2011; Melman et al., 2014; Tijsen et al., 2014;
Suresh Babu et al., 2016; Figure 3).

FIGURE 3 | Pathophysiology of cardiac fibrosis. During normal remodeling,
adequate ECM proteins secreted by cardiac fibroblasts (CFs) are important to
maintain cellular integrity in heart. However, upon cardiac injury, CFs
transdifferentiate into activated myofibroblasts, secrete excessive amounts of
ECM proteins, and expand the cardiac interstitium as a wound healing
process. Many key molecular determents are involved in this repair process
including exosomes. Altered molecular and paracrine signaling pathways can
contribute to exacerbated activation and trans-differentiation of fibroblasts to
myofibroblasts and to adverse/pathological cardiac remodeling and heart
failure. CFs = Cardiac fibroblasts; myoFBs: myofibroblasts.
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PARACRINE SIGNALING AND ITS ROLE
IN CARDIAC FIBROSIS

Recently, enormous efforts have been made to explore the
involvement of paracrine signaling in heart pathophysiology
(Anthony and Shiels, 2013; Gartz and Strande, 2018). EVs, as
a means of paracrine signaling, are bilayer membrane-bound
cargoes and include exosomes, microvesicles and apoptotic
bodies. Exosomes are extensively studied paracrine factors and
can deliver various functional modulators such as proteins,
lipids, DNA, mRNA, and miRNA. These transporter vesicles
regulate a plethora of functions like cell differentiation,
proliferation, senescence, cell death, cell–cell communication,
angiogenesis, recycling of membrane lipids and proteins, and
immunomodulation (Janowska-Wieczorek et al., 2005; Valadi
et al., 2007; El Andaloussi et al., 2013; Xu and Tahara, 2013;
De Jong et al., 2014). In the following section, we will focus
on recent advancements in exosome research, especially on
fibroblast biology and its role in myocardial fibrosis.

Exosomes: Structure and Function
Most living and actively functional cells secret 100–1,000 nm
size micro-particles. Based on size, these microparticles are
classified into three main subpopulations. The smallest particles
(ranging from 30–120 nm) are termed exosomes (Figure 4).
Exosomes were first discovered in 1946 as cellular waste
and described as nanosized vesicles in 1981 (Chargaff and
West, 1946; Valadi et al., 2007). Recent advances in biological
science suggest that exosomes play important roles in multiple
biological and pathological processes. Due to much complex
biology and physiology in heart, exosome-mediated intracellular
communication is an under-developed area in the cardiovascular
field. Once exosomes are secreted into the extracellular system,
they are stable for a relatively long period of time and can
transfer cell specific signature signaling molecules to the target
or recipient cells (Aryani and Denecke, 2016). Exosomes are
mostly involved in cellular communication between different
cell populations in multicellular organs. The main purpose of
exosome-mediated intracellular signaling is to maintain cellular
homeostasis and appropriate response to physiological stress.
These nanovesicles contain various cellular components, such as
mRNA, microRNA, DNA and membrane-bound or embedded
proteins such as Alix, Tsg101 and tetraspanins (Frydrychowicz
et al., 2015; Gurunathan et al., 2019). Tetraspanins are a group
of transmembrane signaling proteins present in exosomes and
in viable cells. The most common tetraspanins on exosomes
are CD9, CD63, CD81, and CD82 and are commonly used
as markers for characterization of exosomes. Exosomes may
also contain Hsp (Hsp70 and Hsp90) and several intercellular
adhesion molecules such as CD11a, CD11b, CD11c, CD18,
CD146, CD166, and LFA-3/CD58 from their parent cells (Bobrie
et al., 2011). In addition to these cellular proteins, exosomes
contain a variety of genetic materials (mRNA and miRs) and
are involved in angiogenesis, epigenetics, and gene regulation
(Bobrie et al., 2011; Frydrychowicz et al., 2015). Although it
was initially considered that exosomes are the entities whose

primary function is to clear cellular waste, with increasing
understanding of structural details and physiological function,
study of cell-specific exosomes is currently a very hot area
to explore disease pathobiology (Figure 4; Johnstone et al.,
1987; Chang and Wang, 2019; Kelemen et al., 2019; Sole
et al., 2019; Wang et al., 2019). Based on the broad array
of content packaged in exosomes, we think that regulation of
exosomal contents is a potential therapeutic strategy in heart
disease treatment.

