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The Impact of Diabetic Conditions
and AGE/RAGE Signaling on Cardiac
Fibroblast Migration

Stephanie D. Burr*, Mallory B. Harmon and James A. Stewart Jr.

Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS, United States

Diabetic individuals have an increased risk for developing cardiovascular disease
due to stiffening of the left ventricle (LV), which is thought to occur, in part, by
increased AGE/RAGE signaling inducing fibroblast differentiation. Advanced glycated
end-products (AGEs) accumulate within the body over time, and under hyperglycemic
conditions, the formation and accumulation of AGEs is accelerated. AGEs exert their
effect by binding to their receptor (RAGE) and can induce myofibroblast differentiation,
leading to increased cell migration. Previous studies have focused on fibroblast migration
during wound healing, in which diabetics have impaired fibroblast migration compared
to healthy individuals. However, the impact of diabetic conditions as well as AGE/RAGE
signaling has not been extensively studied in cardiac fibroblasts. Therefore, the goal
of this study was to determine how the AGE/RAGE signaling pathway impacts cell
migration in non-diabetic and diabetic cardiac fibroblasts. Cardiac fibroblasts were
isolated from non-diabetic and diabetic mice with and without functional RAGE and
used to perform a migration assay. Cardiac fibroblasts were plated on plastic, non-
diabetic, or diabetic collagen, and when confluency was reached, a line of migration
was generated by scratching the plate and followed by treatment with pharmacological
agents that modify AGE/RAGE signaling. Modification of the AGE/RAGE signaling
cascade was done with ERK1/2 and PKC-g¢ inhibitors as well as treatment with
exogenous AGEs. Diabetic fibroblasts displayed an increase in migration compared to
non-diabetic fibroblasts whereas inhibiting the AGE/RAGE signaling pathway resulted
in a significant increase in migration. The results indicate that the AGE/RAGE signaling
cascade causes a decrease in cardiac fibroblast migration and altering the pathway will
produce alterations in cardiac fibroblast migration.

Keywords: AGE/RAGE signaling, cardiac fibroblasts, fibroblast migration, diabetes, Rap1a

INTRODUCTION

Individuals with diabetes mellitus, both type I and type II, are at an increased risk of developing
complications as a result of hyperglycemia, such as cardiovascular disease (American Diabetes
Association, 2018). A common form of cardiovascular disease associated with diabetics is left
ventricle (LV) hypertrophy, which contributes to poor heart function (Fowlkes et al., 2013; Shang
et al., 2018). Studies have indicated that myocardial remodeling and fibrosis could be a possible
mechanism leading to LV hypertrophy due to cardiac cell-mediated remodeling of the extracellular
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matrix (ECM) composition (Shang et al., 2018). Fibrosis is a
common complication of diabetes, and cardiac tissues from
type II diabetics, with no other disease risk factors, have an
increased amount of interstitial ECM accumulation (Fowlkes
et al, 2013). The increase in fibrosis can be attributed
to an increasing number of fibroblasts differentiating into
myofibroblasts (Fowlkes et al., 2013).

Cardiac fibroblasts orchestrate the maintenance, synthesis,
and degradation of the ECM and can be influenced by both
extracellular and intracellular signaling (Lerman et al., 2003;
Hutchinson et al., 2013). Among the mechanisms shown to
induce myofibroblast transition are matrix metalloproteases
(MMPs) and tissue inhibitors of matrix metalloprotease (TIMPS),
which collectively can modify the ECM in response to
extracellular stimuli (Yabluchanskiy et al., 2013; Caley et al,
2015). These signaling cues can activate neighboring fibroblast
cells to differentiate into myofibroblasts to migrate and actively
remodel the ECM by increasing matrix protein synthesis and
secretion production resulting in fibrosis (Lerman et al., 2003;
Darby et al, 2014). In addition, it has been shown that a
greater number of myofibroblasts can be detected, via increased
levels of a-smooth muscle action (a-SMA), increased cell
migration, and increased ECM production, in the heart of
diabetic individuals (Shamhart et al., 2014). While we know
external circumstances and extracellular signaling can induce
myofibroblast differentiation, the mechanism by which these
events are triggered is still unclear. One possible mechanism
triggering myofibroblast transition could be the AGE/RAGE
signaling cascade.

Advanced glycated end-products (AGEs) are formed through
a non-enzymatic reaction in which sugar molecules and proteins
are combined (Hegab et al., 2012). Accumulation of AGEs occurs
naturally in the body and are usually present to a lesser degree
in healthy individuals (Simm et al., 2007). AGE accumulation
occurs at a higher rate and are more abundant in individuals
suffering from elevated glucose levels, such as seen in diabetics
(Hegab et al., 2012). The accumulation of AGEs can lead to an
increase in crosslinking of matrix proteins, such as collagen, to
contribute to the rigidity of the ECM (Ramasamy et al., 2011).
In addition, AGEs can elicit an intracellular signaling cascade by
activating their receptor (RAGE; receptor for AGEs) (Bierhaus
et al., 2005). When activated, the AGE/RAGE cascade stimulates
growth factor secretion and increased collagen production along
with upregulation of RAGE expression on the cellular membrane
(Suchal et al., 2017). A loss of cellular elasticity due in activation
of AGE/RAGE signaling affects the physiological function of
many tissues and organs. For example, studies have shown that
AGE/RAGE signaling can produce endothelial dysfunction by
impacting vasodilation in coronary arterioles in type II diabetic
mice (Gao et al.,, 2008). When activated, the AGE/RAGE cascade
subsequently stimulates the cardiac fibroblast to myofibroblast
transition resulting in increased ECM production or fibrosis
leading to the development of cardiovascular disease such as LV
stiffness commonly observed in diabetic patients (Suchal et al,,
2017). An additional protein thought to impact AGE/RAGE
signaling is Rapla, a small GTPase, which may contribute to
activation of cardiac fibroblasts.

