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Mitophagy is a selective engulfment and degradation of damaged mitochondria through
the cellular autophagy machinery, a major mechanism responsible for mitochondrial
quality control. Increased accumulation of damaged mitochondria in the Alzheimer’s
disease (AD) human brain are evident, although underlying mechanisms largely elusive.
Recent studies indicate impaired mitophagy may contribute to the accumulation of
damaged mitochondria in cross-species AD animal models and in AD patient iPSC-
derived neurons. Studies from AD highlight feed-forward vicious cycles between
defective mitophagy, and the principal AD pathological hallmarks, including amyloid-f
plaques, tau tangles, and inflammation. The concomitant and intertwined connections
among those hallmarks of AD and the absence of a real humanized AD rodent model
present a challenge on how to determine if defective mitophagy is an early event
preceding and causal of Tau/Ap proteinopathies. Whilst further studies are required to
understand these relationships, targeting defective mitophagy holds promise as a new
therapeutic strategy for AD.
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MOLECULAR MECHANISMS OF MITOPHAGY AND ITS ROLES
IN NEUROPLASTICITY

Mitophagy is a highly conserved cellular process of removing damaged or superfluous
mitochondria to maintain mitochondrial homeostasis (Pickrell and Youle, 2015; Scheibye-Knudsen
et al., 2015; Fang et al., 2016b; McWilliams et al., 2016; Fivenson et al., 2017). In neurons,
accumulation of damaged mitochondria is noxious to cellular function and survival. Mitophagy,
at physiological level, maintains neuroplasticity and the functions of glial cells (Gustafsson and
Dorn, 2019). Recent findings in human cell lines and multiple animal models have extended our
knowledge in the molecular mechanisms of mitophagy from the PINK1-Parkin pathway, to the
PINK1-independent pathways, including pathways that depend on NIP3-like protein X (NIX),
B-cell lymphoma 2 interacting protein 3 (BNIP3), B-cell lymphoma 2-like 13 (BCL2L13), FK506
binding protein 8 (FKBP8), prohibitin (PHB2), breast cancer gene 1 protein (NBR1), optineurin
(OPTN), calcium binding and coiled-coil domain 2 (NDP52), Autophagy and Beclin 1 Regulator 1
(AMBRAL), Tax1 binding protein 1 (TAX1BP1), FUN14 domain-containing protein 1 (FUNDC1),
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PGAM family member 5 (PGAMS5), Nipsnap Homolog 1
(NIPSNAPI1), NIPSNAP2, among others (Fivenson et al., 2017;
Kerr et al, 2017; Palikaras et al., 2018; Lou et al., 2019;
Princely Abudu et al., 2019).

The PINK-1-dependent mitophagy is one of the well-
characterized mitophagy pathways, with mutations of PINKI
associated to familial Parkinson’s disease (PD) (Plun-Favreau
and Hardy, 2008; Gandhi et al,, 2009; Burchell et al., 2013;
Pickrell and Youle, 2015). Under physiological conditions,
mitochondrial membrane potential (MMP) drives mitochondrial
import of the 63 kDa full length PINK1. Presenilin-associated
rhomboid-like protein (PARL) is an inner mitochondrial
membrane (IMM) protease. PARL cuts the mitochondrial
targeting sequence (MTS) and trans-membrane domain of
PINKI, leading to the cytosolic release of the N-terminal-deleted
PINK1 (AN-PINK1) (Deas et al., 2011). The N-terminal-deleted
PINK1 (AN-PINK1) is degraded by the N-end rule pathway
and the ubiquitin proteasome system (Pickrell and Youle,
2015). However, under various stressors or MMP fluctuations,
PINK1 is shunted and retained on the outer mitochondrial
membrane (OMM), promoting Parkin recruitment to the
defective mitochondrial surface with the help of PINKI1
autophosphorylation (Hasson et al., 2013; Lazarou et al., 2015).
Parkin, an E3 ubiquitin ligase, ubiquitinates several OMM
proteins, including voltage-dependent anion-selective channel
protein (VDAC), mitofusin 2 (Mfn2), and dynamin-1-like
protein (DRP1), leading to their recognition by autophagic
adaptors: OPTN, NDP52, sequestosome 1 (SQSTM1/p62),
TAX1BPI1, or NBR1 (Sarraf et al., 2013; Lazarou et al., 2015;
Ordureau et al., 2018).

