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Loss of body weight, especially loss of adipose tissue and skeletal muscle weight,
characterizes cancer-associated cachexia (CAC). Clinically, therapeutic options for CAC
are limited due to the complicated signaling between cancer and other organs. Recent
research advances show that adipose tissues play a critical role during thermogenesis,
glucose homeostasis, insulin sensitivity, and lipid metabolism. Understanding the
adipocyte lipolysis, the formation of beige adipocytes, and the activation of brown
adipocytes is vital for novel therapies for metabolic syndromes like CAC. The system-
level crosstalk between adipose tissue and other organs involves adipocyte lipolysis,
white adipose tissue browning, and secreted factors and metabolites. Novel CAC animal
models and accumulating molecular signaling knowledge have provided mechanisms
that may ultimately be translated into future therapeutic possibilities that benefit CAC
patients. This mini review discusses the role of adipose tissue in CAC development,
mechanism, and therapy.

Keywords: adipose tissue, browning, lipolysis, thermogenesis, cancer cachexia

INTRODUCTION

Cancer-associated cachexia (CAC) has a unique tumor-driven pattern that can lead to progressive
functional impairment, treatment-related complications, poor quality of life, and mortality. It is
defined by an ongoing loss of skeletal muscle mass, with or without loss of fat mass, that can be
partially but not entirely reversed by conventional nutritional support (Fearon et al., 2011). The
diagnosis of CAC is based on the speed of weight loss and the BMI index. Recent assessments have
suggested that CAC affects 60–80% of advanced cancer patients and directly causes at least 20%
of cancer death (Stewart et al., 2006). CAC patients are more susceptible to the toxic effects of
anti-tumor therapies such as chemotherapy, while the increased toxicity requires drug withdrawal
and dose reduction in cancer treatment, and it therefore increases morbidity and mortality. This
fatal disease can be divided into three typical stages: pre-cachexia, cachexia, and refractory cachexia
(Argiles et al., 2011). Patients with CAC have significant weight loss, anorexia, anemia, fatigue,
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intestinal malabsorption, nausea, profound endocrine alterations,
and metabolic chaos, with severe disruption of protein, lipid, and
carbohydrate metabolism (Tisdale, 2002).

It is agreed that CAC is an energy balance disorder in which
the tumor competes with other organs and tissues for fuel
and biosynthetic substrates (Argiles et al., 2014). The intrinsic
metabolic rate defined by aerobic versus anaerobic energy
metabolism is essential for CAC progression. Various energy
expenditure-related pathways are suggested in the development
of CAC. About 40 years ago, researchers found that futile
cycles that reduce efficiency in adenosine triphosphate (ATP)
usage contribute to the hypermetabolism. For example, the
Cori cycle, a lactate–glucose carbon recycling system between
the muscle and liver, may nourish the tumor (Holroyde
and Reichard, 1981). Recently, leakiness of the respiratory
electron-transport chain is found to confer high energy
expenditure. Instead of ATP synthase, Uncoupling protein
1 (UCP1), which is only expressed in brown or beige
adipocytes, speeds up respiration and converts electrochemical
energy into heat production (Bing et al., 2000). Moreover,
other mitochondria abnormities, such as atrophy of oxidative
capacity (Julienne et al., 2012), may be involved in muscle
weight loss.

