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Intraflagellar transport (IFT) was initially identified as a transport machine with multiple
protein subunits, and it is essential for the assembly, disassembly, and maintenance
of cilium/flagellum, which serves as the nexus of extracellular-to-intracellular signal
integration. To date, in addition to its well-established and indispensable roles in ciliated
cells, most IFT subunits have presented more general functions of vesicular trafficking
in the non-ciliated cells. Thus, this review aims to summarize the recent progress on the
vesicular trafficking functions of the IFT subunits and to highlight the issues that may
arise in future research.
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INTRODUCTION

The formation and function of the cell depend on the appearance of phospholipid membranes.
During a crucial stage of prokaryote-to-eukaryote transition, various subcellular membrane-bound
compartments appeared through folding, bending, and fusing phospholipid membranes, thus
contributing to the organization of the endomembrane system (Dacks and Field, 2007). This
process directly expands the total area of the membrane, thereby providing a scaffold for the
attachment of proteins and lipids. It also divides the interior of the cell into several functional
regions, which ensures a unique microenvironment suitable for specific biochemical reactions.

Nevertheless, compared with free diffusion in the prokaryotic cytoplasm, transport of soluble
molecules and biomacromolecules is hampered by the hydrophobic structure of phospholipids
in the endomembrane system. As a coevolutionary system, the dynamic and targeted vesicular
transport has been adopted by eukaryotes. The endomembrane system comprises the nuclear
envelope, rough and smooth endoplasmic reticulum (ER), Golgi apparatus, endosomes, and
vesicles that bud off from these membrane structures. Golgi functions as the center of the
endomembrane system, thus selectively accepting protein and lipid cargoes that are transported
from the ER at the cis-Golgi, processing them at the medial-Golgi, and incorporating them into
specific vesicles at the trans-Golgi site and trans-Golgi networks (TGNs) (Rothman, 1981). The
underlying molecular mechanism of vesicular transport in the endomembrane system, such as
vesicle budding, trafficking, tethering, and fusion, has been well studied and summarized (Cai et al.,
2007; Hutagalung and Novick, 2011).

The cilium/flagellum, a membrane-bound organelle protruding from the cell surface
and sharing several vesicular trafficking components with the endomembrane system, has
gained immense attention due to its sensory, motile, and secretory roles in development,
homeostasis, and ciliopathies (Bisgrove and Yost, 2006; Fliegauf et al., 2007; Long et al.,
2016; Sanchez and Dynlacht, 2016; Reiter and Leroux, 2017). Similar to the other
membrane-bound organelles, the cilium lacks protein synthesis machinery (Johnson and
Rosenbaum, 1992). Therefore, a matched transport system is required to maintain the
structure and function of the cilium. Until 1993, this transport system was observed
by video-enhanced differential interference-contrast (DIC) microscopy and was termed
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intraflagellar transport (IFT), which can be imaged as
bidirectional trains between the ciliary skeleton and membrane
(Kozminski et al., 1993).

Furthermore, numerous studies helped in understanding
the composition, assembly, and functions of the IFT system
(Cole, 2003; Taschner et al., 2012; Lechtreck, 2015; Prevo et al.,
2017). Evolutionarily, various components of a novel system are
presumably the result of gene duplications, thereby producing
proteins that have similar functions but differ in their subcellular
locations (Dacks and Field, 2007). Phylogenetic evidence revealed
that IFT complexes originated from the vesicle coats, which
are the essential components of vesicular transport in the
endomembrane system (Jekely and Arendt, 2006; van Dam et al.,
2013). Based on this evidence, it is speculated that IFT appeared
earlier and, subsequently, was co-opted by an ancestral eukaryote
to establish the cilium. Recently, increasing evidence has revealed
that several IFT subunits indeed have extraciliary sites, suggesting
that they presumably played primitive vesicle-associated roles
(Finetti et al., 2009, 2014; Finetti and Baldari, 2013; Noda et al.,
2016). Herein, we mainly review the vesicular trafficking roles of
IFT subunits in the ciliated and non-ciliated cells.

THE VESICULAR TRAFFICKING
FUNCTION OF IFT SUBUNITS IN
CILIATED CELLS

Ciliogenesis
Cilia are highly conserved organelles and widely distributed
from the unicellular green alga Chlamydomonas to most
human cells. The assembly of cilia is believed to begin when
the cells exit the mitotic cycle and can be roughly divided
into the following phases. First, small cytoplasmic vesicles
originating from the Golgi or recycling endosomes accumulate
at the distal appendages (DAPs), a unique structure of the
mother centriole. The centrosome comprises two mutually
perpendicular centrioles (mother and daughter) that differ in
their ultrastructure. The mother centriole can acquire the
appendages at the distal end (a process known as centriole
maturation), while the daughter cannot. Only the mature
centriole can support ciliogenesis (Vorobjev and Chentsov Yu,
1982). Second, these vesicles fuse and produce a membranous
cap on the distal end of the mother centriole. Third, this mother
centriole, now called basal body, functions as a template to
initiate the growth of the microtubule doublets/axoneme, the
core of cilium. The extension of the mother centriole will be
sheathed by the top membranous cap. Fourth, this nascent cilium
docks to a specific patch of the plasma membrane through
the DAPs structure, accompanying the fusion of the ciliary
membrane cap with the plasma membrane. Subsequent vesicles
are continually transported into the periciliary membrane
compartment (PCMC), a transition membrane zone between the
plasma and ciliary membranes (in some cell types, they are in
pocket shape), and contribute in enlarging the ciliary membrane
(Kaplan et al., 2012; Benmerah, 2013; Lu et al., 2015; Sanchez and
Dynlacht, 2016).

Similar to other membrane-bound organelles, vesicular
trafficking is indispensable for the cilia assembly; however,
the cilium is not entirely membrane-surrounded. Blade-like
structures derived from DAPs and termed transition fibers
stretch across the membrane-unbound zone, tether the mother
centriole to the periciliary membrane, and demarcate the
entrance to the cilium. The transition zone (TZ) starts from
above these transition fibers. Y-shaped structures characterize
this TZ, connecting the ciliary membrane and microtubule
doublet and acting as a filter or a gate presumably owing to
the size exclusion in an already narrow cilium with ∼200 nm
diameter (Craige et al., 2010; Kee et al., 2012). Although the
ciliary membrane is continuous with the plasma membrane, the
existence of transition fibers and TZ ensures that the cilium
contains its unique membrane receptors and lipids for sensing
and transmitting extracellular signals (Pazour et al., 2005; Goetz
and Anderson, 2010; Hilgendorf et al., 2016).

