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There is currently some understanding of the mechanisms that underpin the interactions
between circadian rhythmicity and immunity, metabolism and immune response, and
circadian rhythmicity and metabolism. In addition, a wealth of studies have led to
the conclusion that the commensal microbiota (mainly bacteria) within the intestine
contributes to host homeostasis by regulating circadian rhythmicity, metabolism, and
the immune system. Experimental studies on how these four biological domains
interact with each other have mainly focused on any two of those domains at a time
and only occasionally on three. However, a systematic analysis of how these four
domains concurrently interact with each other seems to be missing. We have analyzed
current evidence that signposts a role for mitochondria as a key hub that supports
and integrates activity across all four domains, circadian clocks, metabolic pathways,
the intestinal microbiota, and the immune system, coordinating their integration and
crosstalk. This work will hopefully provide a new perspective for both hypothesis-building
and more systematic experimental approaches.
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CIRCADIAN RHYTHMICITY

Circadian rhythms were first observed in 1729 by Jean-Jacques d’Ortous de Mairan, who noticed
that the leaves of the Mimosa plant moved with a periodicity of 24 h, even in the absence of light,
thus suggesting the presence of an internal clock. It is now recognized that circadian rhythmicity
integrates a mechanism for the timely coordination of cellular and broader physiological functions
(Roenneberg and Merrow, 2005).

The Circadian Clock
The term circadian is used to refer to biological cycles with a time length of about 24 h (Scheiermann
et al., 2018), and the suprachiasmatic nucleus (SCN) is the “master clock” that coordinates and
synchronizes those daily biological rhythms (Hastings et al., 2018).
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Circadian rhythmicity is also regulated by a set of peripheral
“clock proteins,” which form a hierarchy of oscillators that
function at the cellular, tissue, and systems levels and are
composed of at least three feedback loops (Mohawk et al., 2012;
Curtis et al., 2014). One loop depends on the heterodimerization
of the transcription factors brain and muscle aryl hydrocarbon
receptor nuclear translocator-like 1 (BMAL1) and circadian
locomotor output cycles kaput (CLOCK) that, upon binding to
E-box elements, induce the expression of their own repressors,
named Period (PER) and Cryptochrome (CRY) proteins. Since
these proteins (PER-1, -2, and -3, and CRY-1 and -2) are gradually
degraded, the expression on BMAL1 and CLOCK ceases, starting
a new circadian cycle.

A second loop is formed by the nuclear retinoic acid receptor-
related orphan receptor (ROR) (α, β, γ) and REV-ERB (α, β),
which, upon activation by the BMAL1/CLOCK heterodimer and
translocation into the nucleus, bind to receptor-related orphan
receptor response elements (ROREs) in the promoter of BMAL1,
regulating the expression of BMAL1 (Mohawk et al., 2012;
Curtis et al., 2014).

A third loop is formed by the transcriptional activator
albumin D-box binding protein (DBP) and the repressor nuclear
factor interleukin 3 (NFIL3), which synergistically regulate the
expression of D-box genes, including the Per genes. The interplay
between these three regulatory loops is at the core of circadian
rhythmicity and clock-related gene expression (Mohawk et al.,
2012; Curtis et al., 2014; Figure 1).

Circadian Rhythmicity and Its
Physiological Role
Circadian rhythms modulate nearly every mammalian
physiological process, including sleep, feeding times, energy
metabolism, endocrine, and immune functions. Genome-wide
transcriptional profiling analyses have shown that up to 35–50%
of the genome displays rhythmic expression in eukaryotes (Shi
and Zheng, 2013). Light acts as a circadian cycle activator that
helps to regulate the peaks of physiological functions such as
rest-activity, respiration, blood pressure, and body temperature
(Zhang et al., 2014).

Circadian rhythms also regulate metabolism, and so there is
a differential circadian-based expression of glucose transporters,
glucagon receptors, and glycolysis-related enzymes and levels of
insulin, glucagon, leptine, and cortisone (Panda, 2016), as well
as circadian-based differences in the absorption, transport, and
serum levels of cholesterol, triglycerides, and apolipoproteins
(Poggiogalle et al., 2018).

Several immune functions are under direct control of the
circadian clock, such as leukocyte traffic (Gibbs et al., 2014;
Druzd et al., 2017), the production of cytokines, granzymes, and
perforins (Logan and Sarkar, 2012), phagocytosis and bactericidal
activities (Casanova-Acebes et al., 2013; Oliva-Ramírez et al.,
2014), expression of diverse pattern recognition receptors (PRRs)
(Silver et al., 2018), response to pathogens (Kiessling et al., 2017;
Zhuang et al., 2017), anti-inflammatory responses (Gibbs et al.,
2014), T lymphocyte responses (Fortier et al., 2011), and allergic
responses (Paganelli et al., 2018).

FIGURE 1 | Mitochondria regulate circadian rhythmicity through NAD+

production, SIRT1 and SIRT3 activation, and mitochondrial dynamics. The
Sirtuin 1 (SIRT1) and Sirtuin 3 (SIRT3) activity as HDACs is dependent on
NAD+, and SIRT1 and SIRT3 counteract CLOCK; NAD+ synthesis is
dependent on circadian rhythmicity, and this is related to mitochondrial
dynamics. NAD+, Nicotinamide adenin dinucleotide (oxidized); SIRT1, Sirtuin
1; SIRT3, Sirtuin 3; BMAL1, Brain and muscle aryl hydrocarbon receptor
nuclear translocator-like 1; CLOCK, circadian locomotor output cycles kaput;
RORα, Retinoic acid receptor-related orphan receptor α; REV-ERBα, Reverse
strand of ERBA (REV-ERBα is encoded by the opposite DNA strand of the
ERBA oncogene, hence its name); NFIL3, nuclear factor interleukin 3; DBP,
D-box binding protein; CRY, Cryptochrome; PER, Period; CCG,
Clock-Controlled Genes.

In addition, intestinal bacteria display endogenous circadian
rhythmicity and influence the function of the intestinal circadian
clock, and the host circadian rhythmicity influences the
composition of bacterial communities in the intestine (Asher and
Sassone-Corsi, 2015; Paulose et al., 2016; Huang et al., 2018).