As a multi-organ syndrome, CAC is closely associated with
skeletal muscle, adipose tissue, the bone, the liver, the neural
system, and the gut (Argiles et al., 2018). Among these organs,
the communication between the adipose tissue and tumor is
under intense investigation. Although studies have suspected
the relationship between the adipose tissue and tumor for over
30 years (Brooks et al., 1981; Shellock et al., 1986), the detailed
mechanisms have only recently been discovered. Adipose tissue
is one of the largest organs in humans. Besides energy storage,
accumulating evidence demonstrates its unveiled roles within
endocrinology, energy consumption, thermogenesis, stem cell
pool, neuronal differentiation, and inflammatory regulation.
However, its crosstalk with the tumor is largely overlooked. In
humans, white adipose tissue (WAT) is mainly composed of
large spherical adipocytes, in which a unilocular lipid droplet
occupies most of the cell volume. WAT possesses endocrine
and paracrine functions and stores energy in the form of
triglycerides. In comparison, brown adipocytes in brown adipose
tissue (BAT) exhibit a substantial amount of mitochondria and
scattered cytoplasmic droplets. The most distinguished signature
in BAT is its high-level expression of mitochondrial UCP1,
which is the key to lipid oxidation and thermogenesis. Another
type of adipocyte, the “beige” adipocyte, originated from white
adipocyte but expresses UCP1, shows plasticity, and can be
transited from white adipose tissue by various signals (Rosen
and Spiegelman, 2006). Clinically, WAT browning and BAT
activation are considered as promising methods for combating
obesity and metabolic syndromes. On the contrary, similar
activities under local or distant stimuli in cancer make them
potential causes of CAC. In this review, we focus on the role
of adipose tissue dysfunction in CAC and review the molecular
mechanism that underlies it. An adequate understanding of this
system-level adipose tissue crosstalk will be beneficial for novel
treatments for CAC.

WAT Lipolysis in CAC
The white adipocyte is the major storage space for triacylglycerol
(TAG), and the balance of lipolysis/lipogenesis maintains the
dynamic homeostasis in the adipocyte, as well as guides
the systemic energy production in CAC. Independent of
malnutrition, adipocyte lipolysis is strongly involved in CAC,
inducing lipid loss (Ryden et al., 2008). Lipolytic factors or
hormones, such as tumor necrotic factor α (TNFα) (Oliff et al.,
1987), interleukin-6 (IL-6) (Strassmann et al., 1992), Zinc-α2-
glycoprotein (ZAG) (Bing et al., 2004), catecholamines, and
natriuretic peptides (Kalra and Tigas, 2002), explain lipolysis
in cancer cachexia. Following this line, recent studies show
that two key lipases (Agustsson et al., 2007; Das et al., 2011),
which break down the fat, mediate CAC, and serve as potential
targets for CAC treatment. Other than the canonical pathways,
lipolysis can also be regulated by degradation of perilipin,
a lipid droplet-associated packaging protein (Kovsan et al.,
2007). However, its relationship with CAC warrants further
investigation. Besides, de novo lipogenesis is reduced in tumor-
bearing animals (Trew and Begg, 1959). Lipogenic enzymes,
such as lipoprotein lipase (LPL) and fatty acid synthase (FAS),
are significantly reduced in the adipose tissue adjacent to
the tumor (Notarnicola et al., 2012), validating the tumor-
supporting role of WAT in CAC. Other than lipolysis per se,
inflammation is a well-known driving force for WAT lipolysis.
CAC is correlated with profound inflammation, which may, in
turn, stimulates WAT loss, suggesting inflammatory cytokines
may serve as biomarkers for CAC diagnosis. Indeed, animal
models show a strong correlation between tumor presence
and elevated serum inflammatory cytokines (Das et al., 2011).
However, the association between serum cytokines and fat
loss in patients is somewhat ambiguous (Blum et al., 2011),
probably due to the transient and diverse-origin nature of
serum cytokines. Though further validation is needed, lipolysis-
related CAC biomarkers in peripheral blood are particularly
important for diagnosis.

Reserving excess lipids and regulating circulating fatty acid
(FA) to other organs are major functions of the white adipocyte.
During CAC, lipolysis activation in WAT may increase the
circulating FA. Consequently, lipid overload may process a
secondary effect on various organs. It is suspected that tumor
benefits from the releasing FA during CAC. Indeed, in an
acute fasting model, circulating FA greatly increased tumor
proliferation (Sauer et al., 1986). In accordance with this,
our work showed that a hypoxia-induced metabolic shift
promotes tumor FA importation and β-oxidation (Iwamoto
et al., 2018). In other non-adipose organs, lipotoxicity is also
widely reported in liver, skeleton muscle, pancreas, and heart
(van Herpen and Schrauwen-Hinderling, 2008).