Role of Exosomes in Cardiac Fibrosis
Emerging evidence suggests that exosomes are secreted by most
cardiac, vascular and stem cells in heart (Sahoo et al., 2011;
Mackie et al., 2012; Khan et al., 2015; Tseliou et al., 2015;
Garikipati et al., 2018). Thus, we surmise that all the various
cells in heart use exosomes to communicate with each other
viz. cardiac myocytes to endothelial cells, endothelial cells to
smooth muscle cells, fibroblasts to cardiac myocytes and vice
versa to regulate physiological or pathophysiological processes
(Hergenreider et al., 2012; Bang et al., 2014; Wang et al., 2014).
Thus, any alteration either in signaling molecules packaged in
exosomes or in exosomal machinery can affect physiological
homeostasis which ultimately results in heart disease. Exosomes
play a central role in many cardiac diseases including MI,
hypertrophy and ischemia (Xu et al., 2017). Recent evidence
has shown that cardiac cell communication via exosomes is
altered during fibrosis, a key mediator for heart diseases (Cosme
et al., 2017). These novel findings are driving active research
to study the role of fibroblast-derived exosomes and the effects
of exosomes from other cells on fibroblasts to understand the
pathophysiological consequences in fibrosis and heart disease.

Normally CFs contribute ∼70% of the cardiac cells and
support cardiomyocytes by producing ECM and by regulating
proliferation and migration of other cardiac cells (Furtado et al.,
2016). Thus, fibroblasts play an important role in cardiac repair.
However, in certain circumstances excessive proliferation and
differentiation of fibroblasts lead to fibrosis and heart failure.
Recent literature has shown that exosomes may also modify
cardiac repair and fate of fibrosis via modulation of fibroblast
function (Barile et al., 2017; Wang et al., 2017). Exosomes
derived from cardiac progenitor cells (CPC) have potential to
activate naive fibroblasts to initiate the wound healing process
for myocardial repair (Barile et al., 2017). During cardiac injury,
activated macrophages use exosomes enriched in miR-155 to
regulate fibroblast differentiation to myofibroblasts resulting in
more fibrosis. Thus, macrophage-specific inhibition of miR-155
or direct inhibition of this miRNA could be potential therapeutic
approaches for regulation of cardiac injury (Barile et al., 2017).
Recently, Yang et al. (2018) have found that cardiomyocyte-
derived exosomes can promote cardiac fibrosis via myocyte-
fibroblast cross-talk. It has been shown that injured epithelial
cells secrete exosomes enriched with profibrotic factors, which
can lead to fibrosis (Tomasek et al., 2002; Lee and Kalluri, 2010;
Borges et al., 2013). Recently, we have shown that EPCs from IL-
10KO mice secrete exosomes which are enriched with profibrotic
and antiangiogenic factors and miRs. Alteration in exosomal
contents significantly reduced fibrotic signaling after exosome
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FIGURE 4 | Exosome biogenesis and its constituents. The schematic diagram of exosomal biogenesis. Exosomes are membranous vesicles 30–120 nm in diameter
formed by the inward budding of the cellular membrane. This can shed off inward and fuse with early endosomes which become known as late endosomes and
multivesicular bodies (MVBs). These nanovesicles carry various cellular components, such as mRNA, microRNA, DNA, and proteins within their bilayer lipid
membrane such as Alix, Tsg101, and tetraspanins.

