
fcell-08-00009 January 24, 2020 Time: 17:37 # 1

REVIEW
published: 28 January 2020

doi: 10.3389/fcell.2020.00009

Edited by:
Anthony Scimè,

York University, Canada

Reviewed by:
Robert Neil Judson,

StemCell Technologies Inc., Canada
Luca Madaro,

Santa Lucia Foundation (IRCCS), Italy
Valentina Saccone,

Santa Lucia Foundation (IRCCS), Italy

*Correspondence:
Michael De Lisio

mdelisio@uottawa.ca

Specialty section:
This article was submitted to

Stem Cell Research,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 01 November 2019
Accepted: 10 January 2020
Published: 28 January 2020

Citation:
Collao N, Farup J and De Lisio M

(2020) Role of Metabolic Stress
and Exercise in Regulating

Fibro/Adipogenic Progenitors.
Front. Cell Dev. Biol. 8:9.

doi: 10.3389/fcell.2020.00009

Role of Metabolic Stress and
Exercise in Regulating
Fibro/Adipogenic Progenitors
Nicolas Collao1, Jean Farup2 and Michael De Lisio1,3*

1 School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada, 2 Department of Biomedicine, Aarhus University,
Aarhus, Denmark, 3 Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University
of Ottawa, Ottawa, ON, Canada

Obesity is a major public health concern and is associated with decreased muscle
quality (i.e., strength, metabolism). Muscle from obese adults is characterized by
increases in fatty, fibrotic tissue that decreases the force producing capacity of
muscle and impairs glucose disposal. Fibro/adipogenic progenitors (FAPs) are muscle
resident, multipotent stromal cells that are responsible for muscle fibro/fatty tissue
accumulation. Additionally, they are indirectly involved in muscle adaptation through their
promotion of myogenic (muscle-forming) satellite cell proliferation and differentiation. In
conditions similar to obesity that are characterized by chronic muscle degeneration,
FAP dysfunction has been shown to be responsible for increased fibro/fatty tissue
accumulation in skeletal muscle, and impaired satellite cell function. The role of
metabolic stress in regulating FAP differentiation and paracrine function in skeletal
muscle is just beginning to be unraveled. Thus, the present review aims to summarize
the recent literature on the role of metabolic stress in regulating FAP differentiation and
paracrine function in skeletal muscle, and the mechanisms responsible for these effects.
Furthermore, we will review the role of physical activity in reversing or ameliorating the
detrimental effects of obesity on FAP function.

Keywords: obesity, metabolic syndrome, FAPs, differentiation, skeletal muscle, physical activity, exercise,
mesenchymal stem cell

INTRODUCTION

Over the last decades, lifestyle changes in western societies such as diet and physical inactivity
are a major global public health problem leading to metabolic syndrome (MetS) (Saklayen,
2018). MetS is a cluster of different conditions including central adiposity, hypertension, insulin
resistance, inflammation, and dyslipidemias, among others, which are themselves risk factors for
type 2 diabetes (T2D), cardiovascular disease and even increasing the risk of cancer (Manuel
et al., 2014). According to the World Health Organization (WHO), obesity (body mass index
(BMI) ≥ 30 kg/m2) has almost tripled since 1975, such that as of 2016 over 603 million adults
and 107 million children are obese (WHO, 2019). This increased incidence of MetS is associated
with an increase in the prevalence of musculoskeletal diseases and disorders (Wearing et al., 2006;
Collins et al., 2018). Emerging evidence has shown that metabolic complications are positively
correlated to reduction of muscle mass, impaired muscle repair, and increase in fibro/fatty tissue
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accumulation (Akhmedov and Berdeaux, 2013). These
pathological changes ultimately result in increased morbidity
and disability (Hoy et al., 2014; March et al., 2014).