Browning in CAC
In WAT, sympathetic stimulations, such as cold exposure or a
β3 agonist, strongly increase thermogenic beige adipocytes. This
process is termed as “browning”. Various recent studies have
reported that an upregulated browning process promotes energy
expenditure and CAC (Kir et al., 2014; Petruzzelli et al., 2014).
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By neutralizing the browning stimulator parathyroid hormone-
related protein (PTHrP), CAC is ameliorated and fat loss
is rescued in animal models (Kir et al., 2014). Additionally,
jeopardizing the tumor-derived exosome, which is a vehicle for
possible browning stimulators, rescued fat loss in tumor-bearing
mice (Hu et al., 2018). These findings suggested the anti-CAC
effect of the browning blockade. Understanding the mechanism
of beige cell differentiation and UCP1 production is crucial
for combating CAC. During the last decade, the transcriptional
regulation of UCP1 has been elucidated. Peroxisome proliferator-
activated receptor γ (PPARγ) (Rosen et al., 2002), PPARγ

coactivator 1α (PGC-1α) (Puigserver et al., 1998), PR domain
containing 16 (PRDM16) (Seale et al., 2007), and other
transcription factors are responsible for UCP1 production in
brown and beige adipocytes. Other than that, extracellular
stimulations, such as catecholamines (Nguyen et al., 2011),
crotamine (Marinovic et al., 2018), prostaglandins (Vegiopoulos
et al., 2010), fibroblast growth factor 21 (FGF21) (Dutchak
et al., 2012), ZAG (Elattar et al., 2018), Bone morphogenetic
proteins (BMPs) (Tseng et al., 2008), and alcohol-retinoic acid
axis (Wang et al., 2017), have recently been reported to elevate
the browning process and facilitate CAC. During the browning
process, beige cells de novo originated from a smooth muscle
cell-like lineage and can be converted back to the “white-like”
phenotype (Rosenwald et al., 2013; Wang et al., 2013), while
PRDM16 (Long et al., 2014) and BMP7 (McDonald et al., 2015)
serve as strong stimulators for their differentiation. Although
various mechanisms, such as autophagy, microflora, exosome,
and long non-coding RNAs, have been reported to be involved
in the WAT browning process, whether or not this confers CAC
is not fully validated. Only a handful of studies exhibited an anti-
cachexia effect in limited animal models. Future studies should
focus on these targets from a clinical point of view.

Interestingly, white adipose depots show heterogeneity in
browning efficiency. Certain depots, such as inguinal WAT, are
sensitive to browning stimulation, while visceral fat depots are
resistant to browning. The latter was previously identified as
being “true white adipose tissue” and harmful. Considering the
browning ability differences, do adipose depots contribute to
CAC differently? It has been reported that visceral fat may
switch its phenotype for browning under certain stimulations
(Yang et al., 2017), though the switching mechanism is still
not well understood. This interesting question warrants further
investigation and may improve our understanding of the
mechanism of browning-conferred CAC.

BAT Activation in CAC
BAT depots are highly vascularized, and the interscapular site is
the main location for BAT in rodents (Rosen and Spiegelman,
2014). Except for specific markers, such as the Zinc finger in
the cerebellum 1 (Zic1), brown adipocytes share overlapping
gene signatures with beige adipocytes (Walden et al., 2012).
Compared with beige cells, brown adipocytes have a higher
basal level of UCP1 expression (Wu et al., 2012). From a
developmental point of view, brown adipocytes are marked by
transcription factors myogenic factor 5 (Myf5) (Seale et al., 2008)
and paired box 7 (Pax7) (Lepper and Fan, 2010), similarly to

myogenic precursor cells. Brown fat precursor cells that express
early B cell factor 2 (EBF2) and platelet-derived growth factor
receptor α (PDGFRα) process de novo differentiation into mature
brown adipocytes (Wang et al., 2014). β1-adrenergic receptor
(ADRB1) also mediates norepinephrine-induced de novo brown
adipogenesis in BAT (Lee et al., 2015). Interestingly, ADRB1
expression is correlated with the lipolytic rate in CAC patients
(Cao et al., 2010), suggesting that a BAT blockade may be a
potential therapy for CAC. Although speculated for a long time
(Shellock et al., 1986), the clinical evidence that BAT contributes
to CAC is limited. This may be due to the small amount
and sporadic distribution of adult BAT in humans as well as
restrictions of current imaging methods to describe BAT and
quantify its function.