Growing evidence indicates the existence and importance
of PINKI- and/or Parkin-independent pathways. In addition
to Parkin, other E3 ubiquitin ligases, such as mitochondrial
ubiquitin ligase activator of NF-kB1 (MULL1), seven in absentia
homolog 1 (SIAH1), Gp78, SMAD ubiquitin regulatory factor
1 (SMURF1), and Ariadne RBR E3 ubiquitin protein ligase 1
(ARIH1) participate in mitophagy. These E3 ubiquitin ligases are
localized on OMM to generate ubiquitin chains, in order to direct
coupling to the autophagy protein LC3, enabling the engulfment
of the ubiquitin chain-tagged mitochondria by phagosomes,
and finally fusion with the acidic lysosome to degrade the
damaged mitochondria (Szargel et al., 2016; Villa et al., 2017).
In addition to ubiquitin ligase-dependent mitophagy, OMM
proteins can act as mitophagy receptors, targeting damaged
mitochondria directly for mitophagy-mediated degradation.
Examples include: BNIP3, NIX/BNIP3L, and FUNDCI that
mediate mitochondrial elimination via display of the N-terminus
LIR domain into the cytosol which interact with LC3 or gamma-
aminobutyric acid receptor-associated protein (GABARAP)
(Sandoval et al, 2008; Liu et al, 2012; Zhang et al,
2016; Palikaras et al, 2018; Villa et al., 2018; Lou et al,
2019). Additionally, PHB2 and cardiolipin are amongst the
recently discovered mitophagy proteins, which can externalized
to OMM and couple with LC3 following mitochondrial
membrane depolarization (Shen et al., 2017; Wei et al.,, 2017).
In summary, while the PINKI1/Parkin-dependent mitophagy
pathway is well-characterized, the molecular mechanisms

of multiple new mitophagy pathways are still not fully
understood (Figure 1).

DEFECTIVE MITOPHAGY IN AD

Whilst accumulated extracellular AB plaques and intraneuronal
Tau tangles are the disease-defining pathological features
of Alzheimer’s disease (AD), inflammation is now widely
recognized as a key additional hallmark of AD. Relationships
between mitophagy and each of the hallmarks of AD are
summarized below.

Mitophagy and Amyloid-f (Ag)

