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Mounting evidence indicates that the presence of cardiovascular disease (CVD) and
risk factors elevates the incidence of cognitive impairment (CI) and dementia. CVD
and associated decline in cardiovascular function can impair cerebral blood flow
(CBF) regulation, leading to the disruption of oxygen and nutrient supply in the brain
where limited intracellular energy storage capacity critically depends on CBF to sustain
proper neuronal functioning. During hypertension and acute as well as chronic CVD,
cerebral hypoperfusion and impaired cerebrovascular function are often associated
with neurodegeneration and can lead to CI and dementia. Currently, all forms of
neurodegeneration associated to CVD lack effective treatments, which highlights the
need to better understand specific mechanisms linking cerebrovascular dysfunction and
CBF deficits to neurodegeneration. In this review, we discuss vascular targets that have
already shown attenuation of neurodegeneration or CI associated to hypertension, heart
failure (HF) and stroke by improving cerebrovascular function or CBF deficits.
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INTRODUCTION

The cerebral circulation plays a critical role in matching nutrient and oxygen supply to neuronal
activity and thus, is intimately linked to proper brain function (Iadecola, 2013, 2017; Wolters
et al., 2017; Leeuwis et al., 2018). However, it appears to have been long under-recognized in
the field of neurodegenerative research despite mounting evidence that associates also classical
neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, to impairments in
cerebrovascular structure and function (Freitag et al., 2006; Kovacs et al., 2014; Bos et al., 2017). We
have come a long way, and focus has shifted to include the vascular origins of neurodegeneration
(Iadecola, 2013; Castillo et al., 2019).

In recent years, it came apparent that during cardiovascular disease (CVD), the most prevalent
disease burden worldwide (GBD 2017 Causes of Death Collaborators, 2018), structural and
functional impairments of the cerebral circulation majorly contribute to the development of
neurodegeneration and cognitive impairment (CI) (Kuller et al., 2005; Jefferson et al., 2010;
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Gorelick et al., 2011; Haring et al., 2013; Takeda et al.,
2019). Cerebrovascular alterations, ranging from endothelial
dysfunction, vascular remodeling and inflammation to
capillary rarefaction, blood-brain-barrier (BBB) damage
and neurovascular uncoupling promote neurodegeneration
in CVD (Iadecola, 2013, 2017) and have also been associated
to the pathogenesis of Alzheimer’s disease (Carnevale et al.,
2016). Precise mechanisms underlying neurodegenerative
processes and CI in CVD are reviewed in detail elsewhere
(Iadecola, 2013; O’Brien and Thomas, 2015; Castillo et al., 2019),
but it is generally considered that such cerebromicrovascular
alterations contribute to a decline in cerebral blood flow
(CBF) that reduces metabolic support for neural signaling,
thereby exacerbating neuronal dysfunction (Iadecola, 2013).
Strong epidemiological and experimental evidence suggest
an exacerbation of cognitive dysfunction during hypertension
and heart failure (HF) (Jefferson et al., 2010; Gorelick et al.,
2011). Thus, controlling cardiovascular risk factors has become
increasingly important not only in the prevention of deleterious
acute consequences (i.e., stroke), but also for reducing the risk of
developing CVD-associated neurodegeneration that may lead to
the development of CI and dementia (Sprint Mind Investigators
for the Sprint Research Group, Williamson et al., 2019). Although
the association between CVD and increased dementia risk is well
established (Kuller et al., 2005; Jefferson et al., 2010; Gorelick
et al., 2011; Haring et al., 2013), it is still unclear if treatments
would reverse already established CI. Because of its intimate
link to neuronal function, targeting the cerebral vasculature to
improve CBF has yielded some promising results in respect to
neuro-regenerative processes (Meissner et al., 2012; Lidington
et al., 2019). This article summarizes vascular targets that
have shown to attenuate neuronal degeneration or cognitive
function associated to hypertension, HF and stroke by improving
cerebrovascular function or CBF deficits. For this purpose, we
mainly included studies in this review that discussed mechanisms
related to cerebrovascular function or CBF regulation, which
showed improvements of vascular function and/or a mitigation
of neurodegeneration (e.g., impairment of neuronal structure,
memory function, neurological function) after targeting these
mechanisms. We apologize to all researchers whose work is only
indirectly mentioned through review article citations.