transplantation in heart post-MI (Garikipati et al., 2017; Yue
et al., 2017). Thus, these publications indicate that exosomes from
different cellular sources are acting as a significant determinant
in regulating cardiac fibrosis. Though exosomes contain several
important molecular signatures, the role of exosomal miRs and
its significance in regulation of CVDs are recently highlighted in
many articles (Valadi et al., 2007). We believe that modification of
miRs using selective antigomir/mimic in exosomes can regulate
pathological fibrosis and remodeling. To date, several miRs are
identified which regulate fibroblast proliferation, differentiation
and thus fibrosis (Garikipati et al., 2018; Table 1). Therefore,
targeting those miRs in exosomes could be beneficial in reducing
fibrosis and restoring heart function.

miR-Enriched Exosomes and Their Role
in Cardiac Fibrosis
MicroRNAs (miRNAs, miRs) are highly conserved 21–25-
nucleotide small NcRNA. They regulate target gene expression
by binding to mRNAs and regulating the translation process
(Thum and Condorelli, 2015; Piccoli et al., 2016). miRNA
expression is altered in many CVDs including cardiac fibrosis
and remodeling (Li et al., 2013; Tao L. et al., 2016). Recent
advancements in technology helped to us to understand the direct
role of miRs in cardiac biology and functions. For instance,
during ischemic heart diseases, miRs play important roles in
cardiac myocyte survival and thus improve heart function. Few
miRs are exclusively expressed in muscle tissue (such as cardiac
myocytes and skeletal muscles) and involved in cardiomyocyte
contractility, survival and function. These miRs are termed
myomiR (such as miR-1, miR-133, miR-206, miR-208, miR-
486, and miR-499) (McCarthy, 2011; Chistiakov et al., 2016).

As myomiRs are mainly expressed in muscle cells and play
important roles in cell function, during myocardial damage,
myomiR expression is altered tremendously (Gidlof et al., 2011).
Interestingly, altered expression of many miRs such as miR-15,
miR-21, miR-208a, miR-195, miR-29a, and miR-497 has potential
to impair cardiac function post-injury (Hydbring and Badalian-
Very, 2013; Porrello et al., 2013; Lin et al., 2015). Previous
studies have suggested that CF activation and cardiac fibrosis
are tightly regulated by sets of miRs termed fibrosis-associated
miRNAs (Please see Table 1). Any alteration in these specific
miRs can lead to exaggerated fibrosis. Interestingly, miR-433
is highly increased during myocardial ischemia and leads to
cardiac fibrosis. This specific miR regulates MAPK 1 and TGF-
β signaling pathways and thus enhances profibrotic signaling
(Tao L. et al., 2016). Recently, Moghaddam et al. (2019) have
mentioned that many miRs (such as miR-21, miR-22, and miR-
24) are highly upregulated during acute ischemic injury. In
addition, this group has also mentioned that miR-15, miR-34,
miR-130, and miR-378 expression are noticeably reduced and are
mainly responsible for the cardiac fibrosis after acute MI and IR
injury models (Moghaddam et al., 2019). In summary, miRs from
different cellular sources (Please see Table 1) can have ability to
alter multiple molecular and cellular processes including cardiac
fibrosis. Some sets of miRs can induce fibrosis and others can
reduce it. Therefore, a balanced expression of these miRNAs is
critically important during appropriate cardiac healing processes
after any type of cardiac injury.