Intraflagellar Transport
The active transport system in the cilium, IFT, was initially
discovered in Chlamydomonas (Kozminski et al., 1993).
Furthermore, researches on other organisms, such as
Caenorhabditis elegans, Trypanosoma brucei, Tetrahymena,
sea urchin, zebrafish, mice, and human cell lines, have greatly
enhanced the knowledge of IFT. In electron micrographs, IFT
appears as a granule-like tightly apposed structure between the
microtubule doublets and ciliary membrane, which comprises
motors (kinesin II and cytoplasmic dynein 2) and IFT complexes
serving as adaptors or bridges between the cargoes and motors
(Kozminski et al., 1993, 1995).

Intraflagellar transport complexes could be further
fractionated into IFT-A and IFT-B subcomplexes. The IFT-
A complex, comprising six subunits (IFT144/140/139/122/121,
and 43), mediates the retrograde transport from the cilium tip
to the basal body. The IFT-B complex, subdivided into a 10-
subunit core IFT-B1 complex (IFT-88/81/74/70/56/52/46/27/25,
and 22) and a 6-subunit peripheral IFT-B2 complex (IFT-
172/80/57/54/38, and 20), is responsible for the anterograde
transport from the basal body to the cilium tip (Figure 1A; Cole,
2003; Scholey, 2003).

To date, none of the IFT proteins possess transmembrane
domains, lipid modifications, or lipid-binding domains, and
vesicular trafficking is widely believed to be absent inside the cilia
(Taschner et al., 2012); however, IFT subunits surprisingly share
their domain organization with classical vesicular coat proteins
(COPs), which identify various vesicular trafficking pathways
in the endomembrane systems (Jekely and Arendt, 2006; van
Dam et al., 2013). Structurally, the subunits of IFT complex are
rich in the WD domain, tetratricopeptide (TPR) repeats, and
coiled-coil (CC) domain, thus displaying innate potential for
protein–protein interactions (Taschner et al., 2012; Lechtreck,
2015). Moreover, IFT-coated vesicles carrying axonemal proteins
were observed at the ciliary base (Wood and Rosenbaum, 2014).
In C. elegans, the movement of membrane channels showed a
comparable rate to IFT in cilia (Qin et al., 2005). A recent study
reported that IFT172 is a membrane-interacting protein with an
ability to remodel large membranes into small vesicles by using
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FIGURE 1 | Vesicular trafficking function of IFT subunits in ciliated and non-ciliated cells. (A) In the ciliated cell, IFT20 localizes at both the cilium and the Golgi and
transports the ciliary receptors from the Golgi to the cilium. Golgi resident protein GMAP210 recruits IFT20 at the Golgi. Another Golgi resident protein GM130, along
with VPS15, regulates the release of IFT20-associated vesicles from the Golgi. IFT54 interacts with IFT20 and Rabaptin5, an effector of Rab8, to mediate the
interaction of Rab8-Rabaptin5-containing and IFT20-containing vesicles when these vesicles are directed to the base of the cilium. At the basal body, these vesicles
can be assembled with the other IFT subunits, and anterograde IFT trains transport ciliary receptors into the cilium. Some ciliary receptors could also be transported
by recycling endosomes with the help of Rab8, Rab11, and BBSome. When the vesicles carrying Rab8, Rab11, and the BBSome reach the basal body, IFT25/27
interact with the BBSome to facilitate ciliary receptors incorporating into IFT trains. The BLOC-1 complex is also associated with the ciliary receptors in recycling
endosome-derived vesicles. Moreover, IFT20 is partially responsible for the basal body localization of pallidin, one subunit of the BLOC-1 complex. Two components
of the exocyst complex (Exo70 and Sec8) also interact with IFT20 at the basal body, which might facilitate the interaction of v-SNARE and t-SNARE. One component
of DAPs, CCDC41, can recruit IFT20 to the basal body where several IFT subunits associated with vesicular trafficking are assembled into the whole IFT complex.
(B) Vesicular trafficking functions of IFT20, IFT52, and IFT57 in the neuron. During the maturation of neurons, the microtubule organizing center (MTOC; centrosome)
and Golgi are translocated toward the neurite. IFT20 localizes at the Golgi and transports synaptic vesicles along with IFT52 and IFT57 in polarized axons.
(C) Vesicular trafficking functions of IFT subunits in T cells. When the T cell is activated, and the immune synapse (IS) begins to assemble, the (MTOC; centrosome) is
translocated beneath the membrane domain of the IS. The Golgi and other vesicular compartments also relocate toward the IS. The T-cell receptors (TCRs) need to
be transported to the IS for the activation of T cells. IFT20, localizing at the MTOC, Golgi, and endosomes, is required for polarized TCR recycling to the IS with the
help of IFT52, IFT54, IFT57, and IFT88. Transmit of internalized TCRs from early endosomes (Rab5) to recycling endosomes (Rab4) or pericentrosomal recycling
endosomes (Rab11) also needs IFT20. In addition, IFT20 also regulates the retrograde vesicular trafficking of the cation-independent mannose-6-phosphate
receptors (CI-MPR) from lysosomes to the trans-Golgi network, thus controlling lysosome biogenesis in both ciliated and non-ciliated cells [only presented in (C)].

the giant unilamellar vesicles in vitro (Wang et al., 2018). In
addition to IFT172, other IFT subunits also possess a membrane-
associated function during ciliogenesis. In the present review, we
have discussed these individual IFT subunits in detail.

IFT20 and Vesicular Trafficking
IFT20 is the smallest IFT subunit with two predicted coiled-
coil domains at the C terminal. At moderate salt concentrations,
IFT20, as well as another five subunits, dissociate from the stably

associated core subcomplex (IFT-B1), and they are grouped into a
peripheral subcomplex (IFT-B2) (Taschner et al., 2016); however,
a peripheral position in the IFT-B complex does not indicate that
IFT20 is dispensable for ciliogenesis. In contrast, IFT20 is crucial
for cilium formation and might be a well-studied example to
prove that IFT subunits participate in vesicular trafficking. IFT20
has a unique Golgi localization, in addition to the basal body
and cilium where the other IFT subunits localize (Figure 1A).
A piece of direct evidence suggests that the highly dynamic
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vesicles comprising IFT20-GFP move between the Golgi and the
basal body (Follit et al., 2006).