Underlying these pathological changes are alterations in
the heterogeneous stem/progenitor cell populations that reside
within skeletal muscle. The regenerative potential of skeletal
muscle relies primarily on myogenic stem cells, called satellite
cells (MuSCs), residing under the myofiber basal lamina (Wang
and Rudnicki, 2011; Bentzinger et al., 2013). Upon muscle
injury MuSCs enter the cell cycle, proliferate, and differentiate to
repair damaged myofibers, while self-renewing to repopulate the
reserve pool (Feige et al., 2018). Recently, a novel mesenchymal
cell population of non-myogenic cells, named fibro/adipogenic
progenitors (FAPs), has been identified in the skeletal muscle
interstitium (Joe et al., 2010; Uezumi et al., 2010). FAPs are
critical during muscle regeneration in order to sustain MuSC
differentiation via paracrine mechanisms, and to maintain the
MuSCs pool (Wosczyna et al., 2019). However, in pathological
conditions FAP expansion continues unchecked, resulting in the
production of fibro/fatty infiltrations, and impaired myogenesis
(Rodeheffer, 2010; Uezumi et al., 2010, 2011; Mozzetta et al.,
2013; Dong et al., 2017; Madaro et al., 2018; Stumm et al.,
2018). Metabolism plays a crucial role in controlling the fate
of progenitor cells, including MuSCs in tissue development,
homeostasis, regeneration, and disease (Ryall et al., 2015a;
Knobloch et al., 2017; Pala et al., 2018); however, the effects
of metabolic stress and the metabolic regulation of FAPs has
only recently begun to be explored. As such, the purpose of
the present review is to provide an overview of the current
state of the literature regarding to the effects of metabolic
stress, induced by disease or exercise, on FAP differentiation and
paracrine function.

CONNECTION BETWEEN METABOLIC
STRESS AND ECTOPIC ADIPOSE
TISSUE ACCUMULATION IN MUSCLE

Skeletal muscle is an important tissue for the regulation of
whole-body metabolic homeostasis. In most individuals, skeletal
muscle comprises 40–60% of the total body mass, accounts for
∼30% of the resting metabolic rate in adult humans (Zurlo
et al., 1990), is a key contributor to whole body lipid utilization
(Egan and Zierath, 2013), and ∼80% insulin-stimulated glucose
disposal (Brüning et al., 1998). Skeletal muscle has a high
capacity for substrate oxidation and a relatively high potential
for substrate storage (DeFronzo et al., 1981). Under conditions
of metabolic stress, detrimental changes to skeletal muscle
occur, including muscle loss, intra- and inter-myofibrillar lipid
accumulation, and connective tissue deposition. Eventually, these
changes lead to a detrimental effect on contractile function and/or
metabolic properties of skeletal muscle having an important
impact on human health and contribute to insulin resistance
(Sakuma and Yamaguchi, 2013). In the obese state, muscle
lipid accumulation may occur as a result of insufficient adipose
tissue expansion, in which the excess lipid are stored in non-
adipose tissue compartments such as liver and skeletal muscle

(Szendroedi et al., 2014; Cuthbertson et al., 2017; Czech, 2017;
Conte et al., 2019). One result of the ectopic adipose tissue
accumulation is the expansion of intramyocellular lipids (IMCLs)
located within muscle cells (Sinha et al., 2002; Boesch et al., 2006).
Paradoxically, endurance trained individuals also demonstrate
an accumulation of IMCLs that are distinguished from the
obese state by their location (Samjoo et al., 2013). Whereas in
athletes IMCLs provide a local store of substrate for aerobic ATP
generation, in persons with obesity, IMCLs are linked to insulin
resistance and increased risk of T2D (Kautzky-Willer et al., 2003;
Brumbaugh et al., 2012).

Intermuscular adipose tissue is distinguished from IMCLs
as the former represents adipocytes that form between muscle
fibers and muscle groups (Hamrick et al., 2016). Intermuscular
adipose tissue increase with age in humans (Kirkland et al.,
2002; Addison et al., 2014) and is highly correlated with a
decrease in muscle mass, muscle strength, and insulin-sensitivity
(Visser et al., 2005; Miljkovic-Gacic et al., 2008; Delmonico
et al., 2009). Similarly, in participants with obesity, intermuscular
adipose tissue accumulates and is associated with systemic insulin
resistance (Goodpaster et al., 2000; Goss and Gower, 2012).
Although not yet directly tested, the local accumulation of
intermuscular adipose tissue may impair muscle metabolism
by producing high intramuscular concentrations of adipokines,
adipose-derived hormones, and free fatty acids. In support of this
notion, some studies have reported positive correlations between
intermuscular adipose tissue accumulation and the decrease in
insulin sensitivity observed during aging and obesity (Goodpaster
et al., 1997, 2000; Ryan and Nicklas, 1999; Sachs et al., 2019).
Interestingly, the majority of studies on intermuscular adipose
tissue accumulation under conditions of metabolic stress have
been conducted in humans. Three recent studies indicated that
intermuscular adipose tissue accumulates in rodents in both
obesity (Khan et al., 2015; Zhu et al., 2019) and aging (Cui et al.,
2019). This is relevant because most of the work investigating
the mechanisms regulating intermuscular tissue adipose tissue
accumulation have been conducted in rodents. Thus, similar
responses in human and rodent skeletal muscle have been
observed in the limited studies that have evaluated intermuscular
adipose tissue accumulation in metabolic stress.

