
fcell-07-00326 December 7, 2019 Time: 16:45 # 1

MINI REVIEW
published: 10 December 2019
doi: 10.3389/fcell.2019.00326

Edited by:
Fen Wang,

Texas A&M University, United States

Reviewed by:
Warwick J. Teague,

The Royal Children’s Hospital
Melbourne, Australia

Jun Zhou,
German Cancer Research Center

(DKFZ), Germany

*Correspondence:
Jin-San Zhang

zhang_jinsan@wmu.edu.cn
Saverio Bellusci

saverio.bellusci@
innere.med.uni-giessen.de

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Signaling,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 14 October 2019
Accepted: 25 November 2019
Published: 10 December 2019

Citation:
Lv Y-Q, Wu J, Li X-K, Zhang J-S

and Bellusci S (2019) Role of
FGF10/FGFR2b Signaling in Mouse

Digestive Tract Development, Repair
and Regeneration Following Injury.

Front. Cell Dev. Biol. 7:326.
doi: 10.3389/fcell.2019.00326

Role of FGF10/FGFR2b Signaling in
Mouse Digestive Tract Development,
Repair and Regeneration Following
Injury
Yu-Qing Lv1,2†, Jin Wu2†, Xiao-Kun Li1,2, Jin-San Zhang1,2* and Saverio Bellusci1,2,3*

1 Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine,
The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China, 2 Institute of Life Sciences, Wenzhou University,
Wenzhou, China, 3 Department of Internal Medicine II, Cardio-Pulmonary Institute, University of Giessen and Marburg Lung
Center, Giessen, Germany

During embryonic development, the rudimentary digestive tract is initially a tube-like
structure. It is composed of epithelial cells surrounded by mesenchymal cells. Reciprocal
epithelial–mesenchymal interactions progressively subdivide this primitive tube into
distinct functional regions: the tongue, the pharynx, the esophagus, the stomach, the
duodenum, the small intestine, the cecum, the large intestine, the colon, and the anus as
well as the pancreas and the liver. Fibroblast growth factors (Fgfs) constitute a family of
conserved small proteins playing crucial roles during organogenesis, homeostasis, and
repair after injury. Among them, fibroblast growth factor 10 (Fgf10) has been reported
to orchestrate epithelial–mesenchymal interactions during digestive tract development.
In mice, loss of function of Fgf10 as well as its receptor fibroblast growth factor
receptor 2b (Fgfr2b) lead to defective taste papillae in the tongue, underdeveloped
and defective differentiation of the stomach, duodenal, cecal, and colonic atresias,
anorectal malformation, as well as underdeveloped pancreas and liver. Fgf signaling
through Fgfr2b receptor is also critical for the repair process after gut injury. In the adult
mice, a malabsorption disorder called small bowel syndrome is triggered after massive
small bowel resection (SBR). In wild-type mice, SBR leads to a regenerative process
called gut adaptation characterized by an increase in the diameter of the remaining
small intestine as well as by the presence of deeper crypts and longer villi, altogether
leading to increased intestinal surface. Intestinal stem cells are key for this regeneration
process. Induction of Fgf10 expression in the Paneth cells located in the crypt following
SBR suggests a critical role for this growth factor in the process of gut adaptation.
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FGF SIGNALING LIGANDS AND
RECEPTORS

The fibroblast growth factor (Fgf) family is composed of 22
members, both in mouse and human (Itoh, 2007). Four Fgf
receptors (Fgfr1–4) have been described. The mRNA encoding
the first three receptors (Fgfr1–3) undergo alternative splicing
thereby generating the so-called IIIb or IIIc isoforms. These
isoforms are usually differentially expressed in the epithelium
vs. mesenchyme and display different ligand binding capabilities.
In addition, a soluble form of FGFR4 was identified in
human epithelial cells (Takaishi et al., 2000). During embryonic
development and post-natally, multiple Fgf receptors and ligands
are detected in the gastrointestinal tract. Fibroblast growth factor
receptor 2b (Fgfr2b) ligands (encoded by Fgf1, 3, 7, 10) are found
in the embryonic as well as the adult mouse intestine [for review
see Danopoulos et al. (2017)]. During human development, up
to 7 weeks of gestation, fibroblast growth factor 10 (FGF10) is
detected mostly in the hindgut in the apical side of the epithelium
while its expression is found to be decreased at later stages
(Yin et al., 2013).