IFT20 and the Golgi
The Golgi apparatus is a stack of distinct cisternae arranged from
cis to trans positions. In several cell types, the colocalization
pattern between IFT20 and different Golgi markers suggested
that IFT20 is associated with both the cis and medial cisternae,
but not extensively with the TGN (Follit et al., 2006). IFT20
is recruited to the Golgi by GMAP210, a member of golgins
(Figure 1A; Follit et al., 2008). Golgins are predominantly
coiled-coil proteins and typically anchored to the cytosolic face
of the Golgi membrane to capture or tether the transport
vesicles (Munro, 2011); however, unlike IFT20, GMAP210 is
not absolutely required for ciliary assembly. Shorter cilia, with
two-third length of normal cilia, were still assembled upon
the loss of GMAP210 (Follit et al., 2008). Complete loss of
IFT20 blocked ciliary assembly precluding the analysis of vesicle
trafficking. Partial loss of IFT20 did not prevent cilia assembly;
however, it impaired the cilium-targeted vesicular trafficking
of polycystin-2, a ciliary transmembrane protein. In GMAP210
mutant cells, ciliary levels of polycystin-2 also decreased, which
indicated the interplay of IFT20 and GMAP210 in regulating
the cilium-targeted vesicular transport from the Golgi. Both
phenotypes, upon loss of GMAP210, might be explained by
the fact that the members of the golgin family function in a
redundant manner, co-operating on the surface of the Golgi
to tether vesicles or Golgi membranes, and loss of a single
golgin might be compensated for other golgins with similar
tethering specificity.

Indeed, GMAP210 acts in a partially redundant manner
with GM130, another cis face resident golgin, to ensure
efficient anterograde cargo delivery to the cis-Golgi (Roboti
et al., 2015). GM130 could form a new complex with VPS15,
whose missense mutation was identified in a family with a
ciliopathy and led to shorter cilia. The number of IFT20-
associated vesicles derived from the Golgi decreased in VPS15-
mutant cells. Moreover, the interaction of GM130 with VPS15
and GMAP210 with IFT20 occurred both in the control
and VPS15 missense mutant cells; however, the interaction
of GM130 with IFT20 was only detected in the control,
but not in the mutant cells. Therefore, VPS15-GM130 might
serve as a platform to release IFT20-positive vesicles (Stoetzel
et al., 2016). IFT20 might interact with these two functionally
redundant golgins, GMAP210 and GM130, sequentially or
simultaneously to promote the formation and release of IFT20-
positive vesicles (Figure 1A).

In addition to GMAP210 and GM130, other golgins might also
interact with IFT20 to facilitate vesicular trafficking in specific
cell types. In photoreceptor cells, IFT20 could also be found on
the TGN and post-Golgi vesicles that transport ciliary membrane
proteins, such as opsin, into the outer segment that is a modified
cilium (Keady et al., 2011). Deletion of IFT20 caused opsin
accumulation at the Golgi; however, deletion of IFT140, a subunit
of IFT-A complex, caused opsin accumulation in the plasma
membrane of the inner segment (Crouse et al., 2014). These data
suggested that other IFT subunits were also involved in vesicular

trafficking targeted to the cilium (Sedmak and Wolfrum, 2010).
Moreover, TGN is an active site to deliver cilium-targeted, as well
as plasma membrane-targeted and endosome-targeted vesicles.
Some components of these three vesicular trafficking pathways
are shared. For example, FAPP2 is a resident TGN protein whose
abolishment resulted in impaired ciliogenesis and accumulation
of vesicles between the apical membrane and the centrioles
(Vieira et al., 2006). Additionally, AP-1, identified initially as a
clathrin-associated adapter, also participated in the transport of
several ciliary membrane proteins from TGN to Rab8-positive
vesicles (Kaplan et al., 2010). It would be interesting to determine
whether IFT20 is also involved in plasma membrane-targeted and
endosome-targeted vesicular trafficking pathways, functioning as
a shared protein in Golgi-derived vesicular trafficking in some
specific cell types.

IFT20 and the Centrosome
On completion of the early events of ciliogenesis, such as
establishment of DAPs, formation of preciliary membrane
compartment, recruitment of IFT components, and assembly of
the TZ, the ciliary axoneme starts elongating. Progress of these
early events is mostly dependent on the interaction of various
vesicles with the mother centriole. Moreover, the centrosome-
directed vesicular trafficking of signaling proteins to a membrane
patch presumably inaugurated a ciliary precursor, facilitating
more efficient signal transduction (Sung and Leroux, 2013).

The establishment of mammalian DAPs of the mother
centriole is initiated by the recruitment of C2CD3, followed by
other components, such as CCDC41 and Cep164, thus forming a
9-fold symmetrical radial finger-like protrusion with a diameter
of over 500 nm, which provides a broad platform to facilitate the
vesicle-centriole association (Bowler et al., 2019). Among these
components of DAPs, CCDC41, comprising multiple coiled-coil
domains, has been proven to anchor the IFT20-positive vesicles
to the mother centriole. Knockdown of CCDC41 remarkably
inhibited the recruitment of IFT20 to the centrosome and
prevented ciliogenesis at the ciliary vesicle docking step (Joo et al.,
2013), thereby suggesting that the interaction of IFT20-associated
vesicles with DAPs is essential for ciliogenesis (Figure 1A). The
colocalization of IFT52 with transitional fibers at the basal body
suggested that the transitional fibers derived from DAPs also act
as the docking site for other IFT subunits (Deane et al., 2001).