TARGETING CEREBROVASCULAR
MECHANISMS TO IMPROVE CBF AND
ATTENUATE NEURODEGENERATION
DURING HYPERTENSION AND
CARDIOVASCULAR DISEASE

Hypertension
Chronic hypertension is the most prevalent cardiovascular
disorder and the leading cause of cardiovascular and
cerebrovascular morbidity and mortality worldwide (Drozdz
and Kawecka-Jaszcz, 2014; Ibekwe, 2015). It is one of the most
important modifiable risk factors for stroke and HF (Ibekwe,
2015), and has also been associated to the pathogenesis of

Alzheimer’s disease (Carnevale et al., 2016). Hypertension alters
the morphology as well as the function of cerebral vessels (Joutel
et al., 2010; Meissner, 2016; Meissner et al., 2017), however,
our knowledge about its effects on neurovascular coupling and
hypertension-induced molecular changes in the different cell
types of the neurovascular unit is still very fragmented.

Angiotensin II (AngII), the primary effector hormone
of the renin angiotensin system (RAS), is considered the
main contributor to impairments of neurovascular coupling
independent of blood pressure (Kazama et al., 2004). It is
suggested that vascular and glial cells, but not neurons, drive the
changes in neurovascular coupling in response to AngII (Kazama
et al., 2004; Capone et al., 2011). In the group of hypertensive
drugs, angiotensin II receptor type 1 (AT1R) antagonists have
been shown to prevent a decline in CBF in elderly hypertensive
patients (Bloch et al., 2015) by potentially counteracting
cerebrovascular dysfunction and local reactive oxygen species
(ROS) production. Interestingly, treatment with Ang-(1-7),
which are opposing many AngII effects on AT1R, lowered
AngII levels in spontaneously hypertensive rats (SHR) and
most interestingly, associated to decreased neuronal apoptosis.
Favorable Ang-(1-7) effects on CBF are thought to result from
effects on bradykinin levels (Lu et al., 2008), nitric oxide (NO)
release, and endothelial NO synthase (NOS) expression (Zhang
et al., 2008), and through Mas receptors (Jiang et al., 2013)
that are thought to be involved in astrocyte-mediated calcium
signaling during hypertension (Guo et al., 2010).

Recent evidence has emerged that statins, cholesterol-
lowering drugs, may be beneficial in hypertension, specifically
for the reversal of cognitive decline (Don-Doncow et al.,
2018). Hypertension-induced BBB impairment was reversed
after atorvastatin treatment, suggesting a novel role for statins
in hypertension-associated brain dysfunction (Kalayci et al.,
2005). Moreover, simvastatin normalized cerebromicrovascular
perfusion and increased cerebral capillary density in SHR
(Freitas et al., 2017). Precise mechanisms underlying these
favorable effects on the cerebral microvasculature are yet to be
determined. Besides affecting cerebromicrovascular perfusion
and BBB stability, statin-mediated anti-inflammatory effects
decreased in both rolling leukocyte presence and leukocyte
adhesion to cerebral endothelial cells (Freitas et al., 2017), which
may hinder leukocyte infiltration into the brain and thus, reduce
neuroinflammation (Don-Doncow et al., 2018). Adverse immune
activation and infiltration is considered a key mechanism in
neurodegeneration associated to hypertension or hypertensive
stimuli (Faraco et al., 2016, 2018; Don-Doncow et al., 2019).
High dietary salt concentrations have been shown to suppress
endothelial function and CBF, resulting in CI by mechanisms
involving an expansion of the Th17 cells in the small intestine
that leads to a systemic increase in IL-17 (Faraco et al., 2018).
By inhibiting the phosphorylation of endothelial NOS and thus,
NO production in cerebral endothelial cells, IL-17 is thought
to contribute to the neurovascular dysfunction and thus, the
development of CI (Faraco et al., 2018). Neuroinflammation
is generally accepted as a key player in the pathophysiology
of hypertension, involving higher oxidative stress levels,
immune activation and recruitment, and BBB impairment