FIBRO/ADIPOGENIC PROGENITORS AS
THE CELLULAR SOURCE OF
INTERMUSCULAR ADIPOSE TISSUE

Fibro/adipogenic progenitors are muscle-resident non-myogenic
progenitors of mesenchymal origin, which express stem cell
antigen 1 (Sca-1), platelet-derived growth factor receptor
α (PDGFRα), and also high levels of CD34 (Joe et al., 2010;
Uezumi et al., 2010, 2014). FAPs are distinct from MuSCs as they
lack Pax7 expression (Joe et al., 2010; Uezumi et al., 2010, 2014).
FAPs have been defined as multi-potent progenitors, residing
on the abluminal side of the capillaries in the interstitial spaces
between the myofibers in both humans and mouse skeletal
muscle (Joe et al., 2010; Uezumi et al., 2010; Arrighi et al.,
2015). These cells are defined by their ability to differentiate
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into fibroblasts, adipocytes, and osteoblasts, and originate from
a non-myogenic (Myf5-) cell population which is supported
by their lack of myotube formation in vitro (Joe et al., 2010;
Uezumi et al., 2010). Following muscle injury, FAPs transiently
become activated, proliferated, and expand (Lemos et al., 2015;
Wosczyna et al., 2019). Via primarily paracrine mechanisms,
FAPs promote MuSC proliferation (Fiore et al., 2016) and
differentiation (Joe et al., 2010; De Lisio et al., 2014; Zou et al.,
2015; Contreras et al., 2016; Dammone et al., 2018; Madaro
et al., 2018), thus participating in muscle repair. Conversely,
in pathological conditions characterized by myofiber damage or
atrophy, FAPs undergo unchecked expansion and differentiation
causing fibrosis, fat deposition an impaired myogenesis (Lemos
et al., 2015; Dammone et al., 2018; Madaro et al., 2018).

Metabolic stress has been linked to FAP accumulation and
fibro/adipogenic differentiation (Dammone et al., 2018; Gorski
et al., 2018; Kang et al., 2018; Buras et al., 2019). Using
several different genetic and diet-induced mouse models of
diabetes, Mogi et al. (2016) demonstrated that ectopic adipocyte
accumulation in skeletal muscle was derived from PDGFRα+

progenitors. Similarly, Arrighi et al. (2015) isolated a population
of FAPs, identified as CD56−CD15+/PDGFRα+, that formed
functional adipocytes in vitro. These FAP-derived adipocytes
may have reduced insulin sensitivity compared to conventional
adipocytes, as indicated by lack of phosphorylation of insulin
receptor, suggesting that accumulation of FAP-derived adipocytes
may contribute to a compromised peripheral insulin sensitivity
(Arrighi et al., 2015). However, given the relatively small
contribution of intermuscular adipose tissue relative to whole
body adipose depots, the negative effects of intermuscular
adipose tissue on glucose disposal is likely via secondary
mechanisms that reduce the ability of myofibers to uptake
glucose. Similar to findings in limb skeletal muscle, 6 months of
high-fat feeding induced FAP proliferation, increased adipocytes,
and type I collagen-depositing fibroblasts in the diaphragm
leading to respiratory dysfunction (Buras et al., 2019). Together,
these data indicate that in obesity and related metabolic
disorders, FAPs directly contribute to intermuscular adipose
tissue accumulation in skeletal muscle.

Several potential mediators of the effects of obesity on FAP
differentiation have been investigated. Adipokines released from
expanded adipose tissue such as thrombospondin 1 (THBS1), was
increased in obese mice and promoted FAP proliferation (Buras
et al., 2019). Similarly, TGFβ which is produced in many organs
including adipose tissue (Lee, 2018) controls FAP proliferation
and differentiation to a fibrogenic lineage in vitro (Ito et al.,
2013; Lemos et al., 2015). Conversely, inhibition of PDGFRα

and TGFβ signaling resulted in reduced FAP number and a
reduction in collagen deposition (Ieronimakis et al., 2013; Ito
et al., 2013; Lemos et al., 2015; Fiore et al., 2016). Thus, several
adipocyte-derive factors increase FAP adipogenesis, indicating a
direct mechanism whereby adipose tissue expansion in obesity
may stimulate intermuscular adipose tissue accumulation.