As we discussed, exosomes contain an extensive repertoire of
genetic material including miRs. Recent reports have suggested
that cells can also exchange miRs via exosomes, which can
significantly alter the recipient cell’s biology and function
(Guay et al., 2015; Khalyfa et al., 2016; Qiao et al., 2019).
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We have previously shown that miR-125b is an important
miR in heart and plays an important role in activation of
fibroblasts (Nagpal et al., 2016). Recently, Yang et al. (2018)
found that exosomes derived from cardiomyocytes are enriched
with miR-208a. At the molecular level, this study suggests that
miR-208a enhances NFAT phosphorylation by targeting Dyrk2,
preventing its entry into the nucleus in CFs, and therefore
triggering fibrosis. Furthermore, Chaturvedi et al. (2015) have
demonstrated that during exercise miRNA-29b and miRNA-455-
enriched exosomes from cardiomyocytes can prevent fibrosis
by downregulating MMP9 levels in diabetic mice. Furthermore,
Bang et al. (2014) reported that in CFs, exosomal miRs are
enriched with many miR passenger strands. In this study
they found that fibroblast exosomes are enriched with miR-
21∗ which has potential to induce cardiomyocyte hypertrophy
by silencing expression of SORBS2 or PDLIM5 (Bang et al.,
2014). Furthermore, Ang II-induced cardiac hypertrophy was
effectively controlled by miR-21∗ inhibition in mice (Bang
et al., 2014). In a very similar study, Lyu et al. (2015),
showed that activated CF exosomes enhanced RAS signaling
in cardiomyocytes, whereas inhibition of CF-exosome secretion
by GW4869 (a potent EV inhibitor) significantly reversed Ang
II-induced cardiac hypertrophy and remodeling. In addition,
Wang et al. (2017) demonstrated that exosomal miR-155 inhibits
both SOS and Suppressor of Cytokine Signaling 1 (SCS)
expression, respectively, in fibroblasts and macrophages, thus
regulating their proliferation. These studies suggest exosomes
play important roles in fibroblast-mediated paracrine signaling.
Furthermore, regulation of exosome biogenesis or content using

pharmacological or molecular approaches could provide valuable
therapeutic tools in regulation of heart failure.

Exosomes May Act as a Potential
Biomarker in Cardiac Fibrosis
Recently, attempts have been made to use miRNAs or
other signaling molecules in serum or plasma as diagnostic
biomarkers for cancer. Researchers have found that the molecular
constituents of exosomes are highly associated with parent cell
phenotype and concurrent physiological/pathological condition.
Thus, we can believe that exosomes are replicas of parent cells
in regard to their molecular constituents. During biogenesis,
exosomes receive multiple proteins via processing through
endosomal pathways. These proteins are displayed on the
exosome surface and include, but are not limited to, tetraspanins,
heat shock proteins (HSP70) and proteins from the Rab family,
Tsg101 and Alix (Bobrie et al., 2011; van der Pol et al., 2012).
Therefore, proteins on the exosome surface may be utilized as
diagnostic tools, as they have been proven very specific and
clinically relevant (Lin et al., 2015). It has been shown that
body fluids are rich in exosomes, and the specific biomolecules
inside of, or on the surface of, exosomes can act as a biomedical
tool to determine the disease stage or progression (Takata et al.,
2008; Street et al., 2011). Careful investigation of exosomes in
body fluids of patients with high risk factors for CVDs may
provide us clinically useful information to diagnose these diseases
at much earlier stages than previously possible. For example,
cardiomyocytes secrete various muscle-specific miRNAs through

TABLE 1 | Regulatory miRNAs associated with cardiac fibrosis.

S. no. miRNA miRNA level Cardiovascular
disease

Target gene/pathway Cardiovascular effects References

1 miR-433 Overexpression Cardiac fibrosis AZIN1 and JNK1 Induce CF Tao L. et al., 2016

2 miR-21-5p Overexpression Left ventricular
hypertrophy

PPARα Induce Hypertrophy Chuppa et al., 2018;
Moghaddam et al., 2019

3 miR-21-5p, miR-135b Overexpression Left ventricular
hypertrophy,
Cardiomyopathy

Wnt and Hippo pathway Induce Fibrosis Zhang H. et al., 2016;
Moghaddam et al., 2019

4 miR-22 Downregulation Cardiac fibrosis TGFβRI Induce CF Jazbutyte et al., 2013;
Hong et al., 2016