Neurons affected in AD models undergo defective mitophagy
that contribute to the disease-defining AP pathologies, while
AP accumulation may exacerbate impaired mitophagy and vice
versa (Du et al, 2017; Kerr et al, 2017; Fang, 2019; Fang
et al, 2019). Impaired mitochondrial proteostasis, including
impaired mitochondrial unfolded protein response (UPR™),
may link to AP proteotoxicity (Sorrentino et al., 2017). The
activating transcription factor-associated with stress (ATFS-1)
protein plays a fundamental role in the maintenance of UPR™
and mitochondrial function, especially in stress conditions
(Nargund et al, 2012). RNAi knockdown of atfs-1 in an Af
Caenorhabditis elegans model (GMC101) repressed mitophagy
as well as basal and maximal respiration, and exacerbated
AP toxicity; However, restoration of UPR™ diminished AD
pathology in both C. elegans and mouse models of AD
(Sorrentino et al., 2017). Mechanistically, ATFS-1 transfers into
and is degraded within mitochondrial matrix, which negatively
impacts UPR™, at physiological condition (Melber and Haynes,
2018). Under the condition of mitochondrial stress, ATFS-1
favors importation into the nucleus, whereby it promotes the
expression of genes with encoded proteins involved in the
protection of mitochondrial function and the elimination of
AD pathology (Melber and Haynes, 2018). In support of this
model, mutations that cause amino acid substitutions within
the MTS of ATFS-1 prevent the protein from being imported
into the mitochondrial matrix, and result in constitutive UPR™
activation (Rauthan et al, 2013). Abnormal mitochondrial
homeostasis was reported in the mutant APP-HT?22 cells relative
to non-transfected HT22 cells, including increased levels of
mitochondrial fission proteins (Drpl and Fisl) and decreased
levels of fusion proteins (Mfnl, Mfn2, and Opal) (Manczak
et al, 2018; Reddy et al, 2018). In addition to impaired
UPR™, defective mitophagy is another major cause of impaired
mitochondrial proteostasis and AB proteinopathy in AD. On one
hand, defective mitophagy in post-mortem brain tissues from
AD patients as well as in AD iPSC-derived neurons and cross-
species AB-based AD animal models have been demonstrated
(Fang et al., 2019). On the other, restoration of neuronal
and microglial mitophagy ameliorated AP proteinopathy and
rescued memory loss in the APP/PS1 mouse models of AD,
highlighting the important contribution of defective mitophagy
in AD (Fang et al, 2019). Disrupted—in—schizophrenia—1
(DISC1), an LC3-binding mitophagy protein, has been shown
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FIGURE 1 | A summary of possible molecular mechanisms on how mitophagy induction ameliorates AD pathologies. Experimental studies from C. elegans and
mouse models of AD and from AD iPSC-derived neurons indicate genetic or pharmacological up-regulation of mitophagy inhibits Ap/Tau proteinopathies and
inflammation, as well as promotes synaptic plasticity and neurogenesis. Robust health-benefit mitophagy inducers include the NAD* precursors, nicotinamide
riboside (NR) and nicotinamide mononucleotide (NMN), urolithin A (UA), and actinonin (AC). NAD* augmentation activates the NAD* -dependent SIRT1/3/6 activities,
and increases the expression and/or activities of autophagic/mitophagic proteins, including LC3-1l and PINK1 and NIX, among others. Whether mitophagy induction
improves histone modification and DNA methylation, neuronal DNA repair, cell-to-cell communication, and limits senescence remain to be determined. See text for

Alzheimer’s

to be reduced in human AD brain samples and in the APP/PS1
mice. In fact, AB—induced mitochondrial dysfunction, loss
of spines, and impaired long—term potentiation (LTP) were
rescued upon DISCI1 overexpression in the APP/PS1 mice
(Wang et al.,, 2019). Collectively, the current studies implicate
that impaired mitochondrial proteostasis as a contributor to
AB-based neurotoxicity via impaired UPR™ and compromised
mitophagy. However, the detailed molecular mechanisms remain
to be determined.

Mitophagy and Tau

Tau binds and stabilizes microtubules, contributing in multiple
physiological functions, such as neurite outgrowth, neuronal
development, axonal transport, and synaptogenesis (Ballatore
et al, 2007; Dixit et al., 2008). Studies in experimental AD
models have provided evidence that mitochondrial dysfunction,
defective mitophagy and phosphorylated-Tau (p-Tau) interact
to form a vicious cycle (Kerr et al, 2017). The toxic
N-terminal truncation of human Tau (NH,-hTau) strongly
affects the interplay between the mitochondria dynamics and
mitophagy affecting subcellular trafficking or recruitment of
both Parkin and ubiquitin-C-terminal hydrolase L1 (UCHL-
1) (Amadoro et al, 2014; Corsetti et al., 2015). In C. elegans
and neuroblastoma cells, expression of human wild-type (hTau)
and frontotemporal dementia mutant tau (hP301L) completely
inhibited mitophagy by blocking the recruitment of Parkin to
damaged mitochondria (Cummins et al., 2019). Furthermore,
APP and tau overexpression lead mitophagy impairment in
human unmodified fibroblasts (Martin-Maestro et al., 2019).
Furthermore, mitophagy was impaired in hippocampus tissues
from 3xTgAD mice (with both AP and Tau proteinopathies)
(Fang et al., 2019). In addition, pharmacological restoration of
mitophagy, via administration of NAD™ precursor nicotinamide
mononucleotide (NMN), urolithin A (UA), or actinonin (AC),
reduced the phosphorylation of pTau at several sites (such as
Thr181, Ser202/Thr205, Thr231, and Ser262) (Fang et al., 2019).
Collectively, emerging evidence suggests that pathological Tau

inhibits mitophagy, highlighting defective mitophagy as a novel
therapeutic target for AD.