Cilia-targeted vesicles derived from the recycling endosomes
or the Golgi must be transported in a specific order to ensure
the precise assembly of cilia (Nachury et al., 2007; Knodler
et al., 2010; Westlake et al., 2011). Using time-lapse and
transmission electron microscopy, Westlake and his colleagues
proved that the accumulation of IFT20-positive vesicles at
DAPs followed the EHD1/EHD3-dependent assembly of small
distal appendage vesicles (DAVs) and occurred before Rab8-
dependent post- ciliary vesicles (CV) extension. With the loss
of EHD1/EHD3, IFT20-positive vesicles failed to accumulate at
the mother centriole, and ciliogenesis was disrupted; however,
such accumulation was independent of Rab8-positive vesicular
trafficking (Lu et al., 2015). Another study performed in the
Malicki’s laboratory revealed that IFT54, a subunit of IFT-B2
complex with an N-terminal calponin homology (CH) domain
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and a C-terminal coiled-coil domain, directly interacted with
IFT20 and linked IFT20 to Rab8 via Rabaptin5. The complex
of IFT20–IFT54–Rabaptin5–Rab8 may provide a bridge between
the IFT subunits and Rab8-associated vesicles (Figure 1A; Omori
et al., 2008). Thus, the IFT20-positive vesicles reached the mother
centriole earlier than those associated with Rab8, and IFT54
mediated the interaction between them. Moreover, IFT54 seemed
to be responsible for the incorporation of IFT20-associated
vesicles into IFT trains at the basal body (Zhu et al., 2017).

The noteworthy research from the Pazour’s laboratory
revealed that the mother centriole pool of IFT20 is partially
responsible for the basal body localization of pallidin, a subunit of
BLOC-1 complex (the biogenesis of lysosome-related organelles
complex-1) that functions in endosome sorting, indicating that
IFT20 might mediate the anchoring of endosomal BLOC-
1-dependent vesicles at the basal body (Figure 1A; Monis
et al., 2017). Such interaction appeared to be involved in
sperm development. Ift20−/− knockout mice are infertile, with
significantly reduced sperm count and motility. The results of
electron microscopy revealed an increase in the cytoplasmic
vesicles and a decrease in the lysosomes (Zhang et al., 2016).
Lysosome maturation was associated with the BLOC-1 complex
(Cai et al., 2010; Yuzaki, 2010), indicating the relevance of
IFT20 and the BLOC-1 complex. Moreover, in IFT20-deficient
cells, a defect was observed during autophagic clearance, and
lipid droplets accumulated mainly due to the dysfunction of the
lysosome (Zhang et al., 2016; Finetti et al., 2020).

Mechanistically, IFT20 was shown to regulate the retrograde
traffic of the cation-independent mannose-6-phosphate receptors
(CI-MPR) to the TGN by coupling the recycling CI-MPRs to
the microtubule motor dynein. These receptors are essential for
the lysosomal targeting of acid hydrolases, which are required
for the degradation function of the lysosome (Figure 1C; Finetti
et al., 2020). IFT20 also interacted with Exo70 and Sec8, two
components of the exocyst complex tethering vesicles at target
sites before membrane fusion (Heider and Munson, 2012; Heider
et al., 2016); however, the localization of Exo70 and Sec8 at the
basal body was independent of IFT20. The association of IFT20
and components of the exocyst complex might bridge some
membrane proteins independent of IFT-associated vesicles to IFT
trains at the basal body (Figure 1A).

The assembly and disassembly of cilia are coordinated with
the cell cycle. The cilium disassembles at the onset of mitosis,
releasing centrioles to function as the microtubule organizing
center (MTOC) at the poles of the spindle apparatus (Kim
and Tsiokas, 2011). When cells entered mitosis, the Golgi
was dispersed into small structures that coalesced with the
centrosomes, and part of IFT20 remained associated with the
centrosomes (Follit et al., 2006). Moreover, deletion of IFT20
specifically in kidney collecting duct cells (germline deletion of
IFT20 caused embryonic lethality) not only disrupted the cilia
formation but also caused rapid postnatal cystic expansion of the
kidneys due to misorientation of the mitotic spindle (Jonassen
et al., 2008). During cytokinesis, the ingression of the cleavage
furrow constricts the cytoplasm, and the spindle microtubules
are transformed as the intercellular bridge connecting the two
daughter cells. In the middle of the intercellular bridge, the

midbody, a temporary structure with overlapping antiparallel
microtubule bundles, is formed. Interestingly, IFT20, IFT88, and
Rab8 were found to localize at the midbody during cytokinesis
(Bernabe-Rubio et al., 2016). After cytokinesis, the midbody was
inherited by one of the daughter cells as a remnant. When the
remnant, carrying Rab8, IFT, and exocyst components, moved
closer to the centrosome, a primary cilium began to assemble;
however, whether the materials from the remnant contributed
to form ciliary vesicles during early ciliogenesis has not yet been
determined (Paridaen et al., 2013; Bernabe-Rubio et al., 2016).

IFT20 and Ciliary Membrane Proteins
It was reported that membrane proteins targeted to the cilium
depended on ciliary targeting sequences (CTSs) within their
cytosolic domain. Based on the truncation localization assays,
several proposed CTSs, including the RVxP motif (polycystin-2),
VxPx motif (rhodopsin), and the AxS/AxQ motif (somatostatin
receptor 3, serotonin receptor 6, and melanocortin-concentrating
hormone receptor 1), were identified (Pazour and Bloodgood,
2008; Nachury et al., 2010); however, unlike the nuclear
localizing sequence (NLS), a consensus sequence in the ciliary
receptors was not found.

Two well-known ciliary receptors interact with IFT20,
polycystin-2 (associated with the human autosomal dominant
polycystic kidney disease), and opsins; however, a weak
association was observed between IFT20 and CTS in these two
receptors. IFT20 could interact robustly with the cytoplasmic
tail of opsin, but the deletion of the last four residues, which
contained a VxPx motif, did not affect the binding of IFT20,
suggesting that other motifs in the cytoplasmic tail were
responsible for the identification by IFT20. Moreover, Arf4, a
small GTPase, directly bound the VxPx motif and regulated the
opsin association with the TGN (Deretic, 2006; Mazelova et al.,
2009). These results suggested that there might be interconnected
crossing pathways for transporting membrane proteins to the
cilium, IFT20-dependent vesicular trafficking being one of these.