DIGESTIVE TRACT DEVELOPMENT

During embryonic mouse development, the rudimentary
digestive tract is clearly visible at embryonic day (E) 8.0 as a
tube-like structure composed of epithelial cells surrounded by
mesenchymal cells (Lewis and Tam, 2006). This tube can be
divided into foregut (tongue, pharynx, esophagus and stomach,
and proximal half of the duodenum), midgut (distal half of
the duodenum, jejunum, ileum, cecum, and junction of the
proximal two-third and distal one-third of the transverse colon),
and hindgut (the distal one-third of transverse colon into
the upper part of anal canal). Postnatally, in humans, these
demarcations correspond to the areas of arterial supply of the
coeliac axis, superior mesenteric, and inferior mesenteric arteries,
respectively. Also, the pancreas and the liver develop from the
foregut epithelium (Tremblay and Zaret, 2005).

Reciprocal epithelial–mesenchymal interactions progressively
subdivide the rudimentary digestive system into distinct
functional regions: the tongue, the salivary gland, the esophagus,
the stomach, the duodenum, the small intestine, the cecum, the
large intestine, the colon, and the anus as well as the pancreas
and the liver. The tongue, the salivary gland, and the stomach are
normally excluded from reviews dealing with gut development
per se but as they do represent an important component of
the upper part of the digestive system, we also included them
in this review. Finally, the liver and the pancreas, through the
production of digestive enzymes, are also crucial constituent of
the digestive tract.

The normal development of the digestive tract requires
interaction between the epithelium and mesenchyme, which
involves signaling pathways such as bone morphogenetic
proteins (Bmps), Hedgehog (Hh), platelet-derived growth
factor alpha (Pdgfa), transforming growth factor beta (Tgfb),
Wnts, and Fgfs (Roberts et al., 1995; Karlsson et al., 2000;

van den Brink, 2007; McLin et al., 2009). In particular,
Fgf10/Fgfr2b signaling plays indispensable roles during digestive
tract development where it controls cell proliferation, survival,
and differentiation. Due to the focused nature of this review on
Fgf10 and its receptor Fgfr2b, we refer the readers to a recent
review on the role of multiple Fgf ligands in gut development
(Danopoulos et al., 2017).

ROLE OF FGF10-FGFR2b SIGNALING IN
GUT DEVELOPMENT AND
HOMEOSTASIS

During E8.0 to E15.5, the proliferation of the mesenchyme
as well as epithelium allows the extension of the length of
the gut tube and the increase in its circumference to form a
stratified epithelium. From E15.5 to E18.5, this pseudostratified
cuboidal epithelium differentiates into a simple columnar
epithelium. The epithelial layer connects with the underlying
mesenchymal layer made of smooth muscle cell and thereby
undergoes a morphogenetic process leading to the process of
villi formation (Spence et al., 2011). The mechanisms controlling
villus morphogenesis at that stage are still unclear.

The mesenchymal cells arising from the mesoderm give rise to
the longitudinal and circular muscles, as well as the muscularis
mucosae and the mesenteric tissue, the function of which is
to store fat and allow blood vessels, lymphatics, and nerves to
connect with the intestine. The epithelium differentiates to give
rise to enterocytes, goblet cells, enteroendocrine cells, Paneth
cells, tuft cells, Lgr5+ cells, transient amplifying cells, and crypt
base columnar cells (Figure 1).

Fibroblast growth factor 10 plays an important function in
gut organogenesis where it modulates proliferation, survival,
and differentiation of epithelial cells. The regional expression of
Fgf10 indicates a specific regulatory role in these regions of the
primitive gut (Fairbanks et al., 2004).