Interestingly, loss of brown adipocytes may sequentially
induce WAT browning, indicating a compensatory mechanism
between mature brown and beige adipocyte (Schulz
et al., 2013). It would be exciting to identify whether this
mechanism exists in CAC.

Adipocyte–Non-adipocyte Crosstalk in
CAC
As a multi-functional organ, adipose tissue communicates with
various cell types. In the context of CAC, the adipocyte-
myocyte, adipocyte-cancer cell, and adipocyte-inflammatory cell
crosstalk have received particular attention. Firstly, adipocytes
and skeletal muscle communicate in CAC: (1) brown adipocyte
share the same lineage origin with skeletal muscle and may
respond to similar signals (Seale et al., 2008); (2) the fibro-
adipogenic precursor in the muscle may differentiate into
white adipocyte in CAC (Stephens et al., 2011); (3) adipocyte-
derived cytokines stimulate muscle atrophy (Pellegrinelli et al.,
2015); and (4) myokines, such as irisin and FGF21, promote
browning and fat loss (Bostrom et al., 2012; Veniant et al.,
2015). Secondly, adipose tissue is strongly associated with
inflammatory cells. In CAC patients, systemic inflammation is
one of the major driving forces for adipose wasting. Released
by tumor cells and activated immune cells, inflammatory
cytokines, such as ZAG (Elattar et al., 2018) and TNFα

(Patel and Patel, 2017), promote adipose wasting in CAC.
Moreover, direct immune cell–adipocyte interaction may also
drive cachexia (Baazim et al., 2019). Interestingly, in bone-
marrow, adipocytes negatively regulate surrounding myeloid
cells (Naveiras et al., 2009). However, in an adipose-wasting
setting, such as anorexia nervosa, bone-marrow adipocytes do
not undergo lipolysis but paradoxically expand (Bredella et al.,
2009). These interesting findings need to be investigated in
CAC. Thirdly, as previously mentioned, adipocyte-tumor cell
communication includes adipocyte lipolysis, which stimulates
tumor growth (Sauer et al., 1986), and tumor cell-derived
cytokines or hormones that drive the browning process (Kir et al.,
2014; Petruzzelli et al., 2014; Elattar et al., 2018).

Cancer-associated cachexia is a syndrome involving multiple
organs and tissues. Between the adipocyte and various non-
adipocytes, direct and indirect communication exists in the
context of CAC. The molecular mechanisms of lipolysis and
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thermogenesis in three types of adipocytes, as well as the adipose
tissue crosstalk, are summarized in Figure 1.

Animal Models Used in CAC Research
Appropriate animal models are crucial for understanding the
mechanisms for clinical therapy. Over the years, various animal
models have been proposed to mimic CAC. Due to the
complexity of CAC, animal models can be characterized by
loss of muscle, loss of adipose tissue, systemic inflammation, or
anorexia. During the last decade, tumor-bearing rodent models
have been upgraded. Genetically modified animal models have
been developed for better mimicking the clinical situation. New
animal species, such as zebrafish, are generated for CAC studies.
Here, we review the commonly used animal model for CAC in
Table 1, with detailed information on animal species, genetic
modification, experimental period, weight loss, muscle loss, and,
importantly, adipose tissue wasting.

Due to the heterogeneity of human cancers, none of the
experimental models are suitable for the complete recapitulation
of the clinical CAC features. Xenograft mouse models are easy to

establish. However, fast tumor progression normally masks the
CAC progression. Genetic models recapitulate the oncogenesis
process and some genetic features in the clinic, while the
non-stable occurrence rate limits further studies. In general,
experimental mammal CAC models are useful for investigating
adipose tissue–tumor communications, especially BAT-tumor
communications. While the zebrafish or drosophila models may
not perfectly reflect CAC features, their fast generating time and
the convenience with which to produce the wild type or mutants
make them attractive for drug screens. Notably, there is a lack
of guidelines and consensus in CAC models, even in the most
common models. Due to the non-standardized experimental
conditions and CAC outcome measurements, the same model
may behave differently. It increases the complexity of this field
(Penna et al., 2016).

