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Among hundreds of thousands of signal receptors contributing to oncogenic activation,
tumorigenesis, and metastasis, the hepatocyte growth factor (HGF) receptor – also
called tyrosine kinase MET – is a promising target in cancer therapy as its axis is involved
in several different cancer types. It is also associated with poor outcomes and is involved
in the development of therapeutic resistance. Several HGF/MET-neutralizing antibodies
and MET kinase-specific small molecule inhibitors have been developed, resulting in
some context-dependent progress in multiple cancer treatments. Nevertheless, the
concomitant therapeutic resistance largely inhibits the translation of such targeted drug
candidates into clinical application. Until now, numerous studies have been performed to
understand the molecular, cellular, and upstream mechanisms that regulate HGF/MET-
targeted drug resistance, further explore novel strategies to reduce the occurrence
of resistance, and improve therapeutic efficacy after resistance. Intriguingly, emerging
evidence has revealed that, in addition to its conventional function as an oncogene,
the HGF/MET axis stands at the crossroads of tumor autophagy, immunity, and
microenvironment. Based on current progress, this review summarizes the current
challenges and simultaneously proposes future opportunities for HGF/MET targeting
for therapeutic cancer interventions.

Keywords: hepatocyte growth factor, MET, targeted cancer therapy, therapeutic resistance, neutralizing antibody,
small molecule inhibitor

INTRODUCTION

MET is a tyrosine kinase receptor with one well-established ligand, hepatocyte growth factor
(HGF) (Fasolo et al., 2013). MET is expressed in several cell types, including epithelial,
endothelial, neuronal, and hematopoietic cells and hepatocytes (Trusolino et al., 2010). Several
human malignancies are characterized by alternating MET expression, which is usually
associated with poor prognosis and aggressive phenotypes. HGF induces MET dimerization
and the autophosphorylation of tyrosine residues. The subsequent recruitment of signaling
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effectors, including adaptor proteins Grb2, Gab-1, Src, and
SHC, results in the activation of multiple downstream signaling
molecules, such as mitogen-activated protein kinases (MAPK),
phosphoinositide 3-kinases (PI3K), signal transducer and
activator of transcription 3 (STAT3), extracellular signal-
regulated kinases (ERK), phosphoinositide phospholipase C-γ,
focal adhesion kinase, and nuclear factor-κB (Furge et al.,
2000; Garajova et al., 2015). The activation of the HGF/MET
axis is associated with a series of biological responses, such as
proliferation, angiogenesis, migration, invasion, metastasis, and
survival, thus contributing to the tumorigenesis, development,
and progression of different human cancer types (Ghiso and
Giordano, 2013). Indeed, Yamasaki et al. (2018) proved that
the expression of HGF and matriptase was increased in bone
metastases. Bendinelli et al. (2017) indicated the importance of
targeting the tumor microenvironment by blocking epigenetic
mechanisms that control critical events for colonization, such as
the HGF/Met axis and WW domain-containing oxidoreductase,
as a therapy for bone metastasis. The deregulation of
HGF/MET signaling in tumors, including overexpression,
gene amplification, activation of mutations, and increased
autocrine or paracrine ligand-mediated stimulation, is caused by
many different mechanisms (Migliore and Giordano, 2008).