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 February 2020 | Volume 8 | Article 53

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00053 February 6, 2020 Time: 16:34 # 3

Vanherle et al. Targeting the Cerebrovasculature in Neuro-Regeneration

(Rodriguez-Iturbe et al., 2017). To date, only little is known
about the precise mechanisms linking hypertension-associated
inflammation to cerebrovascular dysfunction or CBF and hence,
its link to neurodegeneration and CI is mostly elusive. A recent
study showed the role of perivascular macrophages (PVMs)
as mediators of hypertension-associated neuronal dysfunction
and memory impairment in response to AngII (Faraco et al.,
2016). The activation of the AT1R on PVMs, which was shown to
induce NADPH oxidase 2 (NOX2)-mediated ROS production,
is not only thought to trigger BBB impairment but also CBF
reduction. Depletion of PVMs as well as PVM-specific AT1R
deletion protected against the development of neurovascular
uncoupling, CBF deficits and memory impairment induced by
hypertension (Faraco et al., 2016). Overexpression of CuZn-
superoxide dismutase in the subfornical organ prevented
hypertension-induced alteration in neurovascular coupling
and endothelium-dependent responses in somatosensory
cortex, confirming an AngII-mediated neurovascular unit
dysfunction during hypertension that involves ROS (Capone
et al., 2012). Despite proven mechanistic involvement, ROS
inhibition or immunomodulation have not yet been evaluated
therapeutically in hypertension-associated neurodegeneration.
Like ROS, many other targets have been identified as mechanisms
linking neurodegeneration and hypertension, but their effective
therapeutic potential to promote neuro-regeneration in the
hypertensive brain is yet to be tested.

Heart Failure
Heart failure-associated morbidity has grown as the frequently
accompanying cognitive decline majorly affects disease outcome,
accelerating disease progression by reducing the ability to execute
self-care activities and treatment compliance (Hajduk et al.,
2013). Epidemiological studies not only showed that the majority
of HF patients develop some form of cognitive decline or memory
loss, but that they develop them earlier in life compared to
the healthy population (Cacciatore et al., 1998; Pressler, 2008;
Pressler et al., 2010; Hajduk et al., 2013; Leto and Feola, 2014;
Meissner et al., 2015). To date, no therapeutic options exist.
Restoring hemodynamic properties and correcting vascular risk
factors seem to be the primary approach in the management of
CI in HF patients. Experimental mouse models emulate several
key features of HF-associated brain complications, including
reduced CBF and compromised neurological function (Meissner
et al., 2015), and are therefore valuable model systems to study
molecular mechanisms underlying neurodegeneration and CI
associated to HF.

In healthy patients, cerebral auto-regulatory mechanisms can
compensate for fluctuations in cardiac output and blood pressure
by lowering cerebrovascular resistance (Paulson et al., 1990;
Willie et al., 2014). During HF, however, increased vascular tone
successes vasodilation that normally counterbalances increased
vasoconstriction (Gruhn et al., 2001; Choi et al., 2006; Yang
et al., 2012). Hence, cerebral autoregulation might not be
able to fully compensate hemodynamic changes, leading to
decreased CBF that may directly translate to structural and
functional alterations in the brain (Yang et al., 2012). Previous
work identified a novel microvascular mechanism by which HF