Therapeutic Advances
Medical interventions for cachexia are limited and urgently
warranted. Nutritional supports involve caloric intake, marine
n-3 fatty acids, amino acid, and micronutrients. The evidence of

FIGURE 1 | Adipocyte-associated crosstalk influences metabolic homeostasis in CAC. In CAC, WAT undergoes increased lipolysis and reduced lipogenesis, which
results in adipose tissue loss. In addition to lipolysis, white adipocyte browning and brown adipocyte activation stimulate UCP1 upregulation for thermogenesis and
high energy expenditure. The adipocyte–myocyte, adipocyte–cancer cell, and adipocyte–inflammatory cell crosstalk influences metabolic homeostasis.
Tumor-derived factors, adipokines, myokines, and other factors are all involved in the lipolysis and/or browning in adipose tissues. The adipose tissue wasting also
has an effect on other organs through various pathway. Collectively, these changes result in a negative energy balance, which contributes to the development and
progression of CAC.
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TABLE 1 | Animal models used in cancer-associated cachexia research.

Animal model Host Experimental
period (Day)

Weight loss (%) Skeletal muscle
wasting

Adipose tissue
wasting

References

Lewis lung carcinoma
(LLC)

C57BL/6 mice 15 6.6 Yes (with reduced
cross-sectional
areas of muscle
fibers)

Yes (with UCP1
increased in BAT)

Puppa et al., 2014;
Llovera et al., 1998

C26 colorectal
carcinoma

BALB/c mice;
CD2F1 mice

20 18 Yes (20–30% with
reduced
cross-sectional
areas of muscle
fibers)

Yes (70% reduction
with UCP1
increased in BAT)

Bonetto et al.,
2016; Murphy
et al., 2012

Yoshida hepatoma
(AH-130)

Wistar rats 15 35 Yes (protein loss in
gastrocnemius and
heart muscle)

Yes Hoshino, 1963;
Tessitore et al.,
1993; Tschirner
et al., 2012

Walker 256 mammary
adenocarcinoma

Sprague-Dawley
rats; Wistar rats

14–21 6 Yes (with
gastrocnemius
muscle reduced)

Yes (with
decreased eWAT)

Guaitani et al.,
1982

Murine
adenocarcinoma 16
(MAC16)

NMRI mice 18–30 20–33 Yes (20% with
UCP-2 and -3
increased in
skeletal muscle)

Yes (67% reduction
with UCP1
increased in BAT)

Bibby et al., 1987;
Bing et al., 2000

Apcmin/+ C57BL/6 mice 84–140 20–25 Yes (with reduced
mitochondrial
content in
gastrocnemius
muscle)

Yes (with
decreased eWAT)

Baltgalvis et al.,
1985; Puppa et al.,
2011

Tsc2+/−Eµ-Myc
lymphoma

C57BL/6 mice 9–20 ∼20 Yes (significant loss
of muscle mass)

Yes (complete loss
of adipose tissue)

Robert et al., 2012

MKN45c185 and
85As2 Stomach cancer

F344/NJcl-rnu/rnu
rats

28 4–8 Yes Yes Takeda et al., 2008;
Fujitsuka et al.,
2011; Yanagihara
et al., 2013;
Terawaki et al.,
2014

MDA-MB-231 breast
cancer bone metastasis

Nude mice 20 12 Yes (with
gastrocnemius,
tibialis anterior, and
extensor digitorum
longus muscle
decreased)

/ Hain et al., 2019

ASV-B hepatocellular
carcinoma

C57BL/6 mice 119 34 Yes (decreased in
mass of
gastrocnemius,
tibialis anterior, and
extensor digitorum
longus muscle)

Yes (with
decreased eWAT)

Erdem et al., 2019

S2-013, PANC1, Pa04
pancreatic cancer

nude mice 10 6–15 Yes (with reduced
cross-sectional
areas of muscle
fibers)