Pathological Consequences of
Disrupting the Circadian Rhythmicity
The incidence of pathologies such as depression, obesity,
diabetes, infarction, cancer, and others is higher in time-shift
workers, and a common risk factor is inflammation (Castanon-
Cervantes et al., 2010; Schwartsburd, 2017). Shift work, leading to
a disruption in circadian rhythmicity, has been classified within
the group 2A of probable human carcinogens (Straif et al., 2007).
Long flights that result in jet lag, night work, and exposure
to artificial light during the night can also disrupt circadian
rhythmicity, leading to irritability, anxiety, and depressive
behavior (Salgado-Delgado et al., 2011). In this regard, animal
models of light-dark cycle-controlled changes have contributed
to our understanding of how circadian rhythmicity correlates
with physiological functions such as metabolism and cognitive
processes (Fujioka et al., 2011).
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In many immunological and allergic diseases, including
rheumatoid arthritis, bronchial asthma, atopic eczema, and
chronic urticarial irritation, the intensity of symptoms and
disease severity show a circadian pattern (Nakao et al., 2015;
Stull et al., 2017).

Mitochondrial Regulation of Circadian
Rhythmicity
Mitochondria constantly undergo changes in both morphology
and distribution within the cytoplasm, as fused (network
forming) or fissioned (punctate) mitochondria, a process
collectively referred to as mitochondrial dynamics; fused
mitochondria are regarded as metabolically more active than
fragmented mitochondria, as cells with a fused mitochondrial
network seem to have a higher respiratory rate than cells
with fragmented mitochondria (Westermann, 2012; Mishra and
Chan, 2016). Likewise, it has been suggested that there is a
correlation between circadian rhythmicity and mitochondrial
function (Kohsaka et al., 2014; Oliva-Ramírez et al., 2014; Scrima
et al., 2016; de Goede et al., 2018; Ezagouri and Asher, 2018).

Moreover, cells with disrupted mitochondria, such as Rho 0
cells, lack a well-defined circadian rhythmicity, in part due to
the lack of the characteristic robust oscillatory respiratory activity
observed in cells with healthy mitochondria (Scrima et al., 2016).
Mechanistically, the mitochondrial fusion-fission process is
dependent, amongst other proteins, on dynamin-related protein-
1 (Drp1) and its phosphorylation state; phosphorylated Drp1
promotes mitochondrial fusion, and Drp1 is phosphorylated in a
circadian-dependent manner, thus varying its activity according
to light/dark cycles (Schmitt et al., 2018).

The circadian clock also rhythmically regulates the
biosynthesis of NAD+ and, in this way, the mitochondrial
capacity for energy production. Mitochondrial NAD+ also
determines the activity of the deacetylases SIRT1 and SIRT3,
which in turn control the acetylation and activity of other key
metabolic enzymes. Interestingly, as an example of bi-directional
communication, NAD+ also influences clock function (Belden
and Dunlap, 2008; Peek et al., 2013; Figure 1).

METABOLISM

Metabolism, broadly defined as the sum of biochemical processes
in living organisms that produce or consume energy, is at
the core of many human diseases, and the current view is
that metabolism is not just a self-regulating network but one
that impacts, or is impacted by, many other cellular processes
(DeBerardinis and Thompson, 2012).

Metabolic Pathways
Recent comprehensive reviews have described glycolysis, Krebs
cycle, pentose phosphate pathway, fatty acid oxidation, fatty acid
synthesis, and amino acid metabolic pathways and how these
play key roles in immune cell effector functions (O’Neill et al.,
2016; Geltink et al., 2018; Russell et al., 2019), highlighting the
close connection between metabolism and the immune system
(immunometabolism). A detailed description of these metabolic

FIGURE 2 | Glycolysis and Krebs cycle-derived metabolites, as well as
microbiota-derived metabolites, exert biological functions beyond energetic
and biosynthetic metabolism.

pathways is out of the scope of this review. Rather, in order
to get some insight into the relationship between metabolism
and the other three biological domains here referred to, we
discuss, in the next two sections, the role, beyond metabolism, of
specific eukaryotic metabolites, and briefly consider the concept
of the metabolome.

Beyond Metabolism: Non-canonical
Biological Roles of Some Eukaryotic
Metabolites
Lactate
Lactate is a natural ligand for the GPR81 cell membrane
receptor that also recognizes other monocarboxylates; lactate
enhances cell differentiation, suppresses T-cell proliferation,
reduces the cytotoxic capacity of cytotoxic T lymphocytes,
stimulates gene expression, and plays an important role in the
tumor microenvironment (Mosienko et al., 2015; Romero-García
et al., 2016; Luo et al., 2017).

Extracellular lactate concentrations in the cerebral cortex vary
during the day (Naylor et al., 2012), and Bmal1, a clock gene,
regulates the expression of pyruvate kinase M2 (PKM2) and
hence lactate production, which is required for the expression of
the immune checkpoint protein PD-L1 (programmed cell death
ligand 1) in tumor cells and immune cells (Palsson-McDermott
et al., 2015; Deng et al., 2018; Figure 2).

Citrate
Citrate is exported from mitochondria to the cytosol by means of
the mitochondrial citrate transporter; once in the cytosol, citrate
is converted to acetyl-CoA and oxalacetate by the ATP-citrate
lyase, and acetyl-CoA promotes the acetylation of histones and
the promoter regions of TNF-α and IL-8 genes, increasing the
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production of IL-1β, TNF-α, and IFNγ (Ashbrook et al., 2015;
Mills et al., 2017).

Itaconate
Itaconate results from the conversion of citrate to cis-aconitate
and then to itaconate by the extramitochondrial enzyme
cis-aconitate decarboxylase in a “break point” of the Krebs
cycle during macrophage transition to a proinflammatory
state. It is one of the most highly induced metabolites in
activated macrophages and acts as an antibacterial metabolite
by inhibiting the bacterial enzyme isocitrate lyase (Rittenhouse
and McFadden, 1974; Garaude et al., 2016; Lampropoulou et al.,
2016; Belizário et al., 2018; Figure 2). The enzyme cis-aconitate
decarboxylase is encoded by the immune-responsive gene 1
(Irg1) (Michelucci et al., 2013); expression of Irg1 in macrophages
is required for ATP and GTP synthesis (Németh et al., 2016;
Belizário et al., 2018).