In the ciliated neurons of C. elegans, IFT20 neither localizes
to the Golgi apparatus nor physically interacts with SQL-1, the
homolog of GMAP210 (Broekhuis et al., 2013). Additionally, not
all transmembrane proteins targeting cilia require IFT proteins.
For example, ODR-10 (odorant receptor) in C. elegans requires
AP-1, clathrin, and Rab8 to be transported into AWB cilia (a
specific type of amphid channel cilia with elaborated wing or fork
morphology in C. elegans sensory neurons), but not IFT proteins
(Kaplan et al., 2010). Thus, the role of IFT20 in trafficking ciliary
membrane proteins might not be conserved in C. elegans.

IFT172 and Vesicular Trafficking
Vesicle formation requires membrane-deforming proteins and
complexes (Field et al., 2011). Recently, the in vitro study of
IFT172 demonstrated that a direct interaction exists between
the IFT particles and membranes. IFT172 is the largest IFT
subunit and is essential for ciliogenesis, which belongs to the
peripheral IFT-B2 complex. It has seven WD domains for
β-propeller and TRP domains for α-solenoid, shares a similar
domain organization with COP, and demonstrates its potential
as a membrane-deforming protein.
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The initial functional characterization of IFT172 was carried
out on a temperature-sensitive mutant fla11ts, in which fla11
encodes IFT172 with a single amino acid mutation from a
conserved leucine to proline. When this mutant was shifted to
the restrictive temperature, IFT-B particles accumulated at the
ciliary tip, indicating a defect in IFT-train remodeling. Therefore,
IFT172 might mediate the re-assembly of IFT-B with the IFT-A
complex at the ciliary tip presumably via the interaction with EB1,
a microtubule plus end binding protein (Pedersen et al., 2005;
Sloboda, 2005). In humans, IFT172 mutations were identified in
a consanguineous family with the typical Bardet–Biedl syndrome
(Schaefer et al., 2016), a type of ciliopathy in which the mutated
proteins are mostly involved in membrane trafficking.

Recent studies reported that IFT172 could interact with
membranes and was able to remodel large membranes into
small vesicles, thus suggesting that the interaction of IFT172
and membrane lipids could provide a partial thermodynamic
force to achieve fission in vivo. IFT172 might recognize the
membrane surface through its charged N-terminal β-propeller
blade surface. This domain also acts as the binding site of
IFT57, another subunit of the IFT-B2 complex. Less IFT172
interacts with membrane surfaces when IFT57 is added in the
liposome co-sedimentation assay, indicating a mutually exclusive
relationship between IFT57 and membrane structures; however,
it remains unclear when the IFT trains arrive at the tip, whether
another interaction with EB1 might facilitate the release of
IFT172 from IFT trains and the rebinding of the ciliary tip
membrane. As secretory events occur at the ciliary tip via
budding and IFT172 can bend membranes, it is also unclear
whether the parking of IFT172 at the tip is involved in these
secretory events through changing the local curvature of the
ciliary tip membrane. Immunofluorescence localization results
revealed that large foci of IFT172 could be observed around the
mother centriole at the initiation stage of ciliogenesis, implying
that IFT172-lipid association may be present in the entire cilium
structure (Wang et al., 2018).

IFT22, IFT25, and IFT27 and Vesicular
Trafficking
The Rab GTPases are central components of the trafficking
machinery, define the identity of intracellular vesicles, and
control the direction of both inward and outward flow of
cargoes (Hutagalung and Novick, 2011). The discovery that
three IFT proteins (IFT22, IFT25, and IFT27) are Rab-like
GTPases highlights the vesicular trafficking-related function of
IFT subunits (Schafer et al., 2006; Qin et al., 2007; Adhiambo
et al., 2009; Keady et al., 2012; Liew et al., 2014; Dong et al., 2017;
Wachter et al., 2019).

IFT22, identified initially as Rab-like 5 protein (RabL5),
is required for cilium formation in Trypanosoma (Adhiambo
et al., 2009; Wachter et al., 2019), but not in C. elegans
where it modulates insulin signaling (Schafer et al., 2006).
Additionally, a recent study in Trypanosoma revealed that the
association of IFT22 with IFT74/81 was essential for cilium
construction, but IFT22 GTP loading was not strictly required
(Wachter et al., 2019).

IFT25 (RABL2) is another Rab-like GTPase in the IFT-B1
complex, forms a heterodimer with IFT27, and is essential
to maintain IFT27 stability in vivo. Unlike other core IFT-B1
subunits, IFT25 is dispensable for ciliogenesis in most organisms.
IFT25 also regulates the transport of Hedgehog signaling proteins
in vertebrate cilia (Keady et al., 2012). In humans, two highly
similar paralogs, RABL2A and RABL2B, have been identified
(Martin et al., 2002), of which one is recruited to DAPs by a
mother centriole protein CEP19. The GTP-loading RABL2B at
the basal body could bind to the IFT train to initiate IFT (Kanie
et al., 2017). The vesicular trafficking function of IFT25 might
depend on IFT27 to form a docking site for the BBSome on
the retrograde IFT trains, as the BBSome and associated cargoes
accumulated in IFT25 and IFT27 mutant Chlamydomonas and
mammalian cells (Eguether et al., 2014; Liew et al., 2014; Dong
et al., 2017).

Differing from the spindle pole localization of IFT52 (Deane
et al., 2001), IFT27 was found to localize at the cleavage furrow
in Chlamydomonas during mitosis (Wood et al., 2012). Vesicular
localization of IFT27 surrounding the cleavage furrow was
confirmed by immunogold labeling and transmission electron
microscopy. This localization pattern might be attributed to the
vesicular transport function of IFT27, as the maturation of the
cleavage furrow was associated with membrane supplementation.
IFT27 returned to the basal bodies when the furrow matured
and cells underwent cleavage. A similar localization pattern
of other IFT subunits at the midbody was also recorded in
mammalian cells (Bernabe-Rubio et al., 2016). Moreover, the
crystal structure of IFT27 resembles those of Rab8 and Rab11
(Bhogaraju et al., 2011). Therefore, after Rab8 or Rab11 vesicles
reached the basal body, IFT25/27 might replace them to bind the
vesicles (Figure 1A).