The repressor/activator protein la (Rapla) homolog is
associated with different organ systems and multiple signaling
pathways. Focusing on the cardiovascular system, Rapla is
involved in the development and functionality of the heart (Dong
et al,, 2012). Rapla is a member of the Ras superfamily which is
composed of small GTPases (Dong et al., 2012). Due to its ability
to act as a molecular switch, Rapla is able to act as a connector
to transmit extracellular signaling to intracellular signals (Yan
et al., 2008). Rapla is able to bind and activate an assortment
of proteins including cardiovascular effector proteins (Roberts
et al., 2013). These effector proteins can regulate mechanisms
like cell proliferation, cell adhesion, and cell migration within the
cardiovascular tissue (Jeyaraj et al., 2011). Under hyperglycemic
conditions, Rapla has been shown to activate downstream
signaling pathways, such as extracellular signal-regulated kinase
1/2 (ERK1/2) (Asif et al., 2002; Yan et al., 2008). Activation
of ERK1/2 pathway stimulates ECM fibrosis, which contributes
to cardiovascular disorders (Asif et al., 2002). Based off initial
studies, Rapla appears to intersect the AGE/RAGE cascade
to promote activation of cardiac fibroblasts, leading to ECM
remodeling and consequently fibrosis within the heart.

Migration of cells is an integral part in the structure and
function of body systems. Stimuli such as cytokines and
growth factors have been shown to induce cardiac fibroblast
differentiation into myofibroblasts, which is characterized
by increased motility (Li et al, 2004; Velnar et al, 2009;
Fowlkes et al., 2013). Currently, there are conflicting research
regarding diabetic fibroblast migration. Previous studies
have demonstrated an impaired migration in diabetic
dermal fibroblasts; however, other studies have reported
that hyperglycemic conditions increased rat cardiac fibroblast
migration (Chen et al, 1996; Lerman et al., 2003; Straino
et al., 2008; Velnar et al., 2009). This project aims to fill in the
gaps in knowledge regarding cardiac fibroblast migration in
diabetics. More specially, our laboratory aims to examine the
effects of the AGE/RAGE signaling cascade on cardiac fibroblast
migration in diabetes. Therefore, we hypothesized activation
of the RAGE cascade alters cardiac fibroblast migration in
type II diabetic mice. Using genotypically different cardiac
fibroblasts on collagen matrices from diabetic and non-diabetic
mice, we were able to observe changes in cell mobility to
determine a mechanistic role for RAGE signaling and Rapla
in diabetes-induced fibroblast migration. The results of this
study determined that diabetic fibroblasts exhibited a higher
degree of migration compared to non-diabetic fibroblasts.
Examination of AGE/RAGE signaling on cardiac fibroblast
migration determined that AGE/RAGE signaling lowered the
amount of fibroblast migration. Overall, this reduction in
migration can be alleviated with prevention or reduction of
AGE/RAGE signaling.

MATERIALS AND METHODS

Animal Models
Male Lepr® (db/db model, referred to as diabetic) type II diabetes
mellitus mice (BKS.Cg-Dock7™+/+ Lepr‘ﬂ’/ ], Jackson Labs) were
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used for this study. The db/db mouse model has a point mutation
in the leptin receptor leading to a nonfunctional leptin receptor.
This mutation results in obesity and insulin resistance leading to
the development of hyperglycemia by 8 weeks of age and overt
diabetes by 12 weeks of age. Heterozygous mice (non-diabetic)
were used as lean controls.

Male RAGE knockout mice (RAGE RKO) were used
for this study. A Tie2 Cre mouse line was generated by
flanking the extracellular domain of the receptor with two
loxP sites in the same orientation. Additionally, a reversely
oriented transcriptional EGFP reporter gene was inserted into
intron 1, and a neomycin cassette and a thymidine kinase
promoter were inserted into intron 7. EGFP PCR genotyping
reactions are performed as a positive control for RAGE
knockout mice (Constien et al.,, 2001; Liliensiek et al., 2004;
Brodeur et al., 2014). After exposure to Cre recombinase
(Cre), the loxP flanked sequences were deleted, resulting in
the global loss of RAGE mRNA expression and loss of
RAGE signaling. RAGE knockout mice were crossbred with
heterozygous (non-diabetic) mice to generate RAGE knockout
diabetic (diabetic RKO) and non-diabetic (non-diabetic RKO)
mice (Constien et al., 2001; Liliensiek et al., 2004). Breeder
mice were a generous gift from Dr. Pamela Lucchesi and
Dr. Angelika Bierhaus.

Male Rapla knockout mice (Rapla KO) and wild-type (Rapla
WT) were used for this study. This mouse model was generated
by inserting a neomycin resistant gene downstream of exon 4 of
RAPI1A in the opposite (3'-5') orientation. A targeting vector (a
0.95 kb Pvull-Ndel fragment) was used to insert the resistance
gene in order to disrupt Rapla mRNA expression (Li et al., 2007).
Breeder mice were a generous gift from Dr. Magsood Chotani
and Dr. Lawerence Quilliam.