Itaconate functions as an endogenous succinate
dehydrogenase (SDH) inhibitor, and, therefore, its production
or its exogenous addition (or its derivatives) regulates succinate
levels, as well as mitochondrial respiration and inflammatory
cytokine production (Cordes et al., 2016; Lampropoulou et al.,
2016; Mills et al., 2017; Belizário et al., 2018). The addition of
itaconate or dimethyl itaconate to macrophages reduces the
expression of pro-IL-1β, IL-6, IL-12, and iNOS (Lampropoulou
et al., 2016; Belizário et al., 2018), and it is also possible that
itaconate modifies cysteine residues of multiple target proteins,
contributing to its role as an immunomodulator, as pointed out
by Hooftman and O’Neil in a recent review (Hooftman and
O’Neill, 2019; Figure 2).

Succinate
Succinate is produced from succinyl CoA by succinyl-CoA
synthetase and accumulates in the cytoplasm of monocyte/
macrophages and dendritic cells (DCs) upon LPS stimulation
(Pistollato et al., 2010; Williams and O’Neill, 2018). Succinate
accumulation, along with the induction of the glycolytic enzyme
hexokinase-1, increases the activity of the respiratory chain
complex II, promotes the production of mROS, stabilizes HIF-
1α, regulates the transcription of pro-IL-1β, and activates the
NOD-like receptor protein 3 (NLRP3) inflammasome, increasing
the production of IL-1β (Chandel et al., 2000; Moon et al., 2015;
Garaude et al., 2016; Mills et al., 2016, 2017; Figure 2).

LPS stimulation leads to the succinylation of several enzymes
such as glyceraldehyde 3-phosphate dehydrogenase (GAPDH),
malate dehydrogenase (MDH), lactate dehydrogenase (LDH),
and the glutamate carrier-1 (Tannahill et al., 2013).

A specific receptor for extracellular succinate
(SUCNR1/GPR91) is present in hepatic, renal, retinal, and
immune cells, and its ligation leads to the secretion of various
hormones, growth factors, and cytokines (Ariza et al., 2012)
and regulates DCs migration into lymph nodes, as well as DCs
antigen presentation (Figure 2). The SUCNR1/GPR91 receptor
can synergize with TLR3 and TLR7, increasing the production of
pro-inflammatory cytokines (Rubic et al., 2008).

Succinate is also a competitive inhibitor of multiple
α-ketoglutarate (α-KG)-dependent dioxygenases, including

histone demethylases and prolyl hydroxylases, thus contributing
to epigenetic regulation (Xiao et al., 2012; Figure 2).

Fumarate
Fumarate is produced by the oxidation of succinate by the SDH
enzyme (respiratory complex II) (Cecchini, 2003). Fumarate
and its derivatives have strong bacteriostatic and bactericidal
activity (Garaude et al., 2016); dimethyl fumarate (DMF),
through its metabolite monomethylfumarate (MMF), is also
a potent immunomodulator and antioxidant (Wilms et al.,
2010; Cross et al., 2011). DMF induces DCs to produce IL-
10, IL-12, and IL-23, tuning-down pathogenic T lymphocytes
(Schlöder et al., 2017).

Dimethyl fumarate inhibits maturation of DCs (Peng et al.,
2012), Th1 to Th2 lymphocyte shift (Wu et al., 2017),
pro-inflammatory cytokine signaling (McGuire et al., 2016),
nuclear translocation of NF-κB (Gillard et al., 2015), and
the expression of cell adhesion molecules in lymphocytes
and endothelial cells (Rubant et al., 2008). DMF has anti-
inflammatory activity on murine astrocytes by activating the
Nrf2 transcription factor, reducing oxidative stress and increasing
in vivo neuroprotection (Linker et al., 2011); hence, its
therapeutic use in patients with neurological diseases such as
multiple sclerosis (Wingerchuk and Carter, 2014).

Fumarate accumulates in macrophages in the course of
β-glucan-induced innate immune training, and, strikingly, the
addition of exogenous fumarate to macrophages in vitro induces
innate immune training concomitant to the induction of an
epigenetic landscape similar to that of β-glucan-induced training
(Arts et al., 2016; Figure 2).

The Metabolome
The metabolome is the repertoire of small biomolecules present
in cells, tissues, and body fluids, and its composition is at
the core of the health status of individuals. The development
of new “metabolomic platforms” has revealed that a number
of metabolites present in several biological samples, such as
serum and urine, vary in concentration following a circadian
rhythmicity (Martínez-Lozano et al., 2014; de Raad et al.,
2016). Among them are glycolysis-related metabolites, such as
glucose, glucose-6-phosphate, bisphosphoglycerate, and lactate;
tricarboxylic acid (TCA) cycle-related molecules, such as
acetate, acetyl CoA, citrate, isocitrate, and malonate; amino
acids and their derivatives; lipid metabolites; nucleotides;
antioxidants; and coenzymes such as NAD, FAD, and coenzyme
A (Krishnaiah et al., 2017).

Interestingly, the daily variation in the bacterial composition
within the intestine implies a daily variation in the concentration
of some bacteria-derived metabolites, and the hundreds of
microbiota-derived metabolites that have been identified
are regarded as components of the human metabolome
(Belizário et al., 2018). Thus, linking eukaryotic- and bacterial-
derived metabolites with the other three biological domains
is discussed here.

In attempting to convey the view that mitochondria support
and integrate the communication between the four mentioned
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biological domains, the specific roles of mitochondria are
discussed in the next sections.

Mitochondria as a Metabolic Hub
Mitochondria are at the core of metabolic pathways. They
produce most of the energy supply for cells by means of
oxidative phosphorylation coupled to the electron transport
chain (ETC); complete oxidation of glucose by cells yields
up to 33.45 ATP molecules from each molecule of glucose
(Mookerjee et al., 2017).