Rab GTPases regulate nearly all steps of membrane trafficking
from the formation of transport vesicles at the donor membrane
to their fusion with the target membrane (Hutagalung and
Novick, 2011); however, the regulatory function of Rab-like
GTPases of several IFT subunits seems to be poorly understood,
presumably because they are not typical GTPases due to the
lack of a membrane-targeting prenylation site. However, these
Rab-like GTPases of IFT subunits could actively interact with
the BBSome complex, whose mutation causes the Bardet–
Biedl syndrome (Blacque and Leroux, 2006). The BBSome
core complex was initially discovered in mammalian cells
(Nachury et al., 2007). Mutations in BBSome components
have less effect on the primary cilium assembly but fail to
promote ciliary membrane protein trafficking via interaction
with Rab8 and Rab11 vesicles (Mykytyn et al., 2004; Berbari
et al., 2008; Jin et al., 2010). In Chlamydomonas, the BBSome
functions as cargo adaptors of IFT (Lechtreck et al., 2009);
however, in C. elegans, the BBSome is required for IFT
assembly and normal ciliogenesis (Ou et al., 2005; Wei
et al., 2012). Similar to IFT subunits, the components of
the BBSome also share structural similarities with COPI,
COPII, and clathrin coats (Jin et al., 2010), suggesting that
the BBSome proteins are likely to have co-evolved with IFT
proteins to augment the versatility and specificity of the
ciliary cargoes.
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Not all IFT trains are loaded with the BBSome complex, and
the functions of the BBSome in ciliary assembly are distinct in
several models. For example, BBS4 and BBS5 are two components
of the BBSome. In Chlamydomonas, BBS4 mutants show normal
flagella, but knockdown of BBS5 leads to the absence of flagella
(Li et al., 2004; Lechtreck et al., 2009). In mammalian cells,
BBS4 through its TRP repeats acts as a bridging factor between
PCM-1 and dynein to bring proteins to the centrosome (Kim
et al., 2004), whereas BBS5 binds to phosphoinositides through
its two pleckstrin homology-like domains (PH-like) and is
critical for ciliogenesis (Nachury et al., 2007). In zebrafish,
knockdown of BBS4 and BBS5 result in similar phenotypes,
including disruption of Kupffer’s vesicle, predisposition to organ
laterality, and delayed intracellular retrograde transport (Yen
et al., 2006). In C. elegans, these two proteins show unexpected
functional redundancy in regulating the ciliary removal of
various sensory receptors, and co-depletion of BBS-4 and BBS-
5 disrupts the lysosome-targeted degradative sorting of ciliary
sensory receptors in C. elegans (Xu et al., 2015). Therefore,
although the BBSome subunits are conserved through ciliated
organisms, the alternative mechanisms might exist in different
organisms, and more elaborate function of the BBSome complex
in different organisms does still need more exploration.

THE VESICULAR TRAFFICKING
FUNCTION OF IFT SUBUNITS IN
NON-CILIATED CELLS

As certain human diseases are associated with cilia defects,
immense research is conducted in this field; however, notably,
several ciliary proteins, including IFT proteins, are found at other
sites outside the cilium and are speculated to possess extraciliary
functions. It is difficult to determine that an observed phenotype
owes to defective cilia or/and some defective extraciliary function
(Baldari and Rosenbaum, 2010; Yuan and Sun, 2013; Vertii
et al., 2015; Hua and Ferland, 2018a,b). Extraciliary functions
of the ciliary proteins have been reported to be involved in
various aspects of cell activities, such as cell cycle regulation
(Qin et al., 2007), cytoskeletal and migration regulation (Nishita
et al., 2017), establishment of polarity (Toriyama et al., 2016),
cellular metabolism (Lee et al., 2018), secretion of extracellular
matrix (Noda et al., 2016), and the regulation of transcription
factors to be translocated into nucleus (Vuong et al., 2018).
Therefore, to better understand the pathogenesis of ciliopathies,
it is necessary to elucidate the additional extraciliary roles of these
ciliary proteins. Herein, we reviewed our present understanding
of the extraciliary functions of IFT subunits with a focus on
vesicular trafficking.

IFT Subunits and Immune Synapse
Formation in T Cells
It is challenging to study the extraciliary role of IFT subunits
independent of the cilium, as the cilium exists in most eukaryotic
cells; however, hematopoietic cells, such as lymphoid and myeloid
cells, are one of the few cell types that lack a cilium but express

IFT proteins. Quantitative real-time (RT)-PCR analysis revealed
that all components of the IFT system are expressed in T cells
(Finetti et al., 2014).

When the native T-cell encounters an antigen-presenting cell
(APC) carrying cognate peptide ligand, the MTOC derived from
the centrosome will be trans-located beneath the T-cell and APC
contact area, which will mature into the immune synapse (IS)
(Figure 1C). The Golgi and other vesicular compartments also
orient toward the IS, which facilitates the targeted delivery of
signaling molecules from endosomes or TGN to the IS (Sancho
et al., 2002; Martin-Cofreces et al., 2008). The T-cell receptors
(TCR) are recruited to the IS by two pathways. One is by
lateral mobility from the plasma membrane-associated pools
within seconds of T-cell activation, and the other is by polarized
trafficking to the IS via the recycling endosome pathway within
few minutes of T-cell activation (Bonello et al., 2004; Cemerski
and Shaw, 2006; Finetti and Baldari, 2013).

The discovery that IFT proteins played an intracellular
membrane trafficking role in the non-ciliated cells originated
from the immunofluorescent analysis of IFT20 in T cells.
Most of IFT20 localized at the cis-Golgi and the centrosome;
however, a limited amount of IFT20 was also observed at the
TGN, as well as at early endosomes (marked by Rab5) and
recycling endosomes (marked by Rab4 or Rab11), strongly
suggesting that IFT20 is dynamically transported among these
endomembrane structures. After the activation of T cells,
IFT20 was found to cluster at the IS, concomitantly with
the reorientation of the Golgi and centrosome, indicating that
IFT20 might participate in the polarized vesicular trafficking
toward the IS during T-cell activation. TCR/CD3 and TfR
(transferrin receptor), not CXCR4, failed to cluster at the IS
when IFT20 was knocked down. Therefore, IFT20 was explicitly
required for recycling of the specific receptors to the IS,
with the assistance of IFT52, IFT57, and IFT88 (Figure 1C;
Finetti et al., 2009, 2014). IFT57, the first reported IFT subunit
interacting with IFT20 using the two-yeast hybrid assay (Baker
et al., 2003), also revealed a vesicular localization around the
centrosome and was clustered to the IS during activation, but
did not colocalize with the Golgi, suggesting that IFT57 might
be recruited to the IFT20-tagged vesicles in order to assist
vesicular trafficking. Some of the critical components required
for polarized TCR recycling may be pre-assembled on the
endosome surface that contains TCR cargoes; however, it was
not clear which proteins mediated the interaction of TCR-
containing endosomes with IFT subunit-tagged vesicles. Based
on the research of ciliogenesis and endomembrane trafficking,
Rab GTPases seemed to be good candidates (Markgraf et al., 2007;
Sung and Leroux, 2013).