In mouse small intestine, Fgf10 is mostly expressed in the
mesenchyme of the duodenum, with low expression in the
jejunum and ileum (Figure 2A; Kanard et al., 2005; Nyeng et al.,
2011; Al Alam et al., 2015). In human small intestine, FGF10 is
detected only in the ileum (Al Alam et al., 2015). Fgf10 KO mice
demonstrated colon, duodenal, and cecal atresia, alongside with
anorectal malformations (Figures 2D,E). Furthermore, these
animals demonstrated premature cellular differentiation leading
to epithelial hypoplasia (Nyeng et al., 2011). In the context
of cecum development, there is mesenchymal expansion but
no epithelial proliferation in the area where the cecal bud
normally forms, between the ileum and large intestine (Burns
et al., 2004; Al Alam et al., 2012). It has also been found that
Fgf10/Fgfr2b signaling is dispensable for the induction of the
rudimentary cecum but absolutely required for epithelial cell
proliferation, which is critical for its elongation and development
(Burns et al., 2004).

Loss of Fgfr2b function resulting from the trapping of
endogenous Fgfr2b ligands by overexpressing a soluble form
of Fgfr2b in the adult mouse intestine does not affect cell
proliferation or differentiation of the adult gut indicating a
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FIGURE 1 | Overview of the intestinal villus/crypt system. Several cell types exist along the crypt–villus axis. Paneth cells, Lgr5+ crypt base columnar cells, and the
(+4 position) stem cells together form a crypt stem cell niche which is surrounded by myofibroblasts. After differentiation, the stem cells give rise to different cell types
located in villus zone. Stem cells proliferate and become part of the transient amplifying zone (TAZ). These proliferating cells move upward to the top of villus and
differentiate into cells important for nutrient absorption such as enterocytes, tuft cells, goblet cells, and enteroendocrine. The lamina propria is where mesenteric
artery propria, lymph duct, and portal vein intersect and maintain the homeostasis in terms of blood circulation as well as lymphatic system.

dispensable role for Fgfr2b ligands during homeostasis (Al Alam
et al., 2015). However, Fgf10 overexpression in the adult gut
leads to increased crypt depths and villus heights throughout the
small intestine as well as induction of goblet cell differentiation
at the expense of Paneth cells, which decrease in number (Al
Alam et al., 2015). Fgfr3 signaling appears also to oppose Fgf10
function in Paneth cells. Fgfr3 is expressed on the basolateral
surface of the epithelium in the lower half of the crypt where
the stem cells are located (Vidrich et al., 2004). Fgfr3 KO
mice have decreased number of intestinal crypts compared to
controls due to decreased number of stem cells (Vidrich et al.,
2009). Fgfr3 KO mice also display reduced Paneth cell number
as well as differentiation, a phenotype also observed upon
Fgf10 overexpression. Altogether, these results suggest that Fgfr3
signaling regulates the number and differentiation of Paneth cells
(Vidrich et al., 2009).

In adult rats, FGF7 treatment enhances cell proliferation and
increases goblet cell differentiation (Zeeh et al., 1996; Iwakiri
and Podolsky, 2001). The same effect is observed upon Fgf10
overexpression. This treatment also leads to increased villus
height and crypt depth in the intestine (Cai et al., 2013).

Additionally, gain of function experiments suggested that
Fgf10 plays a critical role in the proliferation and differentiation
of intestinal stem cells and also impacts the supportive cells for
these stem cells. The intestinal stem cells are capable of self-
renewal as well as giving rise to other functional differentiated
cells. Several populations of supportive cells and intestinal stem
cells are located at the bottom of the crypt, including Paneth

cells (which help sustain and modulate intestinal stem cells by
secreting growth factors such as Wnt, Bmps, and Fgf10), crypt
base columnar stem cells (CBCs), and +4 stem cells (Potten et al.,
2009; Clevers, 2013; Volk and Lacy, 2017).