Mitochondria also participate in the synthesis of fatty acids,
metabolic intermediates, amino acids, and reactive oxygen
species (ROS) (Spinelli and Haigis, 2018) and the maintenance
of the cellular redox state and function as a signaling platform in
innate immunity (Weinberg et al., 2015).

The bioenergetics status of mitochondria also appears to be
regulated by a fission-fusion process. Mitochondrial fission is
regulated by the action of Drp1, mitochondrial fission factor
(Mff), mitochondrial fission protein 1 (Fis1), MiD49, and MiD50;
the assembly of Drp1 proteins constricts the mitochondria,
breaking apart sections of them, downregulating OXPHOS
constituents (Chan, 2012; Labbé et al., 2014).

Mitochondrial fusion is controlled by GTPases of the dynamin
superfamily, such as mitofusin 1 and mitofusin 2 (Mfn1 and
Mfn2) and optic atrophy 1 (Opa1), and this process increases
OXPHPOS (Chen et al., 2010; Cogliati et al., 2013).

Mitochondria take up calcium, which enables the modulation
of Ca2+ levels and Ca2+ signaling in their immediate
proximity. In addition, Ca2+ uptake by mitochondria
stimulates the TCA cycle and oxidative phosphorylation
(Duchen, 1992; Wang et al., 2019). The activity of several
bioenergetics-related enzymes, such as glycerol phosphate
dehydrogenase, pyruvate phosphate dehydrogenase, isocitrate
dehydrogenase, oxoglutarate dehydrogenase, SDH, and NADH
dehydrogenase, are regulated by calcium (Panov and Scaduto,
1995; Huang et al., 1998).

Moreover, mitochondria can be transferred from one cell
to another, and, thus, injured cells can receive mitochondria
from healthy cells, enhancing their cellular bioenergetics, and
can even improve organ function, such as in acute lung injury
and other inflammatory diseases (Islam and Luster, 2012).
Several mechanisms may account for the intercellular transfer
of mitochondria (Torralba et al., 2016), including tunneling
nanotubes (Jackson et al., 2016), direct cytoplasmic transfer
(Spees et al., 2006), extracellular vesicles (Spees et al., 2006), and
micropinocytosis (Kitani et al., 2014).

INTESTINAL MICROBIOTA

Humans are colonized in diverse anatomical sites by a myriad
of commensal microorganisms, collectively referred to as the
microbiota (the microbial taxa associated with humans) or as
the microbiome (the catalog of these microbes and their genes),
an important component of which is the intestinal microbiota,
which has profound effects on the host physiology (Ursell et al.,
2012; Butler et al., 2019).

Bacterial Colonization of the Intestinal
Tract
Around 1013–1014 bacteria, from more than one thousand
different species, colonize the human intestinal tract, and
different anatomical regions within the intestine harbor
distinctive microbial consortia or “microbiota” (Spor et al., 2011;
Lozupone et al., 2012).

Fetuses are in contact with microorganisms within the uterus,
and distinctive microbiomes have been found in the amniotic
cavity, umbilical cord, and placenta; these microorganisms
are not pathogenic, belong to the Firmicutes, Tenericutes,
Proteobacteria, Bacteroidetes, and Fusobacteria phyla, and are
perhaps the first bacteria to colonize the fetal gastrointestinal tract
(Satokari et al., 2009; Aagard et al., 2014).

Within the first days of life, the intestine is colonized, mainly
by aerobic microorganisms, and colonization reaches its maximal
density within 72 h after birth; the phylogenetic diversity
of microbiota gradually increases and allows colonization by
anaerobic bacteria (Spor et al., 2011; Lozupone et al., 2012;
Matamoros et al., 2013; Fulde and Hornef, 2014). Three years
after birth, the intestinal microbiota has developed into a
“mature” stage, characterized by its stability (Lozupone et al.,
2012; Matamoros et al., 2013).

Newborns are exposed to another variety of microorganisms
at the time of delivery; the vaginal route of delivery is associated
with bacteria from Actinobacteria, Bacteroidetes, and Firmicutes
phyla colonizing the newborn intestine (Koleva et al., 2015),
whereas, in infants born by the cesarean procedure, the intestine
is colonized by Staphylococcus spp. and Streptococcus from the
mother’s skin (Dominguez-Bello et al., 2010).

Infants fed exclusively on maternal milk exhibit higher
amounts of aerobic bacteria from the Bifidobacterium and
Lactobacillus genera and a lower amount of strict anaerobic
bacteria, such as Clostridium difficile, or facultative anaerobic
bacteria, such as Escherichia coli (Koleva et al., 2015), whereas
infants fed exclusively on formula are colonized by C. difficile,
Bacteroides, and Veillonella species (Wang et al., 2015).

Biological Role of Intestinal Microbiota
The commensal intestinal microbiota is a key determinant
for human health; it contributes to host digestive processes
(Lozupone et al., 2012) and is a source of folate and vitamins A
and B, which regulate host chromatin-modulating enzymes (Qin
and Wade, 2018), and several amino acids, including glycine,
which is required for the synthesis of glutathione, the main
intracellular antioxidant and detoxifying molecule (Belizário
et al., 2018). It also stimulates intestinal immune responses by
contributing to the development of gut-associated lymphoid
tissues (GALT), especially at early stages of life, produces
short-chain fatty acids (SCFAs), such as butyrate, acetate,
and propionate, that have immunomodulatory properties, and
regulates local immune responses (Figure 3). The intestinal
microbiota also suppresses pathogens through the production of
bactericidal proteins and prevents the intestine from colonization
by pathogenic bacteria (Ashida et al., 2011; Lozupone et al., 2012;
Kamada et al., 2013; Kabat et al., 2014; Rescigno, 2014).
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FIGURE 3 | Intestinal microbiota-derived short-chain fatty acids, methane,
and hydrogen sulfide regulate inflammatory responses. Microbiota-derived
products such as SFCAs (mainly acetate, butyrate, and propionate), CH4, and
H2S can cross the intestinal epithelial cell barrier and interact with the immune
system cells, activating G protein-coupled receptors or passing through cell
membranes, promoting cell signaling and modulating the immune response.