Animal Care

All experiments were performed using adult male mice at
16 weeks of age. The mice were housed under standard
environmental conditions and maintained on commercial mouse
chow and tap water ad libitum. All studies conformed with the
principles of the National Institutes of Health “Guide for the Care
and Use of Laboratory Animals,” (NIH publication No. 85-12,
revised 1996), and the protocol was approved by the University
of Mississippi Institutional Animal Care and Use Committee
(protocol #17-024). Anesthesia for euthanasia at the experimental
endpoint was caused by carbon dioxide inhalation followed
by cervical dislocation, which served as a second mechanism
for euthanasia. At this time, the chest was opened, and the
heart was quickly excised for further cellular, histological, and
biochemical experiments.

Fibroblast Isolation and Cell Culture

Mice were weighed and non-fasting blood glucose levels were
measured via tail cut (Table 1: glucometer; OneTouch Ultra®,
LifeScan, Inc., Johnson & Johnson). Hearts were then removed
from the chest cavity, the atria dissected away, and ventricles
weighed (Table 1). Three hearts of each genotype were used
for a single fibroblast isolation. In a sterile, cell culture hood,
the hearts were cut into ~5 mm small pieces and placed a

TABLE 1 | Physiological measurements of mice.

Body weight Blood glucose Heart weight
(9 (mg/dL) (9)

Non-diabetic 29.05 + 0.37 204.7 £ 7.30 0.1173 4+ 0.005
(n=47)

Diabetic (n = 28) 51.09+1.26™*  525.0£22.67** 0.1106 + 0.002
Non-diabetic RKO 32.32 + 0.43** 213.3 + 4.58 0.1184 4+ 0.002
(n=41)

Diabetic RKO 56.61 £0.70"*  412.7 £29.44*** 0.1216 + 0.002
(h=12)

Rapi1a WT (n = 34) 27.72 £ 0.35 217.2+£6.32 0.1106 + 0.002
Rap1a KO (n = 16) 27.61 +£0.74 172.1 £6.73 0.1085 + 0.005

Data represents average values from mice used for cardiac fibroblast isolation
with an average of three hearts per isolation. A one-way ANOVA was conducted
followed by a Tukey’s post hoc test to determine significant difference between
non-diabetic mice and the other genotype groups (***p < 0.001, ***p < 0.0001).

10 mL of collagenase-trypsin enzymatic solution (0.1% Trypsin,
Gibco; 100 U/mL collagenase II, Worthington Biochemical).
Fibroblasts were continually mixed in the tissue-enzymatic
mixture using water-jacketed spinner flasks maintained at 37°C
until hearts were broken down into a single cell suspension.
The single cell suspension was centrifuged (250 x g at room
temperature for 10 min) and resuspended in high glucose
Dulbecco’s Modified Eagles Medium (DMEM) [high glucose
media; DMEM containing 4.5 g/L glucose, sodium pyruvate, L-
glutamine, and supplemented with 14.2 mM NaHCOj3, 14.9 mM
HEPES, 30% heat-inactivated fetal bovine serum (FBS), 1% L-
glutamine, and 0.02% Primocin (Thermo Fisher)] for 24 h in
an incubator buffered with 5% CO, kept at 37°C. After 24 h,
the cardiac fibroblasts were washed with their appropriate media
three times and then incubated at 37°C in their appropriate
media [non-diabetic and Rapla fibroblasts: low glucose (1 g
glucose/L) and diabetic fibroblasts (these are fibroblasts removed
from diabetic mouse hearts): high glucose (4.5 g glucose/L)]. All
experiments were performed using cells at P1, in order to ensure
the cell in vivo phenotype was maintained. Cells were passaged
just prior to reaching 95% confluency using a 0.25% trypsin and
0.1% ethylenediaminetetraacetic acid (trypsin/EDTA) solution
(Life Technology). Both cell culture and migration plates were
kept in a CO; incubator at 37°C.

Collagen Extraction

Tails from non-diabetic and diabetic mice were collected and
stored at —20°C. After roughly 20 tails had been collected, the
four major tail tendons were removed, minced, washed in dH,O,
and placed in 150 mL acetic acid (1:1000 dilution in dH,O).
The tendons were continually mixed for 3 days at 4°C (Rajan
et al., 2007). All steps, hereinafter, were conducted in sterile
conditions in a cell culture hood. After 3 days, the tendon-
acetic acid solution was centrifuged at 3000 x g for 30 min at
4°C. The supernatant, containing the collagen, was removed to a
new container and centrifuged again under the same conditions.
The collagen solution was stored at 4°C, and concentration was
estimated using Sircol™ Soluble Collagen Assay Kit (BioColor
Ltd.) as per manufacturer’s directions.
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Western Blot Analysis

Protein was isolated from cells cultured in 60 mm dish using
modified Hunter’s buffer [MHB; 1% Triton X-100, 75 mM NaCl,
5 mM tris pH 7.4, 0.5 mM orthovanadate, 0.5 mM ECTA, 0.5 mM
EGTA, 0.25% NP-40, and freshly added Halt Protease Inhibitor
Cocktail (100x; Thermo Fisher)]. Plates were incubated on ice
with MHB for 10 min then a cell scrapper was used to dislodge
cells from plate. Cell lysate was removed and placed into 1.5 mL
tube followed by probe-sonication. Samples were centrifuged
for 15 min at 32,000 x g at 4°C and supernatant was removed
and stored at —80°C. Protein concentration was determined
using a bicinchoninic acid assay (BCA; Pierce Biotechnology)
according to manufacturer’s instructions. Twelve micrograms of
protein was used per sample for western blot analysis. Antibodies
used were as follow: monoclonal a-smooth muscle actin [a-SMA
(1:400); Sigma Aldrich 2547], RAGE [(1:400) Santa Cruz sc-
365154], and B-tubulin [(1:400) Santa Cruz sc-398937] were used
as a loading control. Western blots were visualized using an
iBRIGHT imaging system.