The recycling of TCR is required for sustained signaling at
the IS. Following internalization into early endosomes marked
by Rab5, TCR-containing vesicles are rapidly redirected to the
cell surfaces in Rab4 marked recycling endosomes. Alternatively,
they are targeted to the pericentrosomal recycling compartment,
identified by Rab11, and are then transported to the cell surfaces
using a longer route (Grant and Donaldson, 2009). IFT20 was
proven to promote the transit of internalized TCRs from early
to recycling endosomes (Figure 1C), indicating an interplay
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between IFT20 and Rab-based regulatory machinery in the
polarized trafficking of TCR.

In addition to Rab proteins and three IFT subunits (IFT52,
IFT57, and IFT88), some new players were identified in IFT20
interactomes, which included IFT54, GMAP210, subunit-3 of
Arp2/3 complex (ARPC3), subunit-1 of COP9 signalosome
(CSN1), and ERGIC-53. Moreover, loss of IFT54, ARPC3, or
ERGIC-53 led to failure of endosomal TCR and TfR accumulation
at the IS, which was in accordance with that observed in
IFT20-deficient T cells; this greatly increased the complexity
and diversity of the vesicular trafficking pathways where IFT20
participated (Galgano et al., 2017). Another axis of IFT20–
IFT54–microtubule was found to be exploited to move the
recycling endosomes to the IS in T cells (Bizet et al., 2015). For
the interactor GMAP210, a recently published article showed
that GMAP210 localized intracellular vesicular pools, as well as
the Golgi, and could convey specific vesicles containing linker
for activation of T cells (LAT) to the IS. More interestingly,
in a model of ectopic expression of LAT in ciliated cells,
GMAP210 tethering activity controlled the delivery of LAT to
the cilium, which highlights the similarities and intersection
of vesicular transport in both ciliated and non-ciliated cells
(Zucchetti et al., 2019).

Importantly, both the in vivo and in vitro results from two
independent laboratories confirmed the function of IFT20 in T
cells. In mice with CD4 T-cell specific knockout (KO) of IFT20,
LAT failed to be recruited into the IS (Vivar et al., 2016). Another
report revealed that IFT20 was crucial for the early, but not
for later development of T cells. When IFT20 was specifically
knocked out in the early and later stages of T-cell development
by crossing IFT20flox/flox mice with Lck-Cre (representative gene
of early stage) or CD4-Cre (representative gene of later stage)
transgenic mice, no differences in the body size and morphology
of immune organs were observed in these two knockout strains;
however, the number of CD4- and CD8-positive cells was
significantly decreased only in Lck-Cre/IFT20flox/flox, which also
demonstrated the downregulation of some crucial cytokines (IL-
1β, IL-6, and TGF-β1) and abnormal immune behaviors, such
as less severity of collagen-induced arthritis (CIA) symptoms
and weaker inflammation in the paws, indicating that normal
differentiation of T cells was disrupted upon loss of IFT20 (Yuan
et al., 2014). Collectively, these findings in T cells enhanced our
knowledge of the intracellular vesicular trafficking function of
IFT subunits beyond the ciliogenesis.

IFT Subunits and Synaptic Vesicular
Trafficking in Non-ciliated Neuron
The evidence that IFT subunits are required for recycling TCR
and LAT to the IS tempted us to hypothesize that IFT subunits
also participated in the development of neurite, a sensing,
secreting, and polarized structure.

The observations by immunoelectron microscopy in retinas
revealed that IFT20, IFT52, IFT57, IFT88, and IFT140 not only
localized at the connecting cilium but also localized at defined
periciliary membranes in photoreceptors. Unexpectedly, a non-
classic IFT system comprising IFT20, IFT52, and IFT57 also

participated in the vesicular transport targeted to the postsynaptic
dendritic terminal in secondary retinal neurons, which lacked
cilia (Figure 1B) (Sedmak and Wolfrum, 2010). Thereafter, the
same three proteins were once again found during targeted
vesicular trafficking to IS. Both of these findings suggested that
polarized protrusion structures, such as cilia, growth cones,
dendritic spines, ISs, and migration podosomes, might share a
similar building design in polarized vesicular trafficking (Finetti
and Baldari, 2013; Hua and Ferland, 2018b).

IFT Subunits and Cancer Cells
In the past decade, several studies have demonstrated that cilia
also played essential roles in tumorigenesis (Han et al., 2009;
Wong et al., 2009). Loss of primary cilia had been detected in
an early stage of some cancers, such as breast, pancreatic, and
renal cell carcinoma (Schraml et al., 2009; Seeley et al., 2009;
Yuan et al., 2010; Kim et al., 2011; Basten et al., 2013; Hassounah
et al., 2013). Therefore, cancer cells without a cilium might be
appropriate models for investigating the extraciliary functions
of IFT subunits.

Oncogenesis is accompanied by overactivation or inactivation
of various signaling pathways, among which Ror2-Wnt5a
presents overactivation (Endo et al., 2015). Recently, a study in
human osteosarcoma cell lines (SaOS2) lacking cilia revealed
that IFT20 is a new component for Ror-Wnt5a signaling and
that it regulates the nucleation of Golgi-derived microtubules via
interaction with the GM130-AKAP450 complex. The vertebrate
Golgi complex comprises stacked cisternae that are laterally
linked to form the Golgi ribbon; knockdown of IFT20 disrupts
the ribbon structure of the Golgi and impairs the invasiveness
of osteosarcoma cells (Nishita et al., 2017). These data suggested
that in non-ciliated tumor cells, IFT20 may be involved in
tumor progression. IFT88, another subunit of IFT-B complex,
was also reported to influence cell migration via regulating
microtubule dynamics at the leading edge of migrating cells,
which is independent of cilia (Boehlke et al., 2015). In contrast,
the phenotype of IFT88 in thyroid cancer was more relevant to
the mitochondrial oxidative function. Gene expression patterns
in IFT88-deficient thyroid cancer cells favored glycolysis and
lipid biosynthesis (Lee et al., 2018), which was beyond our
understanding of the functions of IFT subunits and prompted us
to re-examine the molecular mechanism of ciliopathies.