critically reduces CBF and thus, impairs memory function (i.e.,
tested in a novel object recognition task) in a mouse model
of congestive HF. Here, augmented sphingosine-1-phosphate
(S1P) signaling associates to enhanced myogenic tone that
translates into compromised autoregulation and restricted CBF
(Meissner et al., 2012; Yang et al., 2012). Pharmacological
inhibition as well as genetic deletion of S1P receptor 2
(S1PR2) abolished the HF-induced augmentation of myogenic
tone in isolated posterior cerebral arteries (Yang et al., 2012).
Such augmented cerebrovascular S1PR2 signaling results from
disturbances in S1P homeostasis during HF where an acquired
cystic fibrosis transmembrane regulator (CFTR) dysfunction
critically impairs the cerebrovascular S1P degradation, and hence
increases S1P bioavailability for S1PR2 signaling on vascular
smooth muscle cells (Meissner et al., 2012). Augmented tumor
necrosis factor alpha (TNF-α) signaling in cerebral arteries
was identified as molecular link that not only stimulates S1P
production but also limits S1P degradation by down-regulating
CFTR (Meissner et al., 2012; Yang et al., 2012; Figure 1).
Scavenging TNF-α with Etanercept successfully abolished the
pathological augmentation of cerebrovascular vasoconstriction
in HF and thus, improved cerebral perfusion (Meissner et al.,
2015). As a clinical intervention, however, Etanercept carries
significant unwanted risks associated to its importance in
neuronal function and blood pressure control (Baune et al.,
2008; Kroetsch et al., 2017). Similarly, directly targeting S1P
and its receptors bears considerable disadvantages due to its
pleiotropy and cell-type specific functionality. Thus, correcting
S1P homeostasis by normalizing S1P homeostasis (i.e., through
stabilizing CFTR function) yielded beneficial effects (Lidington
et al., 2019). Pharmacological treatment of HF mice improved
neuronal integrity (i.e., dendritic lengths and spine density) and
memory function through normalizing pathological alterations
in cerebral artery CFTR expression, vascular reactivity, and
CBF (Lidington et al., 2019). Targeting S1P-CFTR signaling,
therefore, may emerge as valuable tool to manage cerebrovascular
dysfunction, impaired cerebral perfusion, and neuronal injury
contributing to HF-associated neurodegeneration and memory
deficits. CFTR therapeutics could have unanticipated, non-
beneficial effects in other tissues by for instance, increasing
CFTR expression above normal levels. Thus, repurposing of
clinically approved CFTR correctors necessitates more rigorous
pre-clinical testing.

Another target of pre-clinical investigation in attempt to
link HF and neurodegeneration is inflammation associated
to CBF deficits. In a mouse model of slowly developing
HF, vascular CI was observed during the early stages of HF
and interestingly, preceded the development of left ventricular
dysfunction (Adamski et al., 2018). Precise non-cardiac-
dependent contributors to such early onset vascular CI still need
to be confirmed. However, platelet hyperactivity, contributing to
BBB impairment and in turn, cerebral endothelial inflammation
and impairment of NO−dependent vasoregulation was put
forward to promote the development of CI and lead to a chronic
manifestation of CBF deficits during advanced HF (Adamski
et al., 2018). Key players involved in this signaling cascade
remain unknown and hence, platelet-targeting therapy as strategy
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FIGURE 1 | Schematic illustration of sphingosine-1-phosphate (S1P) signaling-mediated myogenic tone regulation in vascular smooth muscle cells. (A) Tumor
necrosis factor alpha (TNF-α) stimulates sphingosine kinase 1 (Sphk1)-mediated S1P production in a mitogen activated protein kinase (MAPK)-dependent manner.
S1P is released to the extracellular space, where it activates S1P receptor (S1PR) 2–dependent signaling pathways, leading to vasoconstriction. TNF-α stimulates
the downregulation of the cystic fibrosis transmembrane conductance regulator (CFTR), which transports S1P across the plasma membrane for degradation by S1P
phosphohydrolases (SPP) or S1P lyases (SPL). (B) During heart failure (HF) and hemorrhagic stroke, augmented S1P production by SphK1 and limited S1P
degradation enhance S1PR2-mediated vasoconstriction that leads to reduced cerebral blood flow (CBF) and neurodegeneration. (C) Targeting S1PR2 signaling by
inhibiting S1PR2 or improving S1P degradation by enhancing CFTR expression and activity normalizes myogenic tone and cerebral perfusion. This normalization
associates to reduced neuronal injury. Image created by BioRender.

to reverse neurodegeneration and CI associated to early HF is
yet to be validated. To date, only few studies have investigated
molecular targets to re-establish normal CBF during HF, which
highlights the need for more pre-clinical research efforts to
identify targetable mechanisms with capacity to improve brain
function during HF.