Migration Assay

Migration assay plates consisted of a 48-well culture plate with
a line and hash marks drawn on the bottom of each well for
image orientation. Before plating cells, 50 L non-diabetic and
diabetic collagen were added to wells and incubated for 1 h at
37°C (Lerman et al., 2003). Excess collagen was removed with 1 x
sterile PBS wash. Next, fibroblasts at P1 were plated and grown to
95% confluency. The experimental design for assessing migration
used two replicates per treatment. Once reaching confluency,
the media was suctioned off and each well was scratched with
the tip of a 200 L pipet tip along the previously marked line
through the center of each well on the bottom of the plate
(Xuan et al,, 2014). After scratching, the plates were rinsed with
the appropriate media containing 1.5% FBS. Initial experiments
conducted indicated a concentration of 1.5% FBS promoted cell
migration and at the same time prevent cell division. 500 pL of
the appropriate 1.5% FBS media was added to each well. At this
time, AGE-BSA (glycated albumin 0.5 mg/mL), U0126 (5 pum;
inhibitor of ERK), and PKC-¢ pseudosubstrate (1 pg/mL; ps-
PKC-t) were added. U0126 and PKC-¢ pseudosubstrate were
selected as inhibitors for the AGE/RAGE cascade due to previous
studies indicating these proteins are involved in the AGE/RAGE
cascade (Wu et al., 2003; Adamopoulos et al., 2016; Evankovich
et al., 2017). The cells were allowed to incubate for 24°h
after scratching. Images of cells were taken at 0 and 24°h
post scratching.

Immunohistology

Morphological evaluation of collagen content was performed on
hearts from age-matched Rapla WT and KO mice as previously
described (Stewart et al., 2003). Briefly, hearts were fixed in
histology grade 4% paraformaldehyde and embedded in paraffin
blocks. Blocks were sectioned at 5-pum thickness from the equator
of the heart and stained with Picric Acid Sirius Red F3BA.
Estimates of the fractions of thick and thin collagen fibrils were
obtained by using polarized light. Due to the birefringent quality

of the stain, collagen refracted a distinct color based upon the
size of the collagen fibrils: red and yellow (thick filaments) and
green (thin filaments). Quantitative analysis is accomplished
by light microscopy with a video-based image-analyzer system.
Color thresholds were set for biphasic analysis to capture and
generate a percent collagen content per 40x field within the
specified RGB wavelength ranges separate from the background:
Phase 1 represents collagen capture Red (0-40) Green (0-80)
Blue (0-255) and Phase 2 represents background capture: Red
(20-255) Green (40-255) Blue (35-255). Results are presented
as the mean £ SEM values computed from the average of
n = 25-35 individual measurements obtained from each heart.
Cardiac vasculature, epicardium, and endocardium were avoided
due to high levels of collagen content and do not accurately reflect
myocardial interstitial collagen.

Non-diabetic and diabetic collagen were fixed with histology
grade 4% paraformaldehyde for 10 min at room temperature.
Collagen was then incubated with blocking solution (3%
donkey serum, 2% BSA, and 0.01% Triton X-100 in 1x PBS)
overnight at 4°C. After 24 h, primary antibody was added
and incubated overnight at 4°C. AGE antibody (1:50; Abcam)
and carboxymethyl lysine (CML) antibody (1:50; Abcam) were
added to collagen. Slides were mounted using Vectashield hard
set mounting media.

Cell Migration Imaging and Analysis
At the 0 h time point, pictures were taken to document the
position of cells prior to migration using a Zeiss Primovert
microscope with camera (Zen Blue 2.3 edition, Zeiss). Hashmarks
along the scratch line were used to align the plate to determine
areas of interest for imaging as well as were used to prevent
imaging of overlapping regions. At the 24 h time point, the
plate was removed from the incubator and fixed with 4%
paraformaldehyde fixative for 10 min at room temperature. After
10 min, the fixative was removed, and the cells were washed with
1x PBS. Next, cells were incubated in 1x PBS with 0.1% Trition-
100 for 30 min at room temperature with continuous rocking
motion to permeabilize the fixed cells. Cells were stained with 1%
Brilliant Blue Coomassie stain (3% Coomassie Brilliant Blue, 10%
acetic acid, 45% methanol, and 45% dH,O) for 10 min at room
temperature with continual rocking. Finally, 24 h post-scratched
pictures of the cells were taken using the 0 h time point images as
templates for the correct position of the areas of interest.