Intestinal bacteria produce large amounts of methane,
hydrogen sulfide, and non-gaseous metabolites, some of which
have signaling properties that turn on and off an array of host
genes, as well as virulence and metabolism-related microbial
genes (Tremaroli and Bäckhed, 2012; Belizário et al., 2018;
Rowland et al., 2018; Figure 3).

Dysbiosis
Change in the composition of intestinal microbiota, both
commensal and pathogenic, is known as dysbiosis; this condition
may affect homeostasis, leading to non-specific inflammation and
disease. Dysbiosis implies an imbalance in microbial metabolite
composition (Belizário et al., 2018) and is mainly the result
of an “unhealthy” diet, the use of antibiotics, and lifestyle
factors (Dudek-Wicher et al., 2018), it can also be caused by
emotional and physiological stress (Li et al., 2018). Dysbiosis
may result in epigenetic changes in adjacent intestinal cells, as
well as in hepatocytes and adipocytes (Belizário et al., 2018;
Qin and Wade, 2018).

Rapid changes in feeding habits over the last century may
have contributed to our current enterotypes and general health
(Moeller et al., 2014). Bowel disease, irritable bowel syndrome,
obesity, diabetes, and cancer have been associated with specific
bacterial dysbiosis (Clemente et al., 2012; Belizário et al., 2018).
Infants born by Cesarean delivery or from mothers that have
used antibiotics and thus harbor a particular enterotype, have
a higher risk of developing asthma, type I diabetes, and celiac
disease (Mueller et al., 2015).

There is evidence of a time-of-day-specific intestinal
microbiota taxonomic composition associated with rhythmic
food intake, dietary structure, gender, and the host biological
clock (Liang et al., 2015; Thaiss et al., 2016; Li et al., 2018), and
there is a clear role for the intestinal microbiota in the regulation
of metabolism, the immune system, and circadian rhythmicity.
One of the mechanisms of communication between the intestinal
microbiota and the other three biological domains involves
microbial metabolites.

Microbial Metabolites
Intestinal microbiota-derived metabolites have a major influence
on host physiology, particularly SCFAs, as well as hydrogen
sulfide (H2S) and methane (CH4). SCFAs are produced
from larger fatty acids and from the microbial catabolism
of carbohydrates; and H2S and CH4, act as messengers to
colonic epithelial and immune cells, impacting their metabolism,
epigenetics, and gene expression.

A higher proportion of SCFA-producing bacteria within the
intestinal microbiota is associated with a reduction in the risk
of developing obesity, insulin resistance, and type 2 diabetes,
since these compounds, particularly butyrate, increase cellular
respiration and fatty acid oxidation (Belizário et al., 2018).
Acetate, butyrate, and propionate are the most abundant SCFAs
and represent 90–95% of the total SCFAs present in the colon,
at physiological concentrations in the order of 50–100 nM
(Ríos-Covián et al., 2016).

Short-chain fatty acids are ligands of the free fatty acid receptor
2 (also called GPR41) and the free fatty acid receptor 3 (also
called GPR43) that, upon activation in intestinal L cells, induce
the release of glucagon-like peptide-1 (GLP-1), which contributes
to insulin signaling in white adipocytes, reducing adiposity
(Greiner and Bäckhed, 2016; Ang et al., 2018). Propionate is a
gluconeogenic factor, whereas acetate and butyrate are lipogenic
factors (Belizário et al., 2018; Rowland et al., 2018).

Butyrate and its structural analog, β-hydroxy-butyrate, act
as histone deacetylases (HDACs) and therefore play a role in
epigenetic regulation (Shimazu et al., 2013) and exert a protective
effect on the fatty liver, oxidative stress, and mitochondrial
dysfunction associated with obesity and insulin resistance
(Mollica et al., 2017).

Butyrate downregulates the expression of co-stimulatory
molecules, the maturation, metabolic reprograming, and
secretion of IL-12, IL-6, and NO in monocytes/macrophages
and DCs, inhibits the nuclear translocation of NF-κB, and drives
T cells to produce IL-10 and IL-17; propionate inhibits the
secretion of IL-12 and IL-33 by LPS-activated DCs, reduces the
expression of co-stimulatory molecules on DCs, and inhibits
cytotoxic T lymphocytes (Berndt et al., 2012; Chang et al., 2014;
Kaisar et al., 2017; Nastasi et al., 2017). Oral administration
of sodium butyrate increases the percentage of CD4+ Foxp3+

Tregs in the colon but not in lymph nodes and spleen, and this
correlates with the increase in IL-10 in the intestine (Kespohl
et al., 2017; Figure 3).

Hydrogen sulfide and methane help to modulate the
circulatory, nervous, and immune systems, as well as endothelial
cells (Boros et al., 2015). The plasma concentration of H2S
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is lower than 1 µM (Shen et al., 2012), and the mechanism
proposed for its biological activity is protein modification by
S-sulfhydration of cysteine residues. H2S has a dual activity,
acting both as an anti-inflammatory and as a pro-inflammatory
molecule that regulates T and B lymphocytes, NK cells, basophils,
and monocytes (Sulen et al., 2016; Bourque et al., 2018). H2S
reacts with heme protein groups, acting as a competitive inhibitor
of mitochondrial complex IV (Figure 3). However, at low
concentrations, this gas increases cellular respiration (Ming et al.,
2012; Nicholls et al., 2013).

In macrophages, the exposure to CH4 (as CH4-rich saline,
0.99 mmol/L) leads to the activation of GSK-3β, which attenuates
the phosphorylation of NF-κB and MAPK, negatively regulating
the production of pro-inflammatory cytokines both in vitro and
in vivo (Zhang et al., 2016; Figure 3). As mentioned in section
“Metabolome,” these microbial metabolites (acetate, butyrate,
propionate, hydrogen sulfide, and methane), among many others,
are components of the human metabolome.

Mitochondria and Bacteria
Mitochondria have a bacterial origin, and thus it is likely
that bacterial products may directly interact with mitochondria,
modifying their function.