Mitophagy and Inflammation

Numerous preclinical and clinical studies have shown
that immune activation in AD, including microglia, and
several cytokines, has the capacity to trigger and drive the
pathophysiology of AD (Heppner et al., 2015). Mitochondrial
stress leads to the release of damage-associated molecular
patterns (DAMPs) which activate innate immunity, with the
Cyclic GMP-AMP synthase (cGAS)-STING pathway as a
central regulator of the type I interferon response to cytosolic
DNA (Ishikawa and Barber, 2008; Ishikawa et al., 2009; Chen
et al, 2016). Mitophagy mitigates inflammation through the
restriction of inflammatory cytokine secretion and the regulation
of immune cell homeostasis, correlating with the pathogenesis
of autoimmune diseases at multiple levels (Xu et al, 2019).
Multiple studies have demonstrated that PINK1 and Parkin
regulate both innate and adaptive immunities. First of all,
there is a strong inflammatory phenotype in both Pinkl =/~
and Parkin~/~ mice, both of which were central regulators
in the mitophagy process. Furthermore, PINK1 and Parkin
mitigated STING-induced inflammation and rescued the loss of
dopaminergic neurons from the substantia nigra (SN) in both
Pinkl=/~ and Parkin=/~ mice following exhaustive exercise
(Sliter et al., 2018). Additionally, PINK1 and Parkin regulate
immunity by repressing mitochondrial antigen presentation
(MitAP) via mitochondria-derived vesicles (MDVs) (Matheoud
et al, 2016). While the roles of STING and MitAP in the
inflammation phenotype of AD is obscure, impairment of the
PINK1/Parkin pathway in AD (Sliter et al., 2018; Fang et al,
2019), points to a possibility of an overlapping effect between PD
and AD. The concomitant and intertwined molecular pathways
that link defective mitophagy to AP and Tau proteinopathies,
and inflammation need further exploration. Lastly, restoration
of neuronal mitophagy (through NAD™ supplementation, UA,
and AC) reduced AD pathologies in the APP/PS1 AD mice via
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enhanced microglial phagocytosis of extracellular AB plaques
and the mitigation of pro-inflammatory cytokines released by
continually activated microglia (Fang et al., 2019). Changes of
mitophagy in AD astrocytes are elusive. It has been show that
astrocytes play an important role in mitophagic degradation
of damaged mitochondria from adjacent neurons (Davis et al.,
2014), thus mitophagy induction may also improve different
functions of astrocytes in AD. A recent development of a three-
dimensional (3D) human AD triculture model, with neurons,
astrocytes, and microglia (Park et al., 2018), may enable the
studies of cell type-specific mitophagy in an environment which
mimic the human brain. Collectively, while defective mitophagy
plays a pivotal role in AD progression, and turning up mitophagy
forestalls AD pathology, further molecular mechanisms on
how mitophagy induction impacts neurons, astrocytes and
microglia are necessary.