Adobe Photoshop Elements 2018 was used to draw lines on
0 h images to denote the scratched area. The scratched areas were
determined by denoting the linear area that lacked fibroblasts.
Areas that lacked fibroblasts, but where not in line with the
orientation of the scratch, were not included in the calculation
as these areas may contain cells which detached from the culture
dish for reasons other than the physical scratch. The 0 h image
was superimposed on the 24 h image in order to indicate the
scratch area (i.e. line of migration) on the 24 h image. Next,
the number of cells that had migrated across the lines drawn
were counted and recorded for each well. The area of the scratch
was calculated using Image J, and the number of migrated cells
was normalized to calculated area of the scratch by dividing
the number of migrated cells by the area. This process was
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completed twice for two separate images which together showed
approximately the total cell migration of one well.

Statistical Analysis

Differences in non-diabetic and diabetic, non-diabetic RKO and
diabetic RKO, and Rapla WT and Rapla KO migration on
different collagens were determined by performing a Student’s
t-test. Differences associated with inhibition of RAGE signaling
were assessed by one-way analysis of variance (ANOVA).
After one-way ANOVA analysis, a Dunnetts post hoc test was
conducted in order to determine differences between control
and treatment groups. Comparisons between genotypes and
AGE-treated fibroblasts were determined by performing two-
way ANOVA. A SidaK’s post hoc test was conducted in order
to assess differences between different genotypes on the same
type of collagen as well as differences between the control
and AGE-treated fibroblasts of the same genotype. GraphPad
Prism 8 was used for all statistical analysis. Significance was
defined as p < 0.05. Error bars represent +standard error
of the mean (SEM).

RESULTS

The Presence of RAGE Signaling
Negatively Impacts Cardiac Fibroblast
Migration

Isolated cardiac fibroblasts were used to assess the impact
of RAGE signaling on cell migration (Figure 1). Prevention
of RAGE signaling by genetically altering RAGE to a non-
functioning receptor (RAGE knockout, RKO) resulted in
increased non-diabetic RKO fibroblast (3.31 #migrated
cells/% area) migration over that of non-diabetic fibroblasts
(1.66 #migrated cells/% area) (Figures 1A,B; Students t-test
p = 0.0076). Diabetic RKO fibroblasts (7.04 #migrated cells/%
area) migrated significantly more than diabetic fibroblasts
(3.19 #migrated cells/% area) (Figures 1C,D; Students t-test
p = 0.0002). Diabetic fibroblasts, regardless of the presence or
absence of RAGE, migrated significantly more than non-diabetic
fibroblasts with percent differences ranging from 63% between
non-diabetic and diabetic to 73% for RKO non-diabetic versus
RKO diabetic fibroblasts. Further studies were then performed
to determine the role of Rapla in AGE/RAGE signaling and
fibroblast migration.

Knockout of Rap1a Results in Decreased
Collagen Expression in the Heart as Well
as Reduced Protein Expression of
Specific AGE/RAGE Markers

Previous studies by our laboratory have revealed that silencing
Rapla in diabetic cells altered RAGE protein expression
(Zhao et al, 2014). By manipulating Rapla, we could
amplify or reduce the RAGE signaling pathway to modify
signaling outcomes, accordingly. We further examined
total collagen expression, an outcome of the AGE/RAGE
cascade, in hearts from Rapla wild-type (Rapla WT) and

Rapla knockout (Rapla KO) mice (Figures 2A-C). Rapla
KO hearts had significantly less total collagen compared to
Rapla WT hearts (Figure 2C, Student’s t-test p = 0.0103).
Further examination of AGE/RAGE signaling outcomes in
cardiac fibroblasts isolated from Rapla WT and KO hearts
indicated a decrease in a-SMA and RAGE protein expression,
indicative of reduced AGE/RAGE signaling (Figure 2D). Due
to Rapla impact on AGE/RAGE signaling outcomes in vivo
and in vitro, we examined the impact of Rapla on cardiac
fibroblast migration.

To further investigate this idea, cardiac fibroblasts from Rapla
KO and Rapla WT mice were used to determine if changes
in Rapla expression effected changes in the RAGE signaling
cascade to impact fibroblast migration. Rapla KO fibroblasts
(4.62 #migrated cells/% area) tended to have more migration
when compared to Rapla WT fibroblasts; even though, results
were not significant (2.09 #migrated cells/% area) (Figures 3A,B;
Student’s ¢-test p = 0.0677). Rapla WT fibroblasts (2.09 #migrated
cells/% area) had similar migration rates compared to non-
diabetic fibroblasts (1.66 #migrated cells/% area). Whereas Rapla
KO fibroblast migration was similar to that of non-diabetic RKO
fibroblasts. The percent difference between Rapla KO and WT
fibroblasts was 76% which is comparable to RKO fibroblasts.
These results indicate that with reduced RAGE signaling or
elimination of RAGE, cardiac fibroblast migration was shown to
be increased.

The Elevated Levels of AGEs in Diabetic
Collagen Did Not Cause a Significant

Impact on Fibroblast Migration

In an in vivo setting, cardiac fibroblasts undergoing migration
will continuously interact with the ECM, and the composition
of the matrix will conversely impact cell behavior. In order to
replicate this environment, specially focusing on RAGE signaling,
collagen from diabetic and non-diabetic mice was used as
a scaffold for migration assays. Extracted tail collagen from
diabetic mice had higher accumulation of CMLs and AGEs
compared to non-diabetic collagen (Figure 4A). Based off these
findings, collagen could be used to assess changes in fibroblast
migration. Cells were plated on plastic, which had no AGEs,
on non-diabetic collagen, which had a very low presence of
AGEs, and diabetic collagen, which had high levels of AGEs,
to determine the impact of AGE accumulation and presence on
fibroblast migration.