In contrast to adipokines, factors synthesized by myofibers
play an important role in limiting adipogenesis during
muscle regeneration. Nitric oxide (NO), which is increased
in response to muscle injury and exercise, inhibits FAP

adipogenic differentiation by down-regulation of the peroxisome
proliferator-activated receptors gamma (PPARg) (Cordani et al.,
2014). Marinkovic et al. (2019) showed that suppression of
myofiber-derived NOTCH signaling via inhibition of γ-secretase
or by interfering with the expression of NOTCH stimulates FAP
differentiation in a dose-dependent manner, whereas activation
by the NOTCH ligand DLL1 leads to significant inhibition of
adipogenesis in mdx mice. Kopinke et al. (2017) demonstrated
a critical role of cilia in modulating the adipogenic fate of FAPs
by controlling the activity of the Hedgehog signaling pathway.
Pharmacological inhibition of matrix metalloprotease (MMP)-14
represses C/EBPδ and PPARγ in FAPs by way of cilia Hedgehog
signaling and this reduces the adipogenic fate of FAPs. As a
result, this enhanced muscle regeneration during acute muscular
injury and in a model of muscular dystrophy (Kopinke et al.,
2017). Collectively, these data indicate that regenerating muscle
releases several factors that inhibit FAP adipogenesis, providing a
potential mechanism whereby exercise-induced muscle damage
may prevent ectopic intermuscular adipose tissue accumulation
under metabolic stress.

Cell metabolism is also a driver of mesenchymal progenitor
cell fate during differentiation. For instance, during induction of
adipogenesis mesenchymal progenitors need to enhance reliance
on oxidative phosphorylation in order to continue differentiation
into pre- and mature adipocytes (Shyh-Chang et al., 2013). This
may explain why incubating fibroblasts from human skeletal
muscle with fatty acids is a potent inducer of adipogenesis
(Agley et al., 2013). Similarly, generation of osteoblasts is also
associated with high reliance on oxidative phosphorylation.
In contrast, fibrogenesis and chondrogenesis seems to require
utilization of glycolysis during differentiation (Shyh-Chang et al.,
2013; Zhao et al., 2019). FAPs from regenerating mdx muscle
have an increase in glycolytic proteins and a reduction of
mitochondrial proteins compared to control mice (Marinkovic
et al., 2019) resulting in mdx FAPs favoring glycolysis over
oxidative metabolism (Reggio et al., 2019). Interestingly, these
metabolic changes were associated with greater proliferative
capacity and adipogenic potential in vitro which was reversed by
inhibiting glycolysis and forcing oxidative metabolism (Reggio
et al., 2019). This impaired metabolic phenotype was reversed
in vivo by providing a short-term high fat diet which stimulated
oxidative metabolism in FAPs (Reggio et al., 2019). Conversely,
long-term high fat diet, and obesity are associated with increased
muscle adiposity and fibrosis (Goodpaster et al., 2000). Hogarth
et al. (2019) identify FAPs and their adipogenic differentiation as
a major contributor to dysferlin-deficient muscle loss in limb-
girdle muscular dystrophy 2B (LGMD2B); a disease associated
with mitochondrial dysfunction (Vincent et al., 2016). Together,
these interesting findings indicate that mitochondrial function
and metabolism are important regulators of FAP fate, and that
the FAP response to metabolic stress may be distinct from
other interstitial cells in skeletal muscle or from mesenchymal
cells in different tissues. Further, they suggest that FAP fate
may be regulated by substrate availability, which provides novel
areas for therapy.