DEFECTIVE MITOPHAGY IN OTHER
NEURODEGENERATIVE DISEASE

PD is a progressive neurological disorder that observably impairs
patients’ ability to control body balance and movements due
to lack of dopaminergic neurons in the substantia nigra (SN),
which exhibits abnormal accumulation of a-synuclein fibrils in
their cell body and neurites (Poewe et al., 2017). Mitochondrial
dysfunction and its related oxidative stress and inflammation are
increasingly appreciated as common features of dopaminergic
neuronal susceptibility in PD patient brain samples, PD animal
models, and/or PD iPSC-derived neurons (Ryan et al.,, 2015;
Schondorf et al,, 2018). As a classical mitophagy pathway, the
PINK1/Parkin pathway eliminates damaged mitochondria. Loss-
of-function mutations in PINKI and/or PARK2/Parkin lead to
inability of the cell to eliminate damaged mitochondria, and
this has been related to early onset PD (Ryan et al., 2015). In
addition, PINKI and Parkin also suppress mitochondrial antigen
presentation (MitAP) probably through inhibition of Sorting
nexin 9 (Snx9)-dependent formation of MDVs (Matheoud
et al., 2016). Meanwhile, Parkin- and PinkI-mutant fly models
recapitulate major phenotypes of PD, including mitochondrial
dysfunction, dopaminergic neuronal loss, motor disabilities
and reduced lifespan (Yang et al,, 2006). For mice, while the
Parkin™/~ and Pinkl~/~ animals do not show PD phenotypes
at standard laboratory living condition, they do exhibit PD
phenotypes (e.g., the loss of dopaminergic neurons) at stress
living conditions, such as intestinal infection, exhaustive exercise,
and mitochondrial stress (Perez and Palmiter, 2005; McWilliams
et al., 2018; Sliter et al., 2018; Matheoud et al., 2019). These
rodent data suggest compensation of the loss of PINKI-
dependent mitophagy by PINK1-independent pathways under
physiological conditions are sufficient; however, the PINKI-
pathway is necessary at stress/pathological conditions for the
function and survival of PD-related dopaminergic neurons.
Amyotrophic  lateral sclerosis (ALS) is a fatal
neurodegenerative disease (predominately sporadic, nearly
90%) characterized by the accumulation of aggregated proteins
partially resulted from mitochondria dysfunction and oxidative

stress within affected motor neurons in the spinal cord, brain
stem, and motor cortex (Rowland and Shneider, 2001). Genetic
studies of familial ALS have identified several genes linked to ALS
(Cirulli et al., 2015). Most of the genes involved in cellular quality
control pathways, and more specifically to selective autophagy
and mitophagy, including mitophagy receptors OPTN, RIPKI,
p62/SQSTM1, as well as TBK1 (Cirulli et al., 2015; Hawk et al.,
2018). In this way, mutant OPTN and TBK1 can interfere with
the process of mitophagy, while mutant p62 shows a lower
affinity to LC3-II which leads to impaired mitophagy (Moore and
Holzbaur, 2016). These data suggest that the inefficient turnover
of damaged mitochondria and also aggregates, may contribute
to disease progression in ALS (Weishaupt et al., 2016). In line
with the argument that impaired autophagy/mitophagy as a
driver of ALS, pharmacological or genetic up-regulation of the
SIRT1/NAD™ -mitophagy axis alleviates disease phenotypes in
ALS mice and ALS patients (Blacher et al., 2019; de la Rubia
etal, 2019; Lautrup et al., 2019). A detailed summary of defective
mitophagy in AD, PD, ALS, and Huntington’s disease is available
(review in Lautrup et al., 2019; Lou et al,, 2019). In summary,
mounting evidence from animals and post-mortem human brain
tissues suggests that defective mitophagy is a common feature,
and likely plays a causative role in many neurodegenerative
pathologies. We summarized the relationships between AD, PD,
and ALS, and defective mitophagy/autophagy (Figure 2).

MITOPHAGY INDUCERS

Since reduced mitophagy is common in AD, and maybe a
causal mechanism, up-regulating mitophagy might provide a
therapeutic strategy for AD (Kingwell, 2019). Small molecules
that do not have toxicity to mitochondria (mitochondrial
toxicants), but can induce the expression of mitophagy proteins
or enhance mitophagy machinery hold translational promise
(Ryu et al., 2016; Andreux et al., 2019; Fang, 2019; Lou
et al, 2019). The classical mitochondrial uncouplers, e.g.,
carbonyl cyanide-p-(trifluoromethoxy)phenyl hydrazine (FCCP)
and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and
mitochondrial toxins that damage mitochondrial respiration
(such as valinomycin, salinomycin, antimycin A and oligomycin)
(Georgakopoulos et al,, 2017), may have limited translational
value for AD because treatment with those drugs will result in
dysfunction of normal mitochondria.