IFT Subunits and Cellular Secretion
Mutation of three subunits of the IFT-A complex (IFT122,
IFT140, and IFT144) resulted in human pleiotropic ciliopathies,
Sensenbrenner and Jeune syndromes, in which the pathological
features included skeletal development abnormalities (Walczak-
Sztulpa et al., 2010; Ashe et al., 2012; Miller et al., 2013). This
observation highlights the critical role of IFT subunits in skeletal
development, but the underlying mechanism remains unclear.

While studying mice with neural crest-specific deletion of
IFT20, the Komatsu and his colleagues unexpectedly found that
in addition to the failure of ciliogenesis, the intracellular collagen
transport was also disrupted, thus leading to osteopenia in the
facial region (Noda et al., 2016). The deficiency of IFT20 in
cranial neural crest (CNC)-derived cells severely attenuated the
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process of mineralization, due to delayed transport and secretion
of type I collagen.

Because the mice with neural crest-specific deletion of IFT20
died shortly after birth due to difficulties in feeding and
breathing, another mouse line with chondrocyte-specific deletion
of IFT20 at juvenile-to-adult stages was obtained (Kitami et al.,
2018). In accordance with the previous studies, the maturation
process of condylar cartilage was disrupted, owing to the lower
amount of collagen type X and reduced proliferation. In normal
chondrocytes, the Golgi will be expanded during the secretion
of the cartilaginous matrix; however, the Golgi size decreased in
IFT20-KO chondrocytes, indicating that the reduced amount of
cartilaginous matrix in condylar cartilage partially contributed to
the abnormal Golgi size upon loss of IFT20.

Interestingly, a similar defect also appeared in GMAP-210 KO
mice in which Golgi vesiculation and impaired cargo secretion
occurred; however, this phenotype was only evident in specific
cell types, such as chondrocytes that were responsible for cartilage
and bone deposition. Mutations in human GMAP210 also
caused neonatal lethal skeletal dysplasia achondrogenesis type
1A; whether this arose from reduced secretion of extracellular
matrix proteins remains to be ascertained (Smits et al., 2010;
Roboti et al., 2015). Collectively, the physiological interaction
of IFT20-GMAP210 functions not only in ciliogenesis but also
in bone development with the converging theme of intracellular
vesicular trafficking.

Whether additional secretory cargoes need IFT20-associated
vesicular transport remains unclear. Our previous studies in
BLOC-1 complex demonstrated that loss of Bloc1s1, a subunit
of BLOC-1 complex, impaired the secretion of surfactant in
the swim-bladder of zebrafish (Chen et al., 2018) and a novel
interaction of IFT20 and BLOC-1 complex was identified in
Pazour’s laboratory (Monis et al., 2017). Therefore, detecting
whether the surfactant was included in IFT20 cargoes might
provide a new perspective in understanding the intersections
between different vesicular transport pathways.

CONCLUSION AND FUTURE
DIRECTIONS

Initially, IFT was regarded as an exclusive transport system
essential for ciliogenesis (Kozminski et al., 1993). Recent research
and bioinformatic data highlighted that the IFT system belonged
to the family of the COP complex, which is the essential
component of intracellular vesicular trafficking (Jekely and
Arendt, 2006). The transport function of IFT in ciliogenesis may
have evolved from the general intracellular vesicular trafficking
function; however, two caveats were present: (1) none of the IFT
subunits possess transmembrane domains, lipid modifications, or
lipid-binding domains; (2) the cilium is not entirely a membrane-
bound organelle. Both caveats hindered the connection between
IFT subunits and vesicular trafficking. To date, this connection
has gained immense attention and more evidence has been
obtained to explore this association. The most direct evidence was
IFT20, localizing at the Golgi, the center of the endomembrane
system. In addition, IFT20 can use a canonical intracellular

vesicular trafficking pathway, such as the recycling endosome
pathway, to transport specific receptors to the ciliary membrane
in conjunction with tethering factors, Rab GTPases, and exocyst
subunits. This strongly confirmed the association of IFT subunits
with vesicular trafficking and indicated that IFT may be an
extension of the vesicular trafficking pathway.

Besides the subunits of the IFT-B complex, there is increasing
evidence that IFT-A subunits are required for the transport of
specific ciliary membrane proteins into or outside the cilium.
A recently published article revealed that when truncated IFT140
lacking WD40 repeats was expressed in the null mutant, the
axonemes of these cilia had a normal ultrastructure, but the
composition of membrane and matrix were abnormal with a
decrease in small GTPases, lipid-anchored proteins, and cell
signaling proteins (Picariello et al., 2019), indicating that IFT-A
subunits might also be specialized for importing the membrane-
associated proteins.

As a cilium is found in nearly all types of human cells, notably,
the ciliary defects could result in numerous human diseases,
including polycystic kidney diseases, skeletal abnormalities,
blindness, obesity, and cancer, some of which were attributed to
the mutation of IFT components; however, the cilium may not be
the sole mediator of these defects, and certain phenotypes may be
caused by the dysfunction of IFT particles at the extraciliary sites.
Therefore, the intracellular vesicular trafficking function of IFT
subunits we reviewed is congruous with an emerging concept;
in addition to their well-established roles in ciliary assembly, IFT
subunits may have more general roles in vesicular trafficking.

Nevertheless, the involvement of IFT subunits in vesicular
trafficking has not been fully elucidated. The structural analysis
of IFT particles and identification of the transiently interacting
proteins of IFT subunits might help understand the IFT–vesicle
interactions at the molecular level. As only a small fraction
of IFT subunits is associated with vesicular trafficking, and as
this interaction is quite dynamic, super-resolution and electron
microscopy are required to study this process. Undoubtedly,
the aforementioned research will serve to illuminate the
interconnected vesicular trafficking pathways in regulating
cellular homeostasis.
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