The effects of exercise on FAP differentiation have yet to be
fully elucidated. Endurance exercise training is associated with
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an increase in IMCLs, but not intermuscular adipose tissue (van
Loon et al., 2004; Dubé et al., 2008). Furthermore, acute resistance
and endurance exercise is known to increase muscle extracellular
matrix synthesis with a similar increase in breakdown resulting
in matrix remodeling without excessive accumulation, unlike
pathological conditions (Martinez-Huenchullan et al., 2017).
Using a preclinical model of radiation exposure, recent work
from our group showed a differential FAP response of obese
and exercise trained mice (D’Souza et al., 2019). Interestingly
muscle fibrosis and adipose tissue accumulation were higher in
high fat-fed mice with no effect of treadmill exercise. However,
we were not able to distinguish between intermuscular and
intramyocellular adipose tissue in our analyses. Conversely, FAP
content trended to increase in high fat-fed, sedentary mice, and
trended to be reduced in high fat-fed, exercise trained mice
(D’Souza et al., 2019). While these results are preliminary, they
suggest that exercise training may inhibit FAP expansion in
obesity. Similarly, Zeve et al. (2016) reported that endurance
exercise suppressed adipogenic progenitor proliferation and
differentiation into mature adipocytes in vitro and suppressed
adipogenesis in vivo in mice fed a high fat diet. These effects
were mediated in part through secretion of R-spondin 3
from slow myofibers, which may activate Wnt signaling to
suppress adipogenesis (Zeve et al., 2016). In the bone marrow,
exercise training and mechanical forces inhibit adipogenic
differentiation of mesenchymal stromal cells (Emmons et al.,
2017; Rubin et al., 2018), a population similar to skeletal
muscle FAPs. Future work should investigate if similar effects of
exercise are present in skeletal muscle FAPs. Under conditions
of metabolic stress, exercise may directly regulate oxidative
capacity of FAPs by stimulating mitochondrial biogenesis as
it does in skeletal muscle, or counteract the pro-adipogenic
effects of adipokines by increasing secretion of anti-adipogenic
factors from myofibers.

THE RELATIONSHIP BETWEEN
METABOLIC STRESS AND THE FAP
SECRETOME

Fibro/adipogenic progenitors exert much of their functional
effects on muscle regeneration and repair via responding to
and secreting paracrine factors in their local microenvironment
(Joe et al., 2010; Lemos et al., 2015). The most complete
list of factors that are secreted by FAPs, and that FAPs
respond to have been reviewed elsewhere (Biferali et al.,
2019). Interestingly, despite the importance of paracrine
factor signaling on FAP function, relatively little attention
has been paid to the role of metabolic stress on the FAP
secretome. One myogenic paracrine factor that has received
some attention in the literature is follistatin (Mozzetta et al.,
2013; Reggio et al., 2019). Follistatin is a myostatin inhibitor,
and thus promotes muscle growth (Lee and McPherron,
2001) and glucose uptake (Han et al., 2019). Recent studies
determined that FAPs are a major source of follistatin in
skeletal muscle, and FAP-derived follistatin is a key mechanism
responsible for FAP-induced myoblast differentiation (Mozzetta

et al., 2013). Further, HDAC inhibitors blocked adipogenic
differentiation of FAPs and improved their ability to promote
differentiation of MuSCs, through upregulation of the soluble
factor follistatin in early stage, but not late stage, mdx mice;
which are also characterized by metabolic defects (Mozzetta
et al., 2013). Using the same mdx mouse model of muscular
dystrophy, Reggio et al. (2019) demonstrated that follistatin
is diminished in FAPs due to reduced β-catenin signaling.
However, short-term high fat diet feeding reversed this defect
by increasing β-catenin levels which promoted IGF-1 and
follistatin expression and release leading to improved ability
of FAPs to support myogenesis and muscle regeneration
(Reggio et al., 2019). Thus, short-term metabolic reprograming
of FAPs, via high fat diet feeding may ameliorate some of
the regenerative defects observed in dystrophic mice (Reggio
et al., 2019). Similarly, recent work from our laboratory
using a model of in vivo radiation exposure demonstrated
that high fat feeding increased levels of phosphorylated
NF-κB, particularly in interstitial nuclei (D’Souza et al., 2019).
However, it was not evident if this marker of increased
interstitial NF-κB activation was localized specifically to FAPs
(D’Souza et al., 2019). In the context of aging, Lukjanenko
et al. (2019) determined that diminished FAP secretion of
the matricellular protein WNT1 inducible signaling pathway
protein 1 (WISP-1) underlies the impairment in MuSC
regenerative capacity. However, in this same study, the authours
determined that adipogenic differentiation of FAPs is diminished
(Lukjanenko et al., 2019). Thus, the signals regulating FAP
function may differ between aging and obesity. These data
indicate that in models associated with metabolic dysfunction,
short-term high fat feeding, can increase paracrine factor
secretions from FAPs, which contrast some of the detrimental
effects of long-term high fat feeding on FAP differentiation.
Mechanistically, it will be important to determine if the
specific composition of the diet is relevant to regulating
the FAP secretome, or if alterations in FAP paracrine factor
secretion are due to increased adiposity associated with the
diet, and what regulates the apparent differential responses
of FAP differentiation/secretome to long- versus short-term
high fat feeding.