The difference in the amount of AGEs in collagen did not
significantly impact the number of migrated fibroblasts. Non-
diabetic fibroblast migration slightly increased as the levels of
AGE:s rose from no AGEs on plastic, to low AGE levels on non-
diabetic collagen, and to high concentrations of AGEs on diabetic
collagen. In contrast, diabetic fibroblast migration did not change
between plastic, non-diabetic collagen, and diabetic collagen
(Figure 4C; two-way ANOVA, genotype p = 0.0094). In contrast,
non-diabetic RKO and diabetic RKO fibroblasts displayed similar
amounts of migration with increasing accumulation of AGEs
from plastic to diabetic collagen (Figure 4D; two-way ANOVA,
genotype p < 0.0001). Rapla WT and Rapla KO fibroblasts
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FIGURE 1 | The presence of RAGE signaling negatively impacts cardiac fibroblast migration. Cardiac fibroblasts were isolated from (A,B) non-diabetic with and
without RAGE mice as well as (C,D) diabetic with and without RAGE mice. Fibroblasts were plated onto plastic cell culture dishes, scratched (0 h: A,C), and
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significance, which is depicted on graph.

B
10+
©
o
< 8
X
3 6
© p=0.0076
O | |
B4
©
2 21
z
0-
non-diabetic non-diabetic
RKO
D
10
3 p=0.0002
b —
°\O
)
©
(¢]
°
2
o
o
z
0
diabetic diabetic
RKO

displayed similar migration when plated on plastic, non-
diabetic, and diabetic collagen (Figure 4E; two-way ANOVA,
genotype p = 0.0005).

Cardiac Fibroblasts Display Increased
Migration With Attenuated RAGE

Signaling on Diabetic Collagen

In order to further demonstrate the impact of AGE/RAGE
signaling on migration, U0126 (ERK inhibitor, 5 pM) and
pseudosubstrate PKC-¢ (ps PKC-g, PKC-¢ inhibitor, 1 pg/mL)
were used to dampen RAGE signaling in cardiac fibroblasts.
Fibroblast migration on diabetic collagen was used, as diabetic
collagen contained the higher prevalence of AGEs and would
allow for the best insight into the impact of AGE/RAGE signaling
on migration (Figure 5). Non-diabetic fibroblasts migrated
significantly more when treated with U0126 and ps PKC-g
(Figure 5A; one-way ANOVA p = 0.0004) when compared to
untreated non-diabetic cells. Similar increased levels of migration
occurred with treated diabetic fibroblasts (Figure 5B; one-way
ANOVA p = 0.0058). In contrast, fibroblasts lacking functional
RAGE (RKO fibroblasts) did not exhibit altered cell migration

when treated with either U0126 or ps PKC-¢ (Figures 5C,D;
one-way ANOVA, non-diabetic RKO p = 0.8595, diabetic
RKO p = 0.9927).

Rapla WT cardiac fibroblasts displayed a significant
increase in migration with U0126 and ps PKC-{ treatment
(Figure 5E; one-way ANOVA p = 0.0033). Although Rapla KO
fibroblasts had increased migration with U0126 and ps PKC-¢
treatment, only ps PKC-¢ was significant (Figure 5F; one-way
ANOVA p =0.0303).

Increased Exogenous AGEs in Diabetic
Collagen Led to Increased Fibroblast
Migration

While AGEs in the ECM can induce AGE/RAGE signaling,
they can also increase stiffness of ECM due to formation of
crosslinks between collagen fibers. In order to determine the
impact of AGEs on fibroblast migration, additional exogenous
AGEs (glycated albumin; 0.5 mg/mL) were added to fibroblasts
plated on diabetic collagen (Figure 6). Non-diabetic and diabetic
fibroblasts migrated significantly more with treatment of AGEs,
compared to untreated control (Figure 6A; two-way ANOVA
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FIGURE 3 | Knockout of Rap1a led to an increase in cardiac fibroblast migraiton. Cardiac fibroblasts were isolated from Rap1a WT and KO hearts, cultured on
plastic cell culture dish, scratched (0 h) and assessed for migration after 24 h (A). Scratched lines were depicted with red lines and cells were stained with
Coomassie blue for visualization (40x and scale bar = 200 wm). Number of migrated cells were normalized to percent scratched area and graphed as mean + SEM

(B; n = 6-10). Statistical anayslsis consisted of Student’s t-test.

treatment p < 0.0001, SidaK’s post hoc test p = 0.0061 non-diabetic
and p = 0.0085 diabetic). Exogenous AGE treatment of RKO
fibroblasts did not induce a change in migration (Figure 6B:
two-way ANOVA treatment p = 0.8549).