In addition, multiple novel mitophagy inducers acting
independently of the respiration failure without perturbing
the organelle have been reported, offering new momentum
to comprehend the process and underlying strategy for
therapeutic revolution (Georgakopoulos et al., 2017). One
example is to enhance the PINK1/Parkin-mediated mitophagy
by supplementation with the ATP analog kinetin triphosphate
(KTP) which can amplify catalytic activity of both PD related
mutant PINK1G39D and PINK1" (Hertz et al., 2013) or the
application of a p53 inhibitor pifithrin-a, which can release Parkin
from binding to the cytosolic p53 in pancreatic B-cells (Hoshino
et al., 2014). Moreover, the anti-diabetic natural compound
Metformin has been shown to maintain mitochondrial integrity
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FIGURE 2 | Schematic of mitophagy pathway and its linkages to different neurodegenerative diseases. A simplified version of mitophagy is presented. Initiation of
mitophagy is activated via the activity of the ULK1 complex and PIBK complex. Precursor vesicles fuse to form pre-phagophore structures that further elongate to
eventually become double-membraned mitophagosomes. The completed autophagosomes are then trafficked to fuse with lysosomes to form mitolysosome.
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pTau, and inflammation. These disease pathologies can further cause the damage

and boost mitochondrial biogenesis through Parkin-mediated
mitophagy induction via p53 inhibition (Song et al, 2016;
Palikaras et al., 2018). Targeting the up-regulation of the
mammalian NF-E2 related factor 2 (Nrf2) (SKN-1, the C. elegans
ortholog) pathway also enhances mitophagy, with molecules
like the compound p62-mediated mitophagy inducer (PMI)

(East et al, 2014) and the natural compound Tomatidine
affluent in the green tomato (Fang et al., 2017b). NAD" is
a fundamental molecule in human health and life since it
participates in glycolysis, TCA cycle, OXPHOS, B-oxidation, and
many other bioenergetic and metabolic pathways (Verdin, 2015;
Fang et al., 2017a; Aman et al.,, 2018; Mitchell et al., 2018).
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NAD" is reduced in biological aging, accelerated aging,
and in common neurodegenerative diseases, including AD
(Mouchiroud et al., 2013; Fang et al., 2014; Hou et al,
2018). Interventional studies support a causative role of NAD™
depletion in neurodegeneration, as augmentation of tissue
NADT, through the supplementation of nicotinamide riboside
(NR) and NMN, can improve neuronal resilience and survival
in both premature aging conditions and in AD, through
a mitophagy-dependent manner (Fang et al., 2014, 2016a,
2019). Mechanistically, NAD™T induces mitophagy through the
NAD™/Sirtuins-dependent pathways and several other pathways
as we summarized elsewhere (Fang, 2019). In conclusion, small
molecule which can induce mitophagy in vivo, but circumvent the
cellular toxicity, hold promise for further clinical studies on AD.

FUTURE PERSPECTIVES

Accumulating data suggest the existence of PINKI/Parkin-
dependent and -independent mitophagy pathways that are
critical in the maintenance of mitochondrial homeostasis
as well as neuronal resilience against proteinopathies and
stressors. A growing understanding of AD pathology suggests
that accumulation of damaged mitochondria due to impaired
mitophagy, contributes to AP/Tau proteinopathies and
inflammation, which may ultimately lead to neuronal loss
and memory impairment. Accordingly, experiments from
C. elegans and mouse models of AD and from AD iPSC-
derived neurons suggest that turning up mitophagy might
mitigate AD pathologies and retain cognition (in AD animals)
with possible mechanisms summarized (Figure 3). Some
outstanding questions need to be further addressed. First,
whether defective mitophagy is an early event preceding and
causing AP/Tau proteinopathies? Second, what are the additional
molecular mechanisms of defective mitophagy in AD? Cellular
signaling and progresses, including histone modification and
DNA methylation, DNA repair, senescence, and cell to cell
communication (including neurons and glial cells) link to
neural plasticity and cognitive function (Halder et al., 2016;
Fang et al, 2019; Zhang et al, 2019). Possible linkages of
mitophagy in these processes should be explored (Figure 1).
Third, whether pharmacological restoration of mitophagy could
rescue/delay the progression of memory loss in AD patients?
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