Exercise, and exercise-induced signals, have been suggested to
alter FAP paracrine function (Boppart et al., 2013). Exercise used
to induce a physiologically relevant adaptive response has been
shown to increase FAP content in humans (Farup et al., 2015),
and a heterogeneous population of muscle mesenchymal stromal
cells which contains FAPs in mice (Valero et al., 2012). In these
studies, increased FAP content was associated with increases in
MuSCs and an enhanced muscle adaptive response to exercise
(Valero et al., 2012; Farup et al., 2015). Using a model of in vitro
“exercise” where isolated muscle mesenchymal cells, including
FAPs, were exposed to mechanical forces, it was determined
that the strained cells produced a mix of paracrine factors that
enhanced myoblast proliferation in vitro (De Lisio et al., 2014).
Further, mechanical strain applied to these stromal cells in vitro
prior to injection into muscle in vivo improved the muscle
response to exercise (Huntsman et al., 2013, 2018; Zou et al.,
2015). The relative contribution of FAPs to the overall secretome
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of the heterogeneous population of muscle-derived mesenchymal
cells at rest and after exercise remains to be determined.

THE EFFECTS OF METABOLIC STRESS
ON FAP ACTIVATION

In relation to obesity and T2D one of the most obvious changes
in the systemic environment is the chronically elevated levels of
metabolic substrates such as glucose and triglycerides. Activation
(exit from quiescence) and first cell division of stem/progenitor
cells (e.g., MuSCs or FAPs) has in recent years been described
as a highly unique process compared to the following (second,
third, etc.) cell divisions (Rodgers et al., 2014; Liu et al.,
2018). For instance, in mice time-to-first division in MuSCs
is approximately 60 h, whereas the following divisions are
approximately four times faster. Although not well-described
in FAPs yet, we speculate that the same may be true for FAPs
since most of these also reside in a quiescent/non-cycling state
in normal mouse muscle (Joe et al., 2010; Rodgers et al., 2014).
The time before first cell division is characterized by a major
increase in cell size, anabolic signaling, mitochondrial content
and ATP levels (Rodgers et al., 2014). In MuSCs these changes
have been associated with an increased reliance on glycolysis
as well as increased autophagic flux likely to support sufficient
generation of ATP and biomass to prepare for the cell cycle
(Tang and Rando, 2014; Ryall et al., 2015b). In contrast, genetic
deletion of major enzymes involved in this anabolic process
(e.g., mTORC1) or blocking autophagy delays the cell cycle
entry (Rodgers et al., 2014; Tang and Rando, 2014; Ryall et al.,
2015b). Glucose and related insulin signaling are major upstream
regulators of these pathways making them likely candidates
for perturbing the balance between maintaining and exiting
quiescence. Although there is yet no direct evidence linking
changes in substrate availability in the FAP niche to activation
of FAPs it is interesting to note how the major FAP regulator,
platelet-derived growth factor (PDGF), is driving changes in
cell metabolism. For instance, PDGF treatment of muscle FAPs
leads to increased cell proliferation as well as transcriptional
changes related to glycolysis (Mueller et al., 2016). Moreover,
PDGF signaling in mesenchymal progenitors or fibroblasts
from other tissues is known to increase reliance on glycolysis
and thereby also increasing lactate production (Ran et al.,
2013; Xiao et al., 2017). In fact, fibrosis in multiple tissues
is associated with increased glycolytic flux compared to non-
fibrotic areas and blocking glycolysis seems to ameliorate some
of these pathological events and reduce extracellular matrix
accumulation (Zhao et al., 2019). This suggest that increased
glycolysis is not merely a result of cell activation, but likely
have a causal relationship to cell activation. Collectively, evidence
is accumulating that cell metabolism is intimately involved in
fibrosis development, in skeletal muscle potentially through
priming FAPs for exiting quiescence. Since the normal FAP
clearance (as observed during skeletal muscle regeneration from
TNFα induced FAP apoptosis) (Lemos et al., 2015) is likely
not present under these circumstance, one can speculate that
this could lead FAPs to accumulate over time, contributing

to increased fatty-degeneration of the skeletal muscles in
obesity and T2D.