Rapla WT and KO fibroblast migrations were more
significantly impacted with AGE treatment (Figure 6C; two-way

ANOVA, treatment p = 0.0490). These results indicated that
AGEs present in the diabetic matrix when combined with the
treatment of exogenous AGEs resulted in a shift in fibroblast
phenotype to that of a diabetic cell. Diabetic cardiac fibroblasts
exhibit significantly more migration compared to their non-
diabetic counterparts.
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DISCUSSION

The aim of this study was to assess the role of AGE/RAGE
signaling on cardiac fibroblast migration in diabetic conditions.
While fibroblast migration, specifically epithelial fibroblast
migration, has been widely studied in conjunction with impaired
diabetic skin wound healing (Stewart et al, 2010; Darby
et al., 2014; Tracy et al, 2014). The mechanism of fibroblast
migration in other organ systems under diabetic conditions is
still relatively uncertain. The results presented in this study
demonstrated diabetic cardiac fibroblasts migrated significantly
more than non-diabetic cardiac fibroblasts. By altering either
(1) RAGE expression using RKO fibroblasts, (2) suppressing key
components of the AGE/RAGE cascade using pharmacological
inhibitors, or (3) downregulating RAGE signaling in Rapla
KO cells, we observed an increase in fibroblast migration over
that of non-diabetic and diabetic fibroblasts with functional
RAGE. These findings contrast those observed in skin fibroblast
studies, in that, diabetic cardiac fibroblasts have a higher
migration phenotype than non-diabetic cardiac fibroblasts, and
by impeding the RAGE signaling cascade, fibroblast migration

greatly improved cell migration (Almeida et al., 2016). Thus,
providing evidence that decreasing RAGE signaling could
potentially improve wound healing in the heart; however, further
experiments will need to be performed to determine if this
response exists in vivo. The AGE/RAGE signaling pathway has
been shown to increase ECM deposition; therefore, it could be
proposed that the AGE/RAGE signaling cascade may impact cell
migration via ECM remodeling (Asif et al., 2002; Yan et al., 2008).

The cardiac ECM is composed of a variety of biological
molecules capable of altering cell-matrix interactions resulting
in changes in migration phenotype (Charras and Sahai, 2014).
It has been demonstrated that diabetics have increased AGE
accumulation in their cells as well as in their extracellular
compartments (Hartog et al., 2007). AGEs will form crosslinks
with one another, which can contribute to a stiffer collagen
matrix (Verzijl et al., 2002). Therefore, this study also aimed
to determine if collagen isolated from non-diabetic mice with
low amounts of AGEs and collagen from diabetic mice with
high amounts of AGEs could alter cardiac fibroblast migration.
Our results showed that non-diabetic cardiac fibroblasts migrated
slightly more as the prevalence of AGEs climbed. These data
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FIGURE 5 | Cardiac fibroblasts display increased migration with decreased RAGE signaling on diabetic collagen. (A) Non-diabetic, (B) diabetic, (C) non-diabetic
RKO, (D) diabetic RKO, (E) Rap1a WT, and (F) Rap1a KO cardiac fibroblasts plated on diabetic collagen were treated with U0126 (ERK inhibitor; 5 wM) and ps
PKC-t (pseudosubstrate PKC-¢ inhibitor; 1 wg/mL). Data represent mean + SEM with a n = 10-13 for control and n = 3-9 for treatments. A one-way ANOVA and a
Dunnett’s post hoc test determined significance (*p < 0.05, *p < 0.01, **p < 0.001).

suggested the composition of the ECM along with the escalating
levels of ECM AGEs were a contributing factor impacting cardiac
fibroblast migration.

Elevated diabetic cardiac fibroblast migration, as presented
in this work, in comparison to other studies, could be attributed
to the heterogeneity of fibroblasts. Cells isolated from differing
tissue sources will retain their in vivo characteristics while in
culture, and would thus yield different phenotypic responses
to similar stimuli (Sorrell and Caplan, 2004; Driskell and Watt,
2015; Sriram et al, 2015). Hyperglycemic conditions could
possibly contribute to changes noted in previous studies in
which diabetic cardiac fibroblast migration was examined.

Findings have shown that culturing cells in high glucose
media can result in changes in cardiac fibroblast migration
(Kanazawa et al, 2010; Xuan et al, 2014). Hyperglycemic
conditions have also been demonstrated to cause AGE
accumulation. While AGEs accumulate naturally within the
body over time, the formation and accumulation of AGEs is
accelerated under diabetic conditions (Hegab et al., 2012). It
has also been noted that AGE serum levels in diabetics are
almost double of that of healthy individuals (Hegab et al,
2012). Therefore, it is a strong possibility that fibroblasts
residing in distinct tissues could respond differently under
diabetic conditions.
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By studying the effects of the AGE/RAGE signaling pathway
on cardiac fibroblast migration, we were able to determine that
activation of the signaling cascade altered cardiac fibroblast
migration. Fibroblast migration was elevated in diabetic hearts
compared to that of cells from non-diabetic hearts. In addition,
it was found that cardiac fibroblasts lacking functional RAGE
(RKO; RAGE knockout mice) had higher migration levels in
both non-diabetic RKO and diabetic RKO fibroblasts when
compared to cardiac fibroblasts with intact RAGE. Our results
showed when RAGE was eliminated, migration levels were
significantly elevated allowing for a more motile cell phenotype,
as seen in Figure 7. Additionally, pharmacological inhibition
of key signaling proteins within the RAGE cascade, such as
ERK1/2 and PKC-g, resulted in increased migration (Figure 7A).
Migration was not altered by ERK1/2 or PKC-¢ inhibition in
RKO fibroblasts, which stands to reason, as the RAGE receptor
has been rendered ineffective by genetic ablation. Therefore,

downregulating the RAGE cascade allowed for increased cell
migration. Due to the extensive impact of ERK1/2 activation
in cell signaling, it could be argued that increased migration
though inhibition of ERK1/2 was a result of impacting additional
pathways other than AGE/RAGE. To counter this argument, an
independent study found that inhibition of ERK1/2 activation
downstream of MAP kinase signaling resulted in decreased
migration (Mitchell et al., 2006). Therefore, if ERK1/2 was
influencing migration via a pathway separate from AGE/RAGE,
a decrease in migration would be expected. Our results showed
increased migration with inhibition of active ERK1/2 to suggest
inhibition of AGE/RAGE signaling in cardiac fibroblasts can
increase and improve cell migration within the heart.