Stroke
Stroke is associated with the highest incidence of severe disability,
of which neurological deficits are reported in 50% of all patients
6 months after a stroke event (Bordet et al., 2017; Merriman
et al., 2018). Ischemic stroke leads to complete blood flow
disruption, resulting in irreversible changes and cell death in
the ischemic core and in parts of the surrounding area, the
so-called penumbra. Reperfusion in the penumbra in the acute
phase after ischemia onset limits the extent of tissue damage
and helps improving functional outcome. It is, therefore, the
main target of acute neuroprotective treatments (Lin et al.,
2013), of which tissue plasminogen activator (tPA) is currently
the only approved medication. The therapeutic window of
tPA, however, is limited to 3–4.5 h post-stroke onset as tPA
administration beyond 4.5 h increases the risk of developing
edema and hemorrhagic transformation that in turn, is associated
with delayed ischemia (Pena et al., 2017). Targeting vascular
function and re-establishing proper CBF has been focus of
many preclinical research efforts and yielded some promising
results that warrant testing in humans (Iwasawa et al., 2018;
Lidington et al., 2019).

The stimulation of angiogenesis via the vascular endothelial
growth factor (VEGF) represents one of the most researched

targets to improve CBF after stroke despite the controversy
regarding its effects. Studies using VEGF treatment post-
stroke revealed a clear importance of administration route and
timing. VEGF injected systematically in the acute post-stroke
phase induces BBB leakage and hemorrhagic transformation
(Abumiya et al., 2005) accompanied by augmented ischemic
lesions. Intravenous injection of human recombinant VEGF
48 h post-stroke on the other hand promoted angiogenesis and
reduced neurological deficit in rats (Zhang et al., 2000). Mice
overexpressing VEGF post-stroke had smaller ischemic volume
and more pronounced new vessel formation, interestingly,
without CBF improvements in the ischemic area or aggravating
effects on the BBB (Wang et al., 2005). In addition to
angiogenesis, the beneficial effect of exogenous VEGF may
also be mediated by its anti-apoptotic and pro-survival effects
in neurons (Sanchez et al., 2010). Accordingly, brain derived
neurotrophic factor (BDNF) was identified as major regulator
of angiogenic processes (Usui et al., 2014) that mediates
its angiogenic effects via a crosstalk with VEGF (Li et al.,
2006). In stroke patients significant lower BDNF levels were
detected, which were positively correlated with poor functional
outcome (Schabitz et al., 2007). Similar to VEGF, exogenous
BDNF administration post-stroke resulted in smaller ischemic
size and significantly improved functional outcome in rat
models by inducing hippocampal neurogenesis and reducing
neuroinflammation in the acute phase of stroke (Schabitz
et al., 2007; Ravina et al., 2018). Its effects on CBF related
to improved stroke outcome, however, are still elusive. Nerve
growth factor (NGF) seems to be similarly linked to VEGF-
mediated pro-angiogenic effects in the ischemic brain. In rodent
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models, intranasal administration of NGF increased VEGF
serum levels, increased microvessel density in the penumbra
region, improved neurological outcome, and reduced ischemic
injury 7 days post-stroke (Li et al., 2018). The beneficial
effects of intranasal application of NGF are currently tested
in a clinical trial in patients after acute ischemic stroke
(ClinicalTrials.gov Identifier: NCT03686163). Although effects
on CBF are warranted for most of these studies, angiogenesis-
boosting therapy to re-establish proper perfusion evolved as
promising therapeutic target in acute stroke therapy. Besides
testing the classical growth factor-mediated therapy approaches
in rodent models, AT1R blockers, which are widely used anti-
hypertensive medications, were re-discovered to show pro-
angiogenic effects after stroke and were reported to increase
CBF in the ipsilateral hemisphere (Ito et al., 2002; Engelhorn
et al., 2004; Alhusban et al., 2013). Similarly, AngII type 2
receptor (AT2R) agonists were shown to result in enhanced
relaxation of basilar arteries and improved CBF after permanent
middle cerebral artery occlusion (Faure et al., 2008). Nonetheless,
the effectiveness of Angiotensin receptor (ATR) treatment is
under debate as LIFE, ACCESS and MOSES trials demonstrated
a decrease in the frequency of stroke after AT1R blockade
(Dahlof et al., 2002; Schrader et al., 2003, 2005), while such
treatment failed to show beneficial effects in other trials
(Sandset et al., 2011).