Exercise provides a unique, physiological stimulus to examine
the role of mechanical and metabolic stress on skeletal muscle
that results in efficient and complete repair and adaptation.
Early work demonstrated that a single bout of damaging exercise
increased the content of a heterogeneous population of muscle-
derived mesenchymal progenitors, which likely included FAPs
(Valero et al., 2012). These findings mirrored the effects of acute
exercise on mesenchymal progenitors in other tissues, such as
the bone marrow (Emmons et al., 2016). More recent work
has suggested that the effects of exercise might be dependent
on the population of mesenchymal progenitors investigated.
Muscle pericytes did not increase in human muscle following
eccentric exercise (De Lisio et al., 2015) or in mice following
electrical stimulation (Dvoretskiy et al., 2019). This response is
different from mesenchymal progenitors from other tissues, as
bone marrow-derived mesenchymal progenitors are activated by
an acute exercise (Emmons et al., 2016). Conversely, resistance
training was associated with an increase in the content of FAPs
expressing markers of active cell cycle (Farup et al., 2015).
As such, the available data suggest that the effects of exercise
FAP/mesenchymal progenitor activation may be dependent on
the tissue of origin and specifics of the exercise stimulus, among
other, yet-to-be investigated factors. Moreover, in mouse and in
particular in human skeletal muscle, more in-depth phenotyping
is needed in order to distinguish the specific overlapping
interstitial cell populations in muscle.

THE ROLE OF CHRONIC LOW-GRADE
INFLAMMATION IN METABOLIC STRESS
ON FAP FUNCTION

The inflammatory response following muscle injury is a
well-orchestrated, time-dependent process necessary to obtain
complete muscle regeneration (Tidball, 2017). This response
begins with the infiltration of the earliest immune cells such
as neutrophils and eosinophils (Tidball, 2011). During muscle
injury, IL-4 and IL-13-secreting eosinophils are recruited to
the injured site (Heredia et al., 2013). These inflammatory
signals act through IL-4Rα to stimulate signal transducer of
transcription 6 (STAT6), which promotes FAP proliferation and
inhibits FAP differentiation into adipocytes (Heredia et al., 2013).
The early immune response is followed by an infiltration of
macrophages with a M1 phenotype (pro-inflammatory) followed
by the expansion of M2 macrophages (anti-inflammatory), which
are associated with tissue repair and MuSC differentiation
(Chazaud et al., 2003). Therefore, the polarization of M1
and M2 macrophages play a crucial role in successful muscle
regeneration. Recently, it has been suggested that in response
to acute muscle damage, macrophage-derived TNF-α plays a
crucial role in regulating FAP apoptosis (Lemos et al., 2015; Fiore
et al., 2016). Indeed, Lemos et al. (2015) demonstrated that in
the absence of TNF-α-producing macrophages, FAPs accumulate
and aberrantly differentiate into a fibrogenic lineage. Pagano
et al. (2019) showed that TNF-α mediated FAP apoptosis might
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be perturbed in a glycerol model of muscle injury, leading to
intermuscular adipose tissue development. However, treatment
with the TGF-β inhibitor decorin decreases intermuscular
adipose tissue development and might restore FAP apoptosis
(Pagano et al., 2019). Thus, inflammatory cell-derived factors are
required for proper FAP regulation, and any dysregulation of
the timing or concentrations of these factors could contribute to
pathological extracellular matrix accumulation by FAPs.

In contrast to the acute inflammatory response to muscle
damage, myopathies, dystrophies, aging, diabetes, and obesity
are associated with a chronic low-grade inflammation. This
chronic, low-grade inflammation is associated impaired function
of MuSCs, immune cells, and FAPs, leading to fibrosis, and
poor skeletal muscle regeneration (Rostasy et al., 2008; Mann
et al., 2011; D’Souza et al., 2015; Wang et al., 2015). Moreover,
chronic inflammation in these conditions results in an increase
in cytokine release that is responsible for the extracellular
matrix production (Van Linthout et al., 2014). Consequently,

muscle fibrosis develops which disrupts the cell niche for proper
skeletal muscle regeneration (Murphy et al., 2011). Specifically,
during chronic muscle damage, macrophage-derived TGF-β1,
inhibits TNF-mediated FAP, and instead induce their fibrogenic
differentiation and consequent extracellular matrix deposition
(Lemos et al., 2015; Davies et al., 2016; Fiore et al., 2016;
Juban et al., 2018). Similarly, Moratal et al. (2018) report that
IL-1β-activated macrophages and IL-4-polarized macrophages
have opposite effects on FAP differentiation into adipocytes
in vitro, which was dependent on Smad2 phosphorylation in
FAPs. Thus, under chronic inflammatory conditions associated
with several metabolic disorders, signals that regulate FAP
apoptosis and inhibit proliferation are perturbed, leading to a
chronic state of remodeling which ultimately results in fibro/fatty
tissue accumulation.

Exercise is a well-known modulator of the inflammatory
response (Febbraio, 2007; Lancaster and Febbraio, 2014). In
response to acute exercise, skeletal muscle produces a myriad

FIGURE 1 | The influence of metabolic stress on fibro/adipogenic progenitor (FAPs) cell function. In skeletal muscle, metabolic stress leads to an accumulation of
intermuscular adipose tissue, extracellular matrix production, and inflammation. FAPs are the primary cellular source of intermuscular adipose tissue, extracellular
matrix proteins, and interact with immune cells to participate in the inflammatory response. Available literature indicates that during metabolic stress FAPs favor
glycolysis during proliferation and adipogenic differentiation, and downregulate the production of the pro-myogenic factor follistatin (fst) via modulation of the
β-catenin signaling pathway. In aging, altered secretion of WNT1 inducible signaling pathway protein 1 (WISP1) by FAPs, which may be induced by mitochondrial
dysfunction, reduces their capacity to support MuSC activation and commitment. Exercise reduces the characteristic changes in skeletal muscle that occur during
metabolic stress. Further, exercise stimulates FAP production of pro-myogenic factors and may inhibit adipogenic and fibrogenic potential of FAPs.
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of pro-inflammatory cytokines, including but not limited to
IL-6 (Pedersen and Steensberg, 2002), IL-1ra (Ostrowski et al.,
1998), IL-8, and IL-15 (Nielsen and Pedersen, 2007). The role of
these cytokines in relation to skeletal muscle is to participate in
the muscle repair/adaptive response to exercise (Serrano et al.,
2008; McKay et al., 2009), and modulate whole-body and muscle
glucose metabolism (Febbraio et al., 2004; Carey et al., 2006).
Additionally, cellular mediators of the inflammatory response,
increase in skeletal muscle after acute exercise (Paulsen et al.,
2010), and macrophages with a pro-regenerative phenotype also
increase in skeletal muscle following 12 weeks of endurance
training (Walton et al., 2019). The increase in phenotypically pro-
regenerative macrophages was associated with greater increases
in fiber cross-sectional area and increases in MuSC content
(Walton et al., 2019). Mesenchymal stromal cells in other tissues
are known to regulate inflammatory responses (Munir et al.,
2018); however, whether they regulate muscle inflammation, and
how exercise can influence this relationship remains unknown.

PERSPECTIVES AND CONCLUSION

Obesity, diabetes, and other metabolic disorders are reaching
epidemic proportions in western countries. Impairment
of skeletal muscle is a central player in the detrimental
effects of metabolic stress leading and metabolic disorders.
Under conditions of metabolic stress, muscle dysfunction is
characterized by excessive intermuscular adipocytes, extracellular
matrix accumulation, and inflammation (Lawler et al., 2016). In
these conditions, the accumulation of fibro/fatty tissue in skeletal

muscle is associated with a loss of muscle mass, a reduction
in muscle strength (Delmonico et al., 2009), insulin resistance,
and inflammation (Szendroedi et al., 2014). As the cellular
source of intermuscular adipose tissue, primary producers of
the extracellular matrix, and key regulators of muscle mass,
FAPs are central to these detrimental changes in skeletal muscle
under metabolic stress (Figure 1). Exercise is an effective first line
therapy for metabolic disorders; however, the role of exercise on
FAP fate and function are just beginning to be identified. As the
effects of metabolic stress and role of metabolism in regulating
FAP function begin to be unraveled in the coming years, as
well as the mechanisms responsible for exercise-induced FAP
regulation, novel avenues for therapy will emerge to maintain
muscle function, metabolic health, and reduce morbidity.
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