Since the HGF/MET axis plays an important role in cancer,
various approaches have been explored to inhibit it, including
the use of MET-neutralizing antibodies, HGF antagonists, and
tyrosine kinase activity-targeted inhibitors (TKIs). MET-specific
small-molecule TKIs are divided into two functionally distinct
classes: type I (e.g., crizotinib) and type II (e.g., cabozantinib)
inhibitors, which preferentially bind to the active and inactive
conformations of MET, respectively (Cui, 2014). Preclinical
studies have demonstrated that MET inhibitors had highly
efficient anti-tumor activity in some tumor types, including
hepatocellular carcinoma (Bladt et al., 2014). However, several
recent phase III trials using these agents failed to inhibit
HGF/MET signaling (Scagliotti et al., 2015; Catenacci et al.,
2017; Spigel et al., 2017). Two main factors were involved in
the failure of HGF/MET-targeted drugs in clinical practice: the
inappropriate selection of specific patient populations and the
development of resistance to the MET-targeted drugs being
administered led to poor clinical efficacy (Hughes and Siemann,
2018; Papaccio et al., 2018). The recent progress in molecular
pathology and the development of more precise diagnoses may
gradually solve the issue regarding the selection of specific patient
populations to receive HGF/MET-targeted drugs. However, the
mechanism that regulates HGF/MET-targeted drug resistance is
still quite complicated. Thus, it is difficult to target HGF/MET.

It is of the utmost importance to understand the molecular
mechanisms regulating resistance to specific therapies to facilitate
the application of alternative agents and improve clinical
efficacy through the early identification of resistance and
its relevant mechanisms. Therefore, an in-depth investigation
of drug resistance is critical to improving the efficacy of
MET-targeted drugs. Recently, as genotype-targeted therapies
have been adopted for the treatment of tumors, several new
mechanisms that explain the resistance to targeted therapies have
been discovered. Additionally, the resistance to MET-targeting

TKIs has been partially analyzed and is mainly attributed to
the mutation, fusion, and focal amplification of MET and/or
other genes involved in survival. Additionally, the coordination
of tumor metabolism and autophagy are critical for the resistance
to HGF/MET-targeted therapy (Huang et al., 2019). Interestingly,
research results have demonstrated that HGF/MET signaling is
involved in the immune response (Benkhoucha et al., 2010).
These studies provided new opportunities for the development
of HGF/MET axis-associated basic, translational, and clinical
cancer research. Therefore, this review evaluates the known
mechanisms of MET resistance and highlights the recent progress
in therapeutic strategies to overcome MET resistance. It also
proposes future perspectives for cancer therapeutic interventions
involving HGF/MET targeting.

MULTIPLE MECHANISMS FOR THE
RESISTANCE TO MET-TARGETED
THERAPIES

Genomic Alteration
Many studies have shown that MET point mutations and
increased copy number of MET are potential mechanisms for
acquired resistance to MET-TKIs (Table 1). Some studies have
indicated that the Y1230 and D1228 mutations and increased
MET copy number may be common mechanisms of resistance to
MET inhibitors (Funakoshi et al., 2013a,b; Schrock et al., 2017).
In contrast to other point mutations, the MET Y1230H mutant
typically makes cells highly resistant to MET-TKIs. This MET
mutation-induced resistance is irreversible (Funakoshi et al.,
2013a). MET Y1230H point mutations and/or an increase in
the MET copy number may result in excessive MET signaling,
followed by excessive replication stress and DNA damage
response, resulting in an intra-S-phase cell cycle arrest with the
absence of MET-TKIs (Funakoshi et al., 2013b). A recent study
identified two newly acquired MET mutations, Y1248H, and
D1246N, that are resistance mechanisms for type I MET-TKIs (Li
A. et al., 2017). Additionally, two studies reported mechanisms
for secondary resistance to MET monoclonal antibodies: Martin
et al. (2014) pointed out that MET amplification and over-
expression caused resistance to MV-DN30, whereas Zhou et al.
(2014) found that p-21-activated kinase 1 (PAK1) amplification
may be the cause of resistance to onartuzumab. Moreover,
onartuzumab and emibetuzumab did not achieve satisfactory
clinical results in clinical trials (Shah et al., 2015; Camidge et al.,
2016). Further investigation is needed to improve the clinical
effect of anti-MET monoclonal antibodies and to understand the
mechanisms of resistance against them.