Similar to cerebrovascular ATR effects, modulation of S1P
receptors has shown beneficial effects on cerebrovascular
function and CBF in experimental stroke. The selective
S1PR1 agonist SEW2871 revealed positive effects on CBF,
potentially resulting from increased diameter of leptomeningeal
collateral vessels and enhanced vasodilatation in leptomeningeal
anastomoses associated with increased phosphorylation of
endothelial NOS in the ipsilateral hemisphere during chronic
cerebral hypoperfusion (Iwasawa et al., 2018). Besides CBF
improvements, researchers also reported an attenuation of infarct
size and an improvement of neurological function assessed
by neuroscoring.

In a model of subarachnoid hemorrhage (SAH), a form
of stroke that originates from a hemorrhage but often
exacerbates through secondary ischemia (van Gijn et al., 2007),
increased cerebrovascular myogenic tone and hence, increased
cerebrovascular resistance and reduced CBF was associated
to augmented S1PR2 signaling in vascular smooth muscle
cells (Yagi et al., 2015). Therapeutic administration of S1PR2
antagonist JTE013 improved cerebrovascular function, reduced
neuronal injury and significantly enhanced neurological function
(i.e., neuroscore reduction). TNF-α inhibition resulted in a
similarly improved functional outcome (Yagi et al., 2015).
TNF-α-induced impairment of cerebrovascular function that
associates to CBF deficits and secondary ischemia during
SAH (Vecchione et al., 2009; Yagi et al., 2015) are thought
to stem from altered S1P signaling as TNF-α alters S1P
degradation, which leaves more S1P available for pro-constrictive
S1PR2 signaling in mural cells (Figure 1). Improving S1P
degradation normalized the perfusion deficits, reduced neuronal
injury, and improved neurological function in this SAH model
(Lidington et al., 2019).

Overall, targeting the cerebral vasculature and improving
vascular function and thus, normalizing CBF post-stroke evolved
as promising path to improve post-stroke recovery. More studies
are needed that evaluate CBF effects of different treatment
strategies in addition to the commonly used assessment criteria
for stroke outcome, such as infarct volume and neuroscore.

OUTLOOK

We have come a long way to appreciate the association
between CVD and cognitive function. Hence, efforts to
preserve and restore cerebrovascular function and integrity
drastically increased. The identification of important drivers of
vasoregulation and thus, CBF is more and more valued to possess
the capacity as therapeutic intervention early in disease processes
to either prevent neurodegeneration or boost neuro-regeneration
not only in CVD but also in classical neurodegenerative
diseases. However, our mechanistic knowledge relating CVD-
associated cerebrovascular dysfunction to neurodegeneration
and potentially CI is still very fragmented, with only few targets
with larger applicability emerging thus far. Particularly, the
modulation of AT1R or S1P signaling has shown promising
effects on cerebrovascular function and CBF and in turn,
neuronal function in different pre-clinical disease models
(Meissner et al., 2012; Yang et al., 2012; Yagi et al., 2015).
Other emerging targets with a wider applicability still warrant
a validation in CVD models. Transcranial infrared brain
stimulation (TIBS) is suggested to stabilize patients with CI
and memory deficits through stimulation of mitochondrial
ATP production in the brain (de la Torre et al., 2019). This
approach may not only counteract reduced energy availability
but also increase CBF through augmenting endothelial NO
production and thereby, limit neuronal degeneration (Uozumi
et al., 2010). Further research is needed to identify unifying
mechanisms that are applicable to several diseases. In light of that,
engagement of different pre-clinical and clinical communities
in concerted efforts is required to successfully answering still
outstanding question.
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