Mitochondrial metabolic stress induces mitochondrial
dysfunction, which may lead to the disruption of the intestinal
epithelial barrier, allowing E. coli, and perhaps other bacteria,
to cross the epithelium (Nazli et al., 2004; Wang et al., 2015).
Microbial products, such as butyrate and urolithin A, enhance
mitochondrial functions (Ryu et al., 2016), and others, such
as betaine, methionine, and homocysteine, activate signaling
pathways that regulate mitochondrial dynamics in the intestinal
epithelium (Lin and Wang, 2017). E. coli-secreted colanic acid
is endocytosed and is capable of inducing Drp1-dependent
mitochondrial fission (Han et al., 2017), and Pseudomonas
aeruginosa secretes N-(3-oxo-dodecanoyl)-L-homoserine lactone
(3OC12), a molecule thought to subvert immune defenses. In
several cell types, such as in bronchial epithelial cells, 3OC12
is hydrolyzed by the enzyme lactonase paraoxonase 2 (PON2)
present in mitochondria, yielding 3OC12 acid, which accumulates
within mitochondria, causing mitochondrial and cytosolic
acidification, increase in intracellular Ca2+ concentration and
activation of stress signaling kinases (Horke et al., 2015).

Polymorphisms in the mitochondrial genes of the ND5,
CYTB, and D-loop regions have been associated with variations
in the composition of the intestinal microbiota (Ma et al., 2014);
mutations in the ATP8 gene increase the relative abundance
of Bacteroidales, Deferribacteraceae, Desulfovibrionaceae, and
Helicobacteraceae, suggesting that mitochondria play a role in
defining the microbiome (Hirose et al., 2017).

It has also been suggested that mitochondria from intestinal
cells are highly responsive to microbiotic signaling, with
implications in inflammatory processes and colorectal cancer
(Andersson et al., 1998; Jackson and Theiss, 2019). In addition,
itaconate, which is synthetized from the Krebs cycle aconitate,
limits bacterial growth by inhibiting bacterial isocitrate lyase
(Rittenhouse and McFadden, 1974). Whether itaconate has a role
in shaping intestinal microbiota remains to be investigated.

THE IMMUNE SYSTEM

The immune system has long been regarded as a mechanism
for self and non-self discrimination and, according to Janeway
(2001), this distinction is virtually always made by the innate
immune system, which primes the adaptive immune system. New
evidence indicates that in addition to the crosstalk between the
innate and adaptive immune systems, the immune system, as a
whole, communicates with other biological domains, as outlined
in the next sections.

Circadian Rhythmicity and the Immune
Response
Circadian rhythms regulate innate and adaptive immunity,
influencing the outcome of infectious and immune system-
related diseases (Scheiermann et al., 2013, 2018; Li et al., 2017).
High-throughput analysis has revealed rhythmicity in more than
8% of the macrophage transcriptome, including many important
regulators for pathogen recognition and cytokine secretion
(Keller et al., 2009), and migration to inflamed or infected tissues,
cytolytic activity, and proliferative response to antigens seem to
be circadian clock-dependent (Labrecque and Cermakian, 2015).

The total numbers of hematopoietic stem cells and mature
leukocytes reach their peak in circulation during the night and
decrease during the day (Scheiermann et al., 2013), and the
concentrations of cytokines and chemokines, such IL-6, TNF-α,
and CXCL 12, also undergo daily around-the-clock fluctuations
(Cermakian et al., 2013; Li et al., 2017). Clock genes and micro
RNAs (miRs) participate in the circadian control of immune
responses (Curtis et al., 2014, 2015).

The magnitude of the immune response to infectious
agents and their products, such as gram-negative bacteria-
derived lipopolysaccharides, is dependent on the time of the
day of exposure (Bellet et al., 2013); it has been proposed
that circadian rhythmicity allows anticipation of possible
exposure to pathogenic agents, as well as more efficient
use of the energy required to maintain the immune system
(Scheiermann et al., 2013, 2018).

In a mouse model of multiple sclerosis (experimental
autoimmune encephalomyelitis), the loss of the transcription
factor BMAL1, a core component of the molecular clock,
or the administration of the autoimmunity-eliciting antigen
(MOG35–55 peptide) at midday rather than at midnight causes
more severe immunopathology (Sutton et al., 2017), all of
which highlights the importance of the circadian cycle to the
immune system.

Metabolic Regulation of the Immune
Response
In 2002, a pioneering study demonstrated that, upon activation,
T lymphocytes rely on a “Warburg-type” metabolism (aerobic
glycolysis) and, remarkably, that immune co-stimulation is, in
fact, a metabolic rewiring of the cell (Frauwirth et al., 2002).
Since then, knowledge on the metabolic requirements for the
immune cell effector functions to take place, as well as the
immunomodulatory roles of metabolic intermediates, has grown
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steadily. It is currently known that, for instance, “classically
activated” macrophages (LPS plus IFN-γ), also referred to as M1
macrophages, use the Warburg-type metabolic pathway, whereas
alternatively activated macrophages (IL-4), also referred to as
M2 macrophages, use OXPHOS and β-oxidation to generate
energy (Rodríguez-Prados et al., 2010; O’Neill and Pearce, 2016;
Mills et al., 2017). The antimicrobial function of macrophages is
regulated by metabolic reprogramming that includes succinate
accumulation (Tannahill et al., 2013), mitochondrial ROS
production (West et al., 2011), and mitochondrial respiratory-
chain adaptation (Garaude et al., 2016). Stimulation of B
lymphocytes induces glycolysis and oxidative phosphorylation,
which facilitates the production of IgG or IgA antibodies (Pearce
and Pearce, 2018), and shifts in cell metabolism play a central
role in T-cell quiescence, memory, and activation responses
(Pearce and Pearce, 2018).

In addition, some metabolic intermediates contribute to
delineating the immune response (Rodríguez-Prados et al., 2010;
Arts et al., 2016). Collectively, this field of research is now referred
to as “immunometabolism” (O’Neill et al., 2016).

Intestinal Microbiota and the Immune
Response
A driving force for the evolution of the immune system is
perhaps the need to maintain a homeostatic host/microbiota
interaction, shaping both host immunity and microbial ecology.
The intestinal microbiota helps to shape the immune system,
especially in the early stages of life, whereas microbiota
composition may be related to susceptibility to immune
system-related diseases in adulthood (Lozupone et al., 2012;
Kabat et al., 2014).