At basal levels non-diabetic cardiac fibroblasts displayed a
lowered migration ability; however, when AGE/RAGE signaling
was increased, as in diabetic fibroblasts, there was a concomitant
increase in cardiac fibroblast migration. Our study found
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that treatment with exogenous AGEs also caused an increase
in cardiac fibroblast migration much like that observed in
diabetic cells, but the level of migration never superseded
the migration noted in RKO cardiac fibroblasts. The increase
in migration with AGE treatment is most likely due to the
cardiac fibroblasts differentiating into myofibroblasts, which
can indirectly impact cell migration (Suchal et al, 2017;
Figure 7B). Prior research by our lab and others have
shown that increases in «-SMA expression, a marker for
myofibroblasts, in lung fibroblasts was linked to increased
migration (Kawamoto et al., 1997). In addition, in cardiac
fibroblasts a decrease in a-SMA expression was correlated with
decreased fibroblast migration (Shi et al., 2011). These results
support the idea that RAGE signaling above “normal” levels
results in increased migration due to these cells transitioning
into myofibroblasts, and therefore characterized by elevated
migration (Figure 7); however, further studies will need to be
performed to determine if AGE can directly induce fibroblast to
myofibroblast conversion. Another factor our lab has found to
impact RAGE signaling and in turn cardiac fibroblast migration
is the small GTPase, Rapla.

Rapla acts as a linker molecule connecting extracellular
stimuli to intracellular effects. Based off previous findings, we
proposed that Rapla intersects the AGE/RAGE pathway and
modifies the signal transduction strength (Yan et al., 2008; Zhao
et al., 2014). Our results also demonstrated decreased collagen
levels in Rapla KO hearts as well as reduced protein expression
of specific RAGE cascade markers in cardiac fibroblasts. In
terms of the role Rapla plays in fibroblast migration, previously
conducted studies showed conflicting results. In colonic epithelial
cells decreased Rapla expression resulted in decreased migration,
whereas in macrophages a loss of Rapla produced increased
migration (Li et al., 2007; Severson et al., 2009). Another study
by Yan et al. (2008) found that depletion of Rapla via silencing
RNA reduced migration in human microvascular endothelial
cells during angiogenesis (Yan et al., 2008). These conflicting
studies suggest that the impact Rapla on cell migration is tissue
and/or cell specific. Our study found cardiac fibroblasts without
Rapla (Rapla KO) had more migration than fibroblasts with
Rapla (Rapla WT). Comparing this to fibroblasts with functional
RAGE and those without RAGE, Rapla KO cardiac fibroblasts
exhibited an intermediate migratory ability. The intermediate
migration exhibited in Rapla KO suggested that Rapla may
contribute to further exacerbation of downstream outcomes of
AGE/RAGE signaling to impact cardiac fibroblast migration.
Further studies will need to be performed to understand the role
of Rapla in fibroblast function.

The findings of this study suggested that cardiac fibroblast
migration is differentially regulated by a number of factors. We
found that diabetic fibroblasts have a higher migration level than
non-diabetic cells. In addition, the RAGE signaling cascade leads
to reduced migration compared to higher migration observed in
RKO fibroblasts. Reduction of AGE/RAGE signaling with U0126
and ps-PKC resulted in increased cardiac fibroblast migration.
With the addition of AGEs, cell migration was elevated due,
most likely, to myofibroblast differentiation brought on by higher
concentration of AGEs and increased AGE/RAGE signaling.

Decreased RAGE signaling via knocking out Rapla GTPase
resulted in an increase in cardiac migration, but not to the
level noted in RKO fibroblasts. Therefore, changes in fibroblast
migration and factors that influence this behavior can have the
potential to alter organ performance. For example, increased
LV collagen deposition by myofibroblasts can impact ventricular
remodeling, heart function, and contribute to cardiovascular
disease (Zhang et al., 2007; Dludla et al., 2017). As scratch assays
may mimic an injury to confound experimental conditions,
future studies will need to be performed using a more specific
migration, such as Boyden chamber assays, to confirm results.
Examination of changes in migration protein markers in the
future will provide further evidence to the role of RAGE
signaling has on fibroblast migration. In addition to these studies,
experiments that assess the impact of diabetic conditions and
the link with RAGE signaling can be done to determine the
influence of diabetes on cardiac fibroblast migration. While
there is still more to investigate regarding AGE/RAGE signaling
on cardiac fibroblast migration, our study provides convincing
results demonstrating that diabetes-related hyperglycemia will
increase AGE levels and active RAGE signaling to alter
migration contributing to the progression of LV remodeling.
By generating therapeutics against modulators of the RAGE
signaling pathway, such as Rapla, there is the potential to lessen
diabetic complications.
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