Fgf10-overexpression in mouse−derived organoid units
in vivo stimulates the formation of tissue−engineered intestine
(Torashima et al., 2016). It was also reported that Fgf10 increases
goblet cell differentiation by switching the balance with Paneth
cells in a model of intestinal enteroids. This process may occur
by blocking the Notch signaling which stimulates goblet cell
differentiation in concert with apoptosis of Paneth cells. As a
result, crypt depth and villus height are significantly increased.
In addition, Fgf10 treatment causes an increase in the Mmp7
and Muc2 double-positive transient amplifying cells. This is
associated with a concomitant decrease of several stem cell
markers, including Lgr5, Lrig1, Hopx, Ascl2, and Sox9 (Al Alam
et al., 2015). Paneth cell differentiation and maturation rely on the
expression of SRY-box containing gene (Sox9) and Wnt signaling
(van Es et al., 2005; Bastide et al., 2007). The precise process of
stem cell differentiation in response to Fgf10 signaling needs to
be further explored.

ROLE OF FGF10 IN TASTE PAPILLAE
AND TONGUE DEVELOPMENT

The tongue allows the perception of taste. In mice, tongue
morphogenesis starts from E11 with the formation of two
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FIGURE 2 | Overview of Fgf10 expression and associated Fgf10 KO
malformations in the gastrointestinal tract. Adapted under CC-BY 4.0 license,
from Burns et al. (2004); Fairbanks et al. (2004), Spencer-Dene et al. (2006),
and Tai et al. (2009). (A) Whole mount in situ hybridization tracing the
expression of Fgf10 (Antisense) in E12.5 gut. Fgf10 is expressed in the lung,
duodenum (arrow points out to the pyloris located at the junction between
stomach and duodenum), colon, stomach, as well as cecum. (B,C) Fgf10 KO
embryos display stomach dysplasia (C) compared to wild type (WT) mouse
(B). (D,E) Fgf10 KO embryos (E) display smaller perineal body (pb), with
indistinguishable anus in E18.5 compared to the WT mouse (D). (F–I) A small
bowel syndrome (SBR) was induced in Fgf10LacZ/+ mice. The Fgf10LacZ/+

mouse displayed increased β-galactosidase (a readout for Fgf10 expression)
in the area of small intestine (H) and the crypts (I) of the ileum after small
bowel resection (SBR) compared to the Sham group (F,G).

tongue buds (Paulson et al., 1985). Subsequently, these
buds fuse and form the tongue primordium, followed
by proliferation and differentiation in both the epithelial
compartment and the mesenchymal compartment (which
is made mostly of muscle progenitor cells). At the surface
of the epithelial layer, the foliate papillae called taste buds
gradually form allowing a mature tongue to develop (Paulson
et al., 1985; Burns et al., 2004; Nagata and Yamane, 2004;
Nie, 2005).

During mice development, both Fgfr2b and Fgf10 null
embryos display thinner and disorganized tongue epithelium
as well as impaired taste papillae development (Rice et al.,
2004). These results suggest that Fgf10 signaling controls papilla
formation (Petersen et al., 2011; Prochazkova et al., 2017).

ROLE OF FGF10 IN SALIVARY GLAND
DEVELOPMENT

The salivary gland is composed of parotid, submandibular
(SMG), and sublingual glands. These allow saliva production
in the oral cavity. The saliva contains salivary amylase that

displays digestive roles in starch (Mattingly et al., 2015).
We refer the reader to published reviews on salivary gland
development (Tucker, 2007; Ferreira and Hoffman, 2013).
Salivary glands help to produce saliva and maintain oral
homeostasis. The salivary gland development depends on
reciprocal interactions between the epithelium and mesenchyme.
In mice, by E12, the epithelium of the salivary placode
in the oral cavity invaginates, at the location where the
condensed mesenchyme is found, to form a primary bud.
By E13, the process of branching morphogenesis of the
salivary glandular buds starts. This allows the formation of a
glandular structure at later stages (Patel and Hoffman, 2014).
During the branching morphogenesis stage, Fgf10 controls the
expression of Sox9, which is essential for the establishment
of distal progenitor cells as well as for the branching process
to occur (Chatzeli et al., 2017). Loss of function of Fgf10
causes salivary phenotypes with different severities, from failure
to form to delayed epithelial branching (Jaskoll et al., 2005;
Patel and Hoffman, 2014).