The intestinal microbiota contributes to the intestinal immune
responses, partly by their metabolites, which may activate
regulatory T cells or support systemic anti-viral immunity, as
in the case of the microbial metabolite desaminotyrosine, which
promotes the expression of interferon-stimulated genes (Steed
et al., 2017: Pearce and Pearce, 2018).

The immune system may shape the intestinal microbial
composition by means of sensors of the innate immune system,
such as Toll-like receptors (TLRs), Nod-like receptors (NLRs),
peroxisome proliferator-activated receptors (PPARs), and aryl
hydrocarbon receptors (AhR), and, perhaps, by humoral immune
responses (Zelante et al., 2013; Kato et al., 2014).

Mitochondria and the Immune Response
In addition to their role as the “power-house” of the cell,
mitochondria have an active role in the immune response.
Activation of the innate immune response through the
engagement of PRRs by pathogen-associated molecular patterns
(PAMPs) or damage-associated molecular patterns (DAMPs)
turns on signaling pathways that lead to the synthesis of pro-
inflammatory cytokines, and this process involves mitochondria
for inflammasome activation; the mitochondrial components
mtDNA and mROS activate the NLRP3 inflammasome,
promoting the maturation of IL-1β and IL-18 from their
pro-IL-1β and pro-IL-18 precursors (Zhou et al., 2011).

Mitofusin 2, one of the proteins that promote mitochondrial
fusion, participates in the activation of the inflammasome, and
elimination of Drp1, a protein that promotes mitochondrial
fission, results in abnormal mitochondrial fusion, leading to
increased activation of NLRP3-dependent activation of caspase
1 and IL-1β and IL-18 synthesis (Park et al., 2015).

Upon microbe phagocytosis by macrophages, phagosomes
bind to lysosomes and to mitochondria, allowing the interchange
of ions, amino acids, and lipids, as well as the acidification
of the phago-lysosome; mutation of cardiolipin synthase
1 (Cdr1) decreases the levels of mitochondrial cardiolipin,
lysosome acidification, and mitophagy; inhibition of OXPHOS
or deletion of mitochondrial function-related proteins,
such as Aif, Opa1, and PINK1, impairs lysosomal activity
(Demers-Lamarche et al., 2016).

In the course of immune responses against RNA viruses,
infected cells sense virus-related genetic material in their
cytoplasm by means of the RIG-I-MDA5-mitochondrial
antiviral-signaling protein (MAVS), which is the major sensing
pathway for RNA viruses (Wu and Chen, 2014; Moreno-
Altamirano et al., 2019); activation of MAVS is dependent
on mitochondrial membrane potential (1ψm), and the
coordination between MAVS signaling and mitochondrial fission
increases the production of IFN-β (Koshiba, 2013).

Mitochondrial function is required for ROS production,
autophagy, and antigen processing and presentation (Bonifaz
et al., 2015; Oberkampf et al., 2018; Gómez-Cabañas et al.,
2019). Mitochondria accumulate at the immune synapse
in T lymphocytes (Quintana et al., 2007), and effector T
lymphocytes are characterized by having fused mitochondria
(Buck et al., 2016).

All this highlights the key role played by mitochondria in
the immune response, and consequently, that alterations in
mitochondrial function may result in deficient immunity.

CIRCADIAN RHYTHMICITY,
METABOLISM, INTESTINAL
MICROBIOTA, AND THE IMMUNE
SYSTEM. HOW DO THESE
INTERRELATE?

The functional relationship between circadian rhythmicity and
metabolism is widely recognized (Reinke and Asher, 2019), and
so are the links between circadian rhythmicity and intestinal
microbiota (Liang et al., 2015; Voigt et al., 2016) and between
circadian rhythmicity and the immune system (Geiger et al.,
2015; Lu et al., 2017; Scheiermann et al., 2018). In addition,
there is strong evidence of crosstalk between metabolism and the
immune response (Ganeshan and Chawla, 2014; Caputa et al.,
2019) and between the intestinal microbiota and the immune
response (Postler and Ghosh, 2017).

Fewer studies analyze the concurrent interaction between
more than two of these biological domains, and when they do,
they generally only include three, such as the crosstalk between
the immune system, metabolism, and circadian rhythmicity
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FIGURE 4 | Mitochondria as an integrative hub coordinating circadian rhythms, metabolism, the microbiome, and immunity.

(Early and Curtis, 2016; Carrol et al., 2019) or between
intestinal microbiota, circadian rhythmicity, and metabolism
(Parkar et al., 2019).

Based on the extensive literature on each of the individual
biological domains referred to above as well as on their
interactions, here we try to convey the view that the circadian
clock, metabolism (both at the systemic and at the cellular
level), intestinal microbiota, and immune system concurrently
communicate with each other.

Moreover, based on recent findings on basic mitochondrial
biology, as well as on the role of mitochondria in each
of the four biological domains here mentioned, we propose
that mitochondria regulate the back and forward traffic of
information from one domain to the other.

Network theory has provided evidence that “a disease is
rarely a consequence of an abnormality in a single gene,
but reflects the perturbations of the complex intracellular
network,” hence the concept of network medicine (Barabási
et al., 2011). Perhaps, we should add that not only is
a single gene not responsible for a given disease, but

rather, not even only a single biological domain (circadian
rhythmicity, etc.) is responsible, as different biological domains
are tightly interdependent. Therefore, identifying a “hub” within
the circadian clock-metabolism-intestinal microbiota-immune
system network would help to understand its inner interactions
better; we propose that mitochondria are such a “hub.”

Mitochondria are central to energy homeostasis in eukaryotes
and display a number of other functions that put them at
the crossroads of multiple physiological functions. Of note,
mitochondria produce signaling molecules and also receive and
process signals from outside the mitochondria; hence, their
proposed role as an “integrative center” (Figure 4).