Skipping mutations in MET exon 14 were reported as
they are present in ∼4.0% of patients with lung cancer/lung
adenocarcinoma (Baldacci et al., 2018). A non-small cell lung
cancer (NSCLC) harboring a MET exon 14 skipping mutation
upon treatment with crizotinib, a MET/ALK/ROS1 inhibitor,
was initially reported in 2015 (Jenkins et al., 2015; Paik et al.,
2015). Although crizotinib showed initial efficacy, patients
inevitably acquired resistance to the drug. Several clinical reports
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TABLE 1 | Link between MET alteration and therapeutic resistance.

Targeted drugs Treatment groups Resistant notes References

Cabozantinib IL-3 dependent murine pro-B cell line Ba/F3 D1133V;
Y1159H;
L1195F;
F1200I/L

Fujino et al., 2019

Capmatinib Lung cancer cell line EBC-1 EGFR activation;
PIK3CA amplification

Ji et al., 2015

IL-3 dependent murine pro-B cell line Ba/F3 G1090A;
V1092I/L;
D1164G;
L1995V;
M1211T;
D1228A/G/H/N/Y;
Y1230C/D/H/N

Fujino et al., 2019

Crizotinib Patient with metastatic lung adenocarcinoma Acquired EGFR mutation Benderra et al., 2016

Patient with NSCLC with MET exon 14 skipping An acquired mutation in the MET kinase
domain, D1228N

Heist et al., 2016

Patient with MET exon 14-positive NSCLC Preexisting MET Y1230C mutation Ou et al., 2017

Patient with lung adenocarcinomas harboring MET exon 14
splicing

D1228N/H and Y1230H mutations Dong et al., 2016

Mouse embryonic fibroblasts cell line NIH3T3 in vitro and
in vivo

MET Y1248H and D1246N mutations Li A. et al., 2017

Patient with metastatic NSCLC with MET exon 14 skipping Mutation of MET Y1230H Schrock et al., 2017

Patient with advanced lung adenocarcinoma with MET
exon 14 skipping

MET G1163R, D1228H, D1228A, and
Y1230H mutations

Zhang et al., 2017

Patient with pulmonary adenocarcinoma harboring MET
exon 14 skipping

MET exon 14 “deleting and inserting”
mutation
(c.3019_3028 + 29delinsACCTA,
p. Phe1007fs)

Jiang et al., 2018

Patient with ALK + NSCLC High-level MET amplification Berger et al., 2018

Patient with NSCLC with MET exon 14 skipping HER2 amplification Ding et al., 2019

Patient with advanced lung cancer with MET exon 14
skipping mutation and MET exon 5 C526F mutation

D1246N mutation Jin et al., 2019

IL-3 dependent murine pro-B cell line Ba/F3 V1092I/L;
G1163R;
D1228E/H/N/Y;
Y1230C/H

Fujino et al., 2019

GSK1363089 Gastric cancer cell line MKN45 Increased copy number of MET Funakoshi et al., 2013b

Gastric cancer cell line MKN45 Increased copy number of MET Funakoshi et al., 2013a

INC280 Mouse embryonic fibroblasts cell line NIH3T3 MET Y1248H and D1246N Mutations Li A. et al., 2017

Merestinib IL-3 dependent murine pro-B cell line Ba/F3 L1195F;
F1200I/L;
D1228Y

Fujino et al., 2019

MV-DN30 Lung cancer cell line EBC1 Increased MET gene copy number Martin et al., 2014

PF-04217903 Gastric cancer cell line GTL16 SND1-BRAF fusion active MAPK
pathway

Ahn et al., 2017

PHA665752 Gastric cancer cell line MKN45 Increased copy number of MET, and/or
Y1230H mutation

Funakoshi et al., 2013b

Gastric cancer cell line MKN45 Increased copy number of MET, and
Y1230H mutation

Funakoshi et al., 2013a

PDA cell line PANC-1/FG Overexpression of FOXM1 Musiani et al., 2014

Savolitinib PC9/Ba/F3; 293T MET D1228V mutation Bahcall et al., 2016

IL-3 dependent murine pro-B cell line Ba/F3 G1090S;
L1195V;
D1228E;
Y1230H/N

Fujino et al., 2019

(Continued)
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TABLE 1 | Continued

Targeted drugs Treatment groups Resistant notes References

Savolitinib + Osimertinib Patient with lung adenocarcinoma MET D1228V mutation Bahcall et al., 2016

SGX-523 Lung cancer cell line EBC1 c-Myc alterations Cruickshanks et al., 2019

Tepotinib IL-3 dependent murine pro-B cell line Ba/F3 G1090S;
V1155M;
G1163E;
D1228E/G;
Y1230C/D/S/H/N

Fujino et al., 2019

EGFR, epidermal growth factor receptor; NSCLC, non-small cell lung cancer; MAPK, mitogen-activated protein kinase; FOXM1, forkhead box M1; PIK3CA,
phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha; ALK, anaplastic lymphoma kinase.

described secondary MET mutations (D1228N/H/A; Y1230C/H)
as mechanisms for crizotinib resistance (Dong et al., 2016; Heist
et al., 2016; Ou et al., 2017; Schrock et al., 2017; Zhang et al.,
2017). A previous study reported the case of a patient who
simultaneously acquired four rare resistance mutations (G1163R,
D1228H, D1228A, and Y1230H) since the development of
crizotinib resistance (Zhang et al., 2017).

However, next-generation sequencing analyses have improved
the detection of abnormal MET exon 14 skip mutations.
Interestingly, one case of a patient with advanced lung cancer
with a MET exon 14 skipping mutation and MET exon 5
C526F mutation was reported. Additionally, changes in the
MET exon 14 splice site and a D1246N mutation were found
during treatment with crizotinib (Jin et al., 2019). Recently, Jiang
et al. (2018) reported the case of a patient with pulmonary
adenocarcinoma carrying a novel MET exon 14 “deleting
and inserting” mutation (c. 3019_3028 + 29delinsACCTA,
p. Phe1007fs) that also led to a MET exon 14 skipping
mutation, resulting in primary resistance to crizotinib. To
explore the secondary resistance mechanism involving MET-
TKIs, they evaluated the activity of three types of MET-TKIs
using Ba/F3 cells harboring MET exon 14 mutations. They
concluded that D1228 and Y1230, and L1195 and F1200 were
common mutation sites that created resistance to type I and
type II TKIs, respectively, as they bind to the active and inactive
forms of MET, respectively. Their results indicated that tumors
with resistance mutations for type I inhibitors were susceptible
to type II inhibitors, and vice versa (Fujino et al., 2019). These
results were consistent with those of a previous study indicating
that, although the MET kinase domain mutation, D1228V, can
induce tumor resistance to type I MET-TKIs through impaired
drug binding, the sensitivity to type II MET-TKIs is maintained
(Bahcall et al., 2016).

Overall, MET gene alteration is an important aspect related to
drug resistance against HGF/MET-targeted therapy. The detailed
detection of MET gene alteration may contribute to the selection
of more feasible drugs to obtain better therapeutic efficacy and
clinical outcomes (Figure 1).

Oncogenic Activation
Abnormal activation of HGF/MET signaling and its downstream
pathway are present in a variety of tumors (Avan et al., 2014). In
addition to point mutation and amplification of HGF/MET, the
functional alteration of signaling molecules, such as the mutation

of Kirsten (KRAS), Harvey rat sarcoma viral oncogene homolog
(HRAS), or epidermal growth factor receptor (EGFR), and the
amplification of human epidermal growth factor receptor 2 (Jan
et al., 2015; Leiser et al., 2015; Benderra et al., 2016; Berger
et al., 2018; Ding et al., 2019; Suzawa et al., 2019) are also
involved in therapeutic resistance to HGF/MET-targeted drugs.
Emerging data have suggested that MET amplification is relevant
to TKI resistance in EGFR-dependent cancers, especially in lung
cancer (Kwak et al., 2015; Liu et al., 2018). Meanwhile, MET
inhibitors, in combination with EGFR-TKIs, may provide an
effective approach to therapy for MET-positive and EGFR-TKI-
resistant tumors (Engelman et al., 2007; Pasquini and Giaccone,
2018), which would be of great importance regarding the role of
MET in EGFR resistance. Additionally, the activation of short-
form Ron, AKT-mammalian target of rapamycin (mTOR), or
the Wnt-β-catenin signaling pathway and the over-expression of
STAT3, cyclooxygenase-2, c-Myc, (ATP)-binding cassette (ABC)
gene 1, or heat shock protein 27 can also induce tumor resistance
to MET-TKIs (Etnyre et al., 2014; Wu et al., 2014, 2015; Shen
et al., 2015; Sugano et al., 2015; Cruickshanks et al., 2019). The
resistance mechanisms induced by the activated HGF/MET axis
pathway are summarized in Table 2.

HGF/MET signaling is aberrantly activated in different
solid tumors and associated with poor prognosis (Avan
et al., 2014). Cui et al. (2016) found that the activation of
HGF/MET signaling increases the expression and transcriptional
activity of forkhead box protein M1 (FOXM1) through ERK,
PI3K, and STAT3. Moreover, FOXM1 can bind to the MET
gene promoter to increase the expression of MET at the
transcriptional level. The positive feedback between HGF/MET
and FOXM1 signaling promotes the growth of pancreatic ductal
adenocarcinoma and induces resistance to MET inhibition
(Musiani et al., 2014). Specifically, HGF overexpression leads
to MET-TKI resistance through an autocrine mechanism in
gastric cancer cells (Cui et al., 2016). The activated SND1-
BRAF fusion protein, caused by an amplified chromosomal
rearrangement between 7q32 and 7q34, contains a constitutively
active BRAF kinase that increases ERK phosphorylation and
consequent hyperactivation of the downstream MAPK pathway,
eventually leading to resistance to MET-TKI (Ahn et al.,
2017). A similar outcome has been observed in another study,
where truncated RAF1 and BRAF were identified as significant
determinants of the resistance to MET inhibition in GTL-16 cells
(Lee et al., 2012).
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FIGURE 1 | Genomic alteration causing resistance to MET-targeted therapy. MET gene mutations D1228A/H/N/V, D1246N, Y1230C/H, Y1248H, G1163R, and MET
exon 14 “deleting and inserting” mutation (c.3019_3028 + 29delinsACCTA, p. Phe1007fs) cause resistance to type I MET-TKIs; MET gene mutations L1195 and
F1200 are responsible for the resistance to type II MET-TKIs. TKIs, tyrosine kinase inhibitors.

Some studies have demonstrated that the HGF/MET
axis-activated downstream PI3K signaling pathway plays an
important role in tumor resistance to MET inhibitors. For
instance, Ji et al. (2015) demonstrated that the MET-addicted
SNU-5 xenograft model developed resistance to MET inhibitors
due to PI3K p110α gene overexpression. A combination of
the two inhibitors, PHA665752 and PI-103, exerts a significant
synergistic anti-tumor effect on PHA665752-resistant xenografts
in vivo (Petti et al., 2015). Recently, Kim et al. (2019) showed
that increased MET and EGFR hetero-dimerization could result
in acquired resistance to capmatinib. Their study indicated that
the activation of EGFR signaling and/or genetic alteration of
the downstream effector phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit alpha (PIK3CA) are alternative
resistance mechanisms used by capmatinib-resistant NSCLC cell
lines. Hence, a combined treatment of MET, EGFR, and PI3K
inhibitors may be an effective therapeutic strategy in patients
with capmatinib-resistant NSCLC (Ji et al., 2015). Moreover,
dysfunction of the PI3K pathway is linked to resistance to anti-
MET antibodies. Especially, Pollmann et al. (2018) identified
two potential mechanisms of resistance, both involving PI3K
pathway activation, according to their long-term in vivo models
of either acquired resistance to the MET-targeting antibody
emibetuzumab due to PTEN loss or increased receptor tyrosine
kinase activation through increased MYC and ERBB3 copy
numbers. Furthermore, Sym015, a mixture of two monoclonal
antibodies that bind to non-overlapping MET epitopes,
effectively prevents or reduces these resistances due to its broader
mechanism of action (Kim et al., 2019).

Additionally, a few studies have shown that the kinase
activity of the proviral integration site for Moloney murine
leukemia virus (PIM) is required to acquire resistance to
MET inhibitors in the MET-dependent tumor model. PIM
1/3 upregulation is associated with acquired resistance
to MET inhibitors. PIM kinases mediate resistance to
MET inhibitors through the control of cap-independent
Bcl-2 translation (Pollmann et al., 2018). Indeed, Henry
et al. (2016) demonstrated that resistance to savolitinib (a
small-molecule inhibitor of MET) could be mediated by
PIM kinase signaling, and they showed PIM inhibition
restores savolitinib sensitivity in vitro and in vivo
(An et al., 2015).

A number of publications have reported that several micro-
RNAs (miRNAs) inhibit tumor progression by targeting MET
(Zheng et al., 2015; Henry et al., 2016). Furthermore, the role
of miRNAs in MET-TKI resistance has been confirmed in
preclinical models. Specifically, Migliore et al. (2018) showed
that miR-205 upregulation is associated with the resistance of
MET-addicted tumors to structurally different MET-TKIs (non-
selective, such as crizotinib, or selective, such as PHA-665752
and JNJ-38877605) via ERRFI1 targeting and consequent EGFR
activation (Karagonlar et al., 2015).

Overall, acquired resistance to HGF/MET-targeted therapy
can occur due to a variety of mechanisms: (i) second-
site mutations in the MET kinase domain or abnormal
activation of the HGF/MET signaling pathway, (ii) oncogene
overexpression or the induction of bypass signaling pathways,
(iii) copy number changes, and (iv) upregulation of downstream
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TABLE 2 | HGF/MET-associated oncogenic activation in therapeutic resistance.

Targeted drugs Treatment groups Resistant notes References

AMG337 Patient with MET amplified adenocarcinoma of the
distal esophagus;
MET-addicted EGC cell line SNU638

KRAS G12D mutation Kwak et al., 2015

Patient with metastatic gastric adenocarcinoma
with MET and HER2 co-amplification

RTK co-amplification Kwak et al., 2015

AS703026
(Pimasertib)

Gastric cancer cell line GTL-16/MKN-45;
Ovarian cancer cell line CAR1/CL14

Up-regulation of HSP27 Sugano et al., 2015

AZD6244
(Selumetinib)

Gastric cancer cell line GTL-16/MKN-45;
Ovarian cancer cell line CAR1/CL14

Up-regulation of HSP27 Sugano et al., 2015

Capmatinib Lung cancer cell line EBC-1 Overexpression of EGFR-MET
heterodimer

Ji et al., 2015

Crizotinib Gastric cancer cell line GTL-16/MKN-45;
Ovarian cancer cell line CAR1/CL14

Up-regulation of HSP27 Sugano et al., 2015

Harbors concomitant amplification of MET and
HER2 cell line OE33, MET-addicted EGC cell line
SNU638

HER2 overexpression

Gastric cancer cell line GTL16/SG16;
Lung cancer cell line EBC-1

Deregulation of the miR-205/ERRFI1
axis and caused EGFR activation

Karagonlar et al., 2015

Glioblastoma cell line U87/U373;
Stem cell line GSC827

Upregulation of mTOR, FGFR1, EGFR
STAT3, and COX-2

Etnyre et al., 2014

Patient-derived cell line LUAD12C;
H1993;
NIH-3T3

KRAS mutation Suzawa et al., 2019

EMD1214063 Lung carcinoma cell line H1993;
NIH3T3

KRAS and HRAS mutations Leiser et al., 2015

Emibetuzumab Gastric cancer cell line SNU5 PTEN loss, PI3K pathway activation Kim et al., 2019

GSK1363089 Gastric cancer cell line MKN45 Elevated the express and
phosphorylation of MET, and excessive
MET signaling

Funakoshi et al., 2013b

JNJ-38877605 Gastric cancer cell line GTL-16/MKN-45;
Ovarian cancer cell line CAR1/CL14

Up-regulation of HSP27 Sugano et al., 2015

Gastric cancer cell line Hs746T/MKN1 Increased HGF expression Cui et al., 2016

Gastric cancer cell line GTL16/SG16;
Lung cancer cell line EBC-1

Deregulation of the miR-205/ERRFI1
axis and caused EGFR activation

Karagonlar et al., 2015

MV-DN30 Lung cancer cell line EBC1 Overexpression of the MET receptor Martin et al., 2014

Onartuzumab Pancreatic cancer cell line AsPC-1/YAPC Dysregulation of PAK1, and PAK1
amplification

Zhou et al., 2014

Glioblastoma cell line U87/U373;
Stem cell line GSC827

Upregulation of mTOR, FGFR1, EGFR,
STAT3, and COX-2

Etnyre et al., 2014

PD98059 Gastric cancer cell line GTL-16/MKN-45;
Ovarian cancer cell line CAR1/CL14

Up-regulation of HSP27 Sugano et al., 2015

PHA665752 Gastric cancer cell line MKN45 Elevated the express and
phosphorylation of MET, and excessive
MET signaling

Funakoshi et al., 2013b

Gastric cancer cell line GTL-16 Truncated RAF1 and BRAF proteins Lee et al., 2012

Lung cancer cell line EBC-1 Activation of KRAS, and activation of
EGFR and FGFR2 signaling by a
MET-independent bypass pathway;
miR-138 regulate ABCB1
overexpression

Shen et al., 2015

Gastric cancer cell line Hs746T/MKN1 Increased HGF expression Cui et al., 2016

Gastric cancer cell line GTL16/SG16;
Lung cancer cell line EBC-1

Deregulation of the miR-205/ERRFI1
axis and caused EGFR activation

Karagonlar et al., 2015

(Continued)
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TABLE 2 | Continued

Targeted drugs Treatment groups Resistant notes References

Savolitinib Lung cancer cell line H1993/EBC-1 Aberrant mTOR activation;
MYC over-expression;
Activation of EGFR signaling;
and PIM kinases

An et al., 2015

SU11274 Melanoma cell line MU/RU Activation of Akt/mTOR and
Wnt/β-catenin pathways

Wu et al., 2015

EGFR, epidermal growth factor receptor; PIK3; phosphatidylinositol-4,5 -bisphosphate 3-kinase; KRAS, Kirsten rat sarcoma viral oncogene homolog; HRAS, Harvey rat
sarcoma viral oncogene homolog; PAK1; p-21-activated kinase 1; FGFR, fibroblast growth factor receptors; COX-2; cyclooxygenase-2; STAT3, signal transducer and
activator of transcription 3; HGF, hepatocyte growth factor; mTOR, mammalian target of rapamycin; MYC, myelocytomatosis viral oncogene; RTK, receptor tyrosine
kinase; PIM, proviral integration site for Moloney murine leukemia virus; PTEN, prime time entertainment network; ABCB1, adenosine triphosphate (ATP)-binding cassette;
ERRFI1, ERBB receptor feedback inhibitor-1; HSP, heat shock protein; HER2, human epidermal growth factor receptor 2; miR; micro-RNA.

FIGURE 2 | Oncogenic activation involved in resistance to MET-targeted therapy. Activated MET regulates FOXM1 expression in therapeutic resistance via ERK
signaling. SND1-BRAF activates BRAF kinase, subsequently phosphorylating ERK and activating MAPK. Overexpression of HSP27 or ABCB1 and activation of
STAT3, Wnt/β-catenin, RON or AKT/mTOR signaling pathways induce resistance to MET inhibition. PIM kinase regulates Bcl-2 translation in resistance to MET
inhibition. MET-EGFR heterodimerization activates PIK3CA; PI3K p110α overexpression induces resistance to MET inhibition by activated AKT. MiR-205 upregulation
reduces the expression of ERRFI1 and increases EGFR activity, causing MET-targeted resistance. HGF, hepatocyte growth factor; FOXM1, forkhead box M1; ERK,
extracellular signal-regulated kinase; MAPK, mitogen-activated protein kinase; HSP27, heat-shock protein 27; ABCB1, ATP-binding cassette subfamily B member 1;
STAT3, signal transducers and activators of transcription 3; RON, receptor originated from Nantes; mTOR, mammalian target of rapamycin; AKT, protein kinase B;
EGFR, epidermal growth factor receptor; PI3K, phosphatidylinositide 3-kinase; ERRFI1, ERBB receptor feedback inhibitor-1; PIK3CA,
phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha; PIM, proviral integration site for Moloney murine leukemia virus; miR, micro-RNA.

signaling molecules or formation of fusion proteins (Sequist
et al., 2011; Ohashi et al., 2013; Migliore et al., 2018).
Therefore, a major priority of researchers and physicians is
to identify the underlying mechanisms of MET-TKI resistance
in each patient through molecular studies to establish a more
effective therapeutic strategy for the management of drug
resistance (Figure 2).

Autophagic Compensation
Autophagy, one of several cellular adaptive responses to
therapeutic stresses caused by anti-cancer agents, is an
evolutionarily conserved proteolytic process in which damaged
cellular components are incorporated into lysosomes for
degradation and material recycling (Lin et al., 2017). Thus,
autophagy inhibition has been used concurrently with
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chemotherapies or targeted therapies to optimize their efficacy in
preclinical studies on various cancer types (White, 2015).

A complicated and diverse link exists between the HGF/MET
signaling pathway and cellular autophagy (Gallo et al., 2014;
Shen et al., 2017). For instance, Maroni et al. (2014) utilized
adenovirally expressed NK4 (AdNK4) plus dasatinib (DAS)
inhibitor to block the HGF/MET axis and Src activity, and the
combination of AdNK4 and DAS resulted in a state of autophagy
failure state, marked by p62 without Beclin 1, that largely
prevented osteolytic bone metastases through the dysfunctional
interplay between autophagy and anoikis (Barrow-McGee et al.,
2016). Li N. et al. (2017) found that the Helicobacter pylori
CagA protein negatively regulates autophagy via the MET-
PI3K/AKT-mTOR signaling pathway (Maroni et al., 2014).
Meanwhile, they also demonstrated that autophagy enhances the
chemosensitivity of papillary thyroid cancer by inhibiting MET.
Their study demonstrated that RAD001, an anti-tumor agent,
induces an autophagy-related protein expression that increases
autophagy, eventually leading to MET de-phosphorylation, and
consequently enhances the chemotherapeutic response (Li N.
et al., 2017). Increasing evidence shows that resistance to MET-
targeted therapy is closely related to tumor cell autophagy. Our
most recent study confirmed that HGF/MET kinase-targeted
drugs promoted autophagy, and the inhibition of autophagy
enhances the killing effects of MET-targeted drugs on human and
murine liver cancer cells. We further found that the key residues
for MET kinase activity (Y1234/1235) represent a conserved LC3-
interacting region motif (Y1234-Y1235-x-V1237). Furthermore,
we found that Y1234/1235-dephosphorylated MET is closely
related to the autophagic state found in human liver cancer
specimens, and a