5 miR-29 Downregulation Cardiac fibrosis TGFβ/BNP Induce CF van Rooij et al., 2008;
Chaturvedi et al., 2015

6 miR-34a Overexpression Cardiac fibrosis after MI
and IR injury

SMAD4 Induce CF Huang et al., 2014

7 miR-208a Overexpression Cardiac fibrosis Dyrk2 Induce CF Shyu et al., 2015; Yang
et al., 2018

8 miR-132 Overexpression Cardiac fibrosis PTEN gene, PI3K/Akt Inhibit CF Zhang et al., 2018

9 miR-29a-c Downregulation Cardiac fibrosis TGF-β/Smad3 Induce CF Roncarati et al., 2014;
Zhang et al., 2014;
Harmanci et al., 2017

10 miR-669a Downregulation Cardiac fibrosis MyoD Induce CF Quattrocelli et al., 2013

11 miR-455 Overexpression Cardiac fibrosis CTGF, LncRNA H19 Inhibit CF Chaturvedi et al., 2015;
Huang et al., 2017

12 miR-155 Overexpression Cardiac fibrosis TGF-β1–Smad 2 Induce CF Zhang D. et al., 2016;
Wang et al., 2017

13 miR-425, miR-744 Downregulation Cardiac fibrosis TGFB1 3′UTR Induce CF Wang et al., 2018
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exosomes. During cardiac injury, elevated levels of these miRNAs
can be detected in blood exosomes much earlier than detection of
cardiac troponins or other markers (Xu et al., 2019). Enhanced
levels of fibrosis-associated miRNAs (Table 1) such as miR-21,
miR-425, miR-744, miR-208a, and others in plasma exosomes can
also act as biomarkers in early diagnosis of hypertrophic heart
diseases (Wang et al., 2018). In coronary bypass, patients’ plasma
exosomes are enriched with miR-1 and miR-133 and thus these
miRs can be used to indicate disease progress (Emanueli et al.,
2016). Matsumoto et al. (2013) has suggested that microRNAs
miR-34a, miR-192, and miR-194 can be used as biomarkers to
determine heart failure as well. Most studies mentioned here,
and many more, have clearly indicated that miRNAs or other
molecules packaged in exosomes may act as prognostic markers
for heart diseases. However, rigorous investigations must be
carried out in large cohorts of human patients before reaching
at any final conclusion. We are optimistic that, in the near future,
exosomes will be a powerful diagnostic marker to determine the
progress of heart disease at early stages and will help our fellow
clinicians manage this deadly disease in a more efficient manner.

CONCLUDING AND PROSPECTIVE
REMARKS

Influence of exosome-mediated cardiovascular signaling and its
role in CVDs have been rigorously studied and many insightful
studies have been conducted and published in the recent
past; however, we are still far from developing the exosome-
based therapeutic for the treatment of CVDs. More in-depth
research is warranted for fully understanding the biological
aspects of loading, targeting, and delivery of exosomes, and
for identifying the endogenous content of exosomes. Several

unanswered questions remain to be addressed, such as (1) What
regulates exosome biogenesis during heart failure? (2) How
do cell type-specific exosomes exert their effect at the time of
heart injury? (3) Does intense fibrotic response alter exosome-
mediated signaling during CVD? (4) Are there qualitative and/or
quantitative differences among fibroblast exosomes from various
regions of the myocardium? and (5) Is it possible to alter
exosomes to attenuate their detrimental effects and to enhance
the benefits? It would be greatly beneficial to develop alternative
strategies to engineer fibroblast (or any cell-specific) exosomes
to enrich them with factors that target exosomes to the heart
and appropriately repair the injury. Recent advancements in
cardiovascular research indicate that exosomes may be used as a
biomarker to determine heart disease at a much earlier stage than
previously used biomarkers. As heart failure is a leading cause
of morbidity and mortality both in developed and developing
countries, developing novel biomarkers in the form of exosomes
will meet a tremendous need to manage this number one lethal
disease in a better manner.
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