Mitochondrial signals, including mROS, oxidized mtDNA,
extracellular ATP, and mitochondrial membrane potential
(19m) depolarization, all of which are hallmarks of
dysfunctional mitochondria, activate the NLRP3 (nucleotide-
binding domain and leucine-rich repeat pyrin 3 domain)
inflammasome (Próchnicki and Latz, 2017; Jackson and
Theiss, 2019). In addition, in inflammatory pathologies such
as inflammatory bowel disease (IBD), mitochondrial DNA
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can be released into the serum and be recognized as a DAMP,
contributing to a more systemic inflammatory process (Boyapati
et al., 2018). IL-10 deficiency in IBD patients and in mouse
models of colitis leads to the accumulation of damaged
mitochondria and, as a result, to the activation of the NLRP3
inflammasome in macrophages (Ip et al., 2017).

The Parkinson’s disease-associated mitochondrial serine
protease HtrA2 downregulates the activity of NLRP3 and absent
in melanoma 2 (AIM2) inflammasomes by preventing the
sustained accumulation of the inflammasome adaptor apoptosis-
related speck-like protein containing a CARD (ASC), and thus,
HtrA2 acts as a mitochondrial quality control element that
keeps NLRP3 and AIM2 inflammasomes tightly controlled
(Rodrigue-Gervais et al., 2018), thus linking mitochondria and
inflammation. Loss of HtrA2 increases the number of damaged
mitochondria as well as the levels of unfolded respiratory chain
subunits, indicating that HtrA2 is an important component
in the maintenance of proteostasis in the mitochondrial inter-
membrane space. On the other hand, the levels of HtrA2
increase in response to several stressors (Moisoi et al., 2009;
Baker et al., 2011).

The circadian clock generates NAD+-dependent oscillations
in the oxidative capacity of mitochondria through the rhythmic
transcription of nicotinamide phosphoribosyl-transferase,
ensuring oxidative rhythms compatible with the fasting-
feeding cycle, and maximizing energy production and
consumption, and, thus, NAD+ couples circadian rhythms
and metabolism (Peek et al., 2013; Figure 4). On the other
hand, the concentration of NAD+ in mitochondria regulates
the activity of the sirtuin deacetylase-3 (SIRT3), which in turn
controls the acetylation and activity of other key metabolic
enzymes. In most cases, acetylation reduces the enzymatic
activity of modified mitochondrial proteins, presumably
impairing mitochondrial metabolism and, by removing acetyl
moieties from protein substrates, SIRT3 would restore their
activity (Peterson et al., 2018).

The circadian regulator CLOCK has an intrinsic acetyl-
transferase activity, which enables circadian-dependent
chromatin remodeling by acetylating histones and non-
histone proteins; the CLOCK acetyl-transferase activity is
counterbalanced by the deacetylase SIRT1, whose activity is
dependent on intracellular NAD+ levels (Nakahata et al., 2009;
Figures 1, 4). Likewise, the circadian oscillation of NAD+ levels
drives the activities of at least three sirtuins, SIRT1, SIRT3, and
SIRT6, regulating glucose, cholesterol, and fatty acid metabolism,
among other metabolic functions (Imai and Guanrente, 2016).

The concentrations of a wide array of mitochondria-
associated metabolites, such as NAD+, ATP, mROS, and
Krebs cycle intermediates are dependent on circadian
rhythmicity; notable among them are components of the
pyruvate dehydrogenase complex, which catalyzes the rate-
limiting step in mitochondrial carbohydrate metabolism, and
the carnitine palmitoyl-transferase 1, the rate-limiting enzyme
in the transport of fatty acids into the mitochondrial matrix
(Neufeld-Cohen et al., 2016). In addition to clock-controlled
concentration of mitochondrial enzymes, mitochondrial
respiration is also strongly influenced by the molecular circadian

clock (Scrima et al., 2016) and by nutrition type (Neufeld-Cohen
et al., 2016), thus linking mitochondrial function, metabolism,
and circadian rhythmicity.

Nutrition type is a key determinant of intestinal microbiota
composition, and the intestinal microbiota play an important
role in the anatomical development of the intestine to
sustain such microbiota (Moreira-Rosário et al., 2019). Crypt
formation in the intestine is dependent on the abundance and
function of mitochondria, since mitochondrial dysfunction
impairs the ability of the intestinal stem cells (ISCs), which
have a large number of mitochondria, to produce ATP,
altering their self-renewal and differentiation (Berger et al.,
2016). Upon colonization, intestinal microbiota produce
SCFAs, and these activate the peroxisome proliferator-
activated receptor γ (PPARγ) co-activator isoform α

(PGC1α), a master regulator of mitochondrial biogenesis
and function and thus, cell stimulation with SCFAs results
in glucose uptake, oxidative phosphorylation, fatty acid
β-oxidation, and mitochondrial biogenesis (Belizário et al.,
2018; Figure 4).

Intestinal microbiota-derived butyrate induces mitochondrial
fusion (Mollica et al., 2017) and a phase shift in the expression of
the clock genes BMAL1 and Per2 (Leone et al., 2015). Methane,
another intestinal microbiota product, can freely diffuse across
cell membranes and thus reach mitochondria; the exogenous
administration of methane in ischemia-reperfusion increases
oxidative phosphorylation, which could indicate a bioactive
role in mitochondria, thus linking intestinal microbiota
with mitochondrial function and circadian rhythmicity
(Strifler et al., 2016).

Loss of mitochondrial quality control impairs autophagy,
exacerbates inflammatory processes, and increases cell death
rates, with multiple physiological consequences (Baixauli et al.,
2015; Demers-Lamarche et al., 2016).

Altogether, any tentative answer to the question raised
in the previous heading, “How do these interrelate?” points
to mitochondria.

CONCLUDING REMARKS

We have tried to convey the view that circadian clocks,
metabolism, intestinal microbiota, and the immune response
tightly interact with each other and that their regulatory
mechanisms seem to converge in mitochondria.

Outlining the mechanisms that regulate circadian clocks,
metabolism, intestinal microbiota, and immune response
communication may help to understand health-disease processes
better, and, on the other hand, defining how mitochondria
receive, process, and respond to signals from each one of these
four biological domains, as well as the chemical nature of those
signals, will improve our understanding of mitochondria.
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