ROLE OF FGF10 IN STOMACH
DEVELOPMENT

Stomach development initiates from the foregut with the
formation of a pseudostratified epithelium. At E17.5, the stomach
can be subdivided into a forestomach and a glandular stomach.
The stratified epithelium in the glandular stomach will further
give rise to the corpus and the antrum due to differentiation of
the specific progenitors; this includes squamous cells, parietal,
and chief and gastric endocrine cells from a pre-patterned gastric
progenitor epithelium (Nyeng et al., 2007).

Fgf10 expression is found at high level of expression
ahead of the stomach secondary transition (E15.5–E16.5). Fgf10
as well as its receptor Fgfr2b are expressed in the pre-
differentiated mouse stomach at E11.5. Functionally, Fgf10 is
part of a network of signaling pathway including Shh and
Wnt signaling that synergistically control stomach development.
Fgf10 signaling maintains stomach progenitors, morphogenesis,
and cellular differentiation and attenuates stomach endocrine
terminal differentiation (Spencer-Dene et al., 2006; Nyeng et al.,
2007). Fgf10 KO embryos displayed an underdeveloped, smaller
stomach compared to a normal stomach (Figures 2B,C; Spencer-
Dene et al., 2006).

Interestingly, overexpression of Fgf10 affects both gastric
epithelial proliferation and differentiation, promotes mucous
neck cell differentiation, and suppresses parietal and chief
cell differentiation. However, inhibition of Fgfr2b signaling
has no impact on epithelial proliferation or differentiation
(Speer et al., 2012).

ROLE OF FGF10 IN PANCREAS
DEVELOPMENT

The pancreas, as a digestive glandular organ, originate from the
foregut endoderm. Its function is to maintain an appropriate level
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of blood glucose as well as to contribute to the processing of
food digestion inside the gut (Edlund, 1999; Shih et al., 2013).
The pancreatic enzymes (trypsin, chymotrypsin, carbohydrates,
and lipase) secreted by acinar cells are released for food
digestion (Rothman, 1977). At E9.5 in mice, a ventral and
a dorsal pancreatic bud emerges from the endoderm. Bud
initiation is mediated by sonic hedgehog (Shh) and pancreatic and
duodenal homeobox 1 (Pdx1) in the endoderm (Hebrok et al.,
1998). At later stages, the interaction between endoderm and
mesoderm leads to the fusion of the two buds. Concomitantly,
endocrine cells (acinar cells and ductal cells) as well as exocrine
cells (islet cells) start to form (Kumar et al., 2003; Kobberup
et al., 2010). High expression of Pdx1 stimulates endocrine
cell differentiation (Lammert et al., 2001), while decreased
expression of Pdx1 or pancreas transcription factor 1 (Ptf1a)
causes diabetes, a diseases related to impaired islet cells. These
results indicate that Pdx1 and Ptf1a are crucial for endocrine
cells genesis (Kawaguchi et al., 2002; Burlison et al., 2008;
Fukuda et al., 2008).

Fgf10 is a mesenchymal-derived growth factor expressed
in the pancreas from E9.5 to E12.5. Fgf10 controls the
proliferation and differentiation of the adjacent pancreatic
epithelial progenitors into functional endocrine and exocrine cell
subsets (Bhushan et al., 2001). Fgf10 allows the formation
of Pdx1-positive epithelial precursors from the foregut
epithelium and its deficiency causes nearly complete loss
of endocrine and ductal specification, leading to pancreatic
dysplasia (Bhushan et al., 2001; Kobberup et al., 2010).
Fgf10 KO embryos displayed less progenitor cells and fewer
exocrine cells differentiation along with malformation of
acinar cells (Bhushan et al., 2001). Additionally, in Fgfr2b
KO embryos, pancreatic ductal cells display less proliferation
compared to the corresponding cells in the normal pancreas
(Pulkkinen et al., 2003). Mechanistically, this dysplasia
phenotype involves in a Sox9/Fgf10/Fgfr2b feed forward
loop which is essential to maintain pancreatic organ identity
(Seymour et al., 2012).

ROLE OF FGF10 IN LIVER
DEVELOPMENT

The liver is a multifunctional organ that controls saccharolytic
and urea metabolism, detoxification, and cholesterol levels
as well as digestion. Liver bud genesis starts at E9.0 in
mice, with the formation of a diverticulum in the ventral
domain of the foregut endoderm. Later on, this diverticulum
undergoes de-stratification and proliferation, then invades the
surrounding septum, ultimately forming the hepatic buds (Bort
et al., 2006). Liver morphogenesis is then initiated by a
thickened epithelial structure around the position of the first
somite. Hepatic specification requires the interaction of the
endoderm with the surrounding cardiac mesoderm septum,
transversum, as well as the endothelium (Gualdi et al., 1996;
Rossi et al., 2001).

Murine liver bud formation starts at E10 in mice
and during the fifth week of gestation in humans. Both

hepatoblasts and hematopoietic progenitor cells develop
from the liver primordium. Hepatoblasts then differentiate
into hepatocytes and cholangiocytes (Migliaccio et al., 1986).
Hepatocytes constitute a heterogeneous population displaying
different functions in the hepatic lobule. The cluster of
periportal hepatocytes allows blood change between the
hepatic artery and the portal vein and is linked to the bile
ducts. As the fetal hepatic cell mature, glycolytic enzymes
secretion is decreased, coupled with increased levels of
gluconeogenic enzyme and gain the function of glucogenesis
(Devi et al., 1992).

Fgf10 signaling is important to specify the boundaries
between the hepatic duct and organs (Dong et al., 2007).
Fgf10 KO mice exhibit smaller livers associated with a decrease
in the proliferation and survival of hepatoblasts. As the
hepatoblasts undergo proliferation and differentiation to give
rise to hepatocytes and cholangiocytes, these results suggest that
Fgf10 is crucial in liver genesis and hepatoblast growth via
the activation of β-catenin signaling during hepatogenesis (Berg
et al., 2007). To date, little is known about the mechanism of
action of Fgf10 in hepatic cell proliferation and differentiation
during liver development.

FGFR2b SIGNALING IN INTESTINAL
INJURY REPAIR

Fgf7 KO mice exhibit increased sensitivity to dextran sulfate
sodium (DSS) injury with reduced mucosal barrier repair,
suggesting an important role for endogenous Fgf7 in repair
after injury (Chen et al., 2002). Recombinant FGF7 treatment
has also been tested in the context of DSS-induced colitis
injury in rats and mice. FGF7 treatment following colitis
induction led to therapeutic benefits such as diminished
intestine ulceration and reduced cell death (Egger et al.,
1999). Interestingly, in these models, FGF7 delivered before
colitis induction was not protective against injury. It is
still unclear whether FGF7 can be protective in the context
of chemotherapy−induced mucositis (Farrell et al., 2002;
Gibson et al., 2002).

By contrast FGF10 (called also Repifermin) elicits both
a protective and a therapeutic effect in the model of DSS-
induced colitis (Miceli et al., 1999; Greenwood-Van Meerveld
et al., 2003). FGF10 also improves the ulceration induced by
indomethacin administration in rats, and decreases inflammatory
cytokines secretion such as interleukin-6 (IL−6), IL−8, and
tumor necrosis factor (TNF) (Miceli et al., 1999; Sandborn et al.,
2003; Hamady et al., 2010).

FGF AND SHORT BOWEL SYNDROME

Short bowel syndrome (SBS) is synonymous with impaired gut
function with decreased absorption of the food associated with
severe diarrhea. This syndrome occurs following massive trauma
to the gut or following resection of the small intestine due
to congenital anomalies. A repair process called adaptation is
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associated with SBS. This process allows the formation of longer
villi and deeper crypts resulting in an increase in the diameter of
the remaining small intestine. The process of adaptation results
in increased nutrient absorption (Goulet, 1998). In rat models of
SBS, recombinant FGF7 treatment led to increased villus height
and crypt depth, thickened mucosa, as well as enhanced goblet
cell differentiation (Johnson et al., 2000; Washizawa et al., 2004).
Interestingly, Fgf10 expression is now detected in the Paneth cells
during adaptation while normally absent in the small intestine
in mice (Figures 2F–I). These results indicate a crucial role for
Fgf10 in intestinal adaptation (Tai et al., 2009). Both gain and loss
of function experiments are required to confirm the function of
Fgf10 in this regenerative process.

ISCHEMIA REPERFUSION INJURY

Following ischemia or hypoxia, the reoxygenation of the
gut leads to the so-called ischemia–reperfusion (I/R) injury.
During the interruption of the blood supply, the reduced
oxygen and nutrients cause oxidative stress and inflammation.
This leads to decreased barrier function and potentially to
systemic inflammation.

It has been reported that FGF7 treatment elicited a protective
effect on intestinal repair in the context of I/R injury. FGF7
treatment rescues cell death and strengthens the barrier function.
This is associated with increased recovery of mucosal structures
as well as decreased disruption of the tight junctions (Cai et al.,
2012). Following I/R injury, FGF7 treatment also increases IL-
6 (IL-7) expression, a cytokine which acts on the intraepithelial
lymphocytes and which is important for epithelial cell growth
(Egger et al., 1998; Cai et al., 2012). Thus, FGF7 treatment is
efficient in the repair process of colonic anastomoses via its effects
on proliferation, inflammation, and mucus production.

FGFR2b LIGANDS AND HUMAN
INTESTINAL DISEASES

No genetic mutations for the FGF signaling pathway have been
identified so far in human with different anorectal malformation
or other intestinal defects (Kruger et al., 2008). However, many
studies reported a correlation between FGFs expression and
gut defects. For example, in patients with inflammatory bowel
disease, analysis of gut biopsies indicates that high levels of
FGF7 expression are associated with high levels of inflammation
(Brauchle et al., 1996; Finch et al., 1996). FGF7 expression is
also high in patients with celiac disease (Salvati et al., 2001)
and ulcerative colitis disease (Bajaj-Elliott et al., 1997). In a
small subset of colorectal cancer, FGFR2 expression is amplified
(Mathur et al., 2014).

TRANSLATIONAL USE OF FGF IN
INTESTINAL DISEASES

Repifermin (also called KGF2 or FGF10) was administered
intravenously (IV) to patients with ulcerative colitis. Eighty-eight

patients with a diagnostic of ulcerative colitis were enrolled in a
clinical trial and received, for five consecutive days, either placebo
or escalating doses of FGF10 (1, 5, 10, 25, and 50 µg/kg). Only
the lowest dose (1 µg/kg) treatment led to an improvement in
the clinical remission at 4 weeks after treatment (Sandborn et al.,
2003). The readouts focused on the endoscopic appearance, stool
blood component, and stool frequency. While all the FGF10
doses used were well tolerated, the higher doses did not trigger
a positive outcome. This observation suggests that higher doses
of FGF10 could trigger an inhibitory effect on cell survival and
proliferation. The fact that the lower dose used led to a beneficial
effect suggests that follow-up clinical trials should be done with
lower doses of FGF10.

WHERE DO WE GO FROM HERE?

One of the biggest problem for the translational use of FGFs
is that while they work very well in pre-clinical models,
they fail to elicit a positive effect in the few and limited
clinical trials. In particular, given the importance of Fgf10
during digestive tract development, the use of recombinant
FGF10 in humans has been disappointing in the limited results
published to date. Key aspects to consider for future studies
are the stability, dosage, and the route of administration of
this growth factor to ensure effective repair. Considering the
important role played by FGF signaling in development and
repair, it will be worth the effort to optimize the experimental
conditions for the efficient use of FGFs to treat patients with
digestive tract diseases.
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