Yes Shukla et al., 2014,
2015; Winnard
et al., 2016

KRASG12D/+

P53R172H/+ Pdx-Cre
(KPC) mouse

C57BL/6 mice 5–14 / Yes (4.5–7.7%
reduction)

Yes (52.6–69%
reduction. With
UCP1 decreased in
WAT and BAT)

Michaelis et al.,
2017

Kras+/G12D

Ptf1a+/ER−Cre Ptenf/f

(KPP) mouse

C57BL/6 mice 107 ∼25 Yes (decreased
tibialis anterior,
quadriceps femoris,
and gastrocnemius
muscle masses)

Yes (with eWAT and
iBAT decreased)

Talbert et al., 2019

KrasG12V-induced
hepatocellular
carcinoma

Zebrafish 28 30 Yes (increased level
of fibrosis along
with the loss of
muscle fibers)

/ Yang et al., 2019

Scrib RasV12 tumor Drosophila 5 / Yes (muscle ATP
levels reduced)

Yes (fat body
marked reduction)

Figueroa-Clarevega
and Bilder, 2015
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this nutrition supports is limited. Apart from this, clinically, there
has been a lack of a standard for nutrition support until now
(Gullett et al., 2011).

Anti-CAC drug therapy has been continuously proposed over
the last three decades. Appetite stimulants, such as megestrol
acetate or tetrahydrocannabinol, promote food intake but show
no effect on survival (Jatoi et al., 2002; Lesniak et al., 2008).
Anabolic factors aiming to maintain body mass have been
proposed for CAC. Hormones such as oxandrolone increase
lean body mass but not fat body mass in CAC patients (Lesser
et al., 2008). Ghrelin, a growth hormone stimulator secreted
by the stomach, shows significant improvement in lean body
mass (Garcia et al., 2007). A muscle-specific androgen receptor
modulator improves lean body mass but failed in later larger
trials (Dalton et al., 2011). Anti-inflammatory drugs, such as
NSAIDs, improve weight gain (Lai et al., 2008). However, the
TNFα inhibitor does not show clinical significance in CAC
patients (Jatoi et al., 2010). Recently, various targets, including
muscle stem cells (Rinaldi and Perlingeiro, 2014), statins (Palus
et al., 2013), mitochondria (van der Ende et al., 2018), and
microbiota (Fukawa et al., 2016), have been proposed for novel
therapeutic options. However, clinically, only a handful of drugs
are approved for treating CAC patients. The majority of them are
appetite stimulants. Notably, Anamorelin, a promising selective
agonist of ghrelin, significantly increases lean body mass, but did
not affect muscle strength or quality of life in a phase III trial
(Temel et al., 2016), and it was thus rejected by the European
Medicines Agency in 2017.

Targeting the adipose tissue for CAC therapy has been
proposed but not yet proven in the clinic. New therapies
that block adipose tissue lipolysis and/or thermogenesis can
potentially be used to treat cachexia.

CONCLUSION

Cancer-associated cachexia is a chronic disease with multiple
organs or tissues involved. Clinically, a novel therapy is
warranted for not only achieving weight gain but also increasing
the quality of life. Recent advances highlight the adipose
tissue involvement in CAC. Among adipose tissues, WAT
guides systemic energy production via the balance between

lipogenesis and lipolysis. BAT has recently been identified
in adult humans with profound physiopathological functions.
The browning process stimulates beige adipocyte differentiation
and thermogenesis. These adipose tissues contribute to CAC
differently. During CAC development, adipose tissues crosstalk
with other cell types or organs and exhibit therapeutic
potential. In this field, the key issues remain: (1) How are
white/beige/brown adipocytes regulated in CAC pathological
status? (2) What are the molecular details for adipocyte-non-
adipocyte communications in CAC? (3) Are there better animal
models for investigating adipose tissues in CAC? (4) What is the
system-level landscape for adipose tissues in CAC? Altogether,
the ultimate goal in this field will be to identify new targets in
adipose tissues for treating CAC. The mechanistic studies need
to be validated in clinical trials and translated into therapies
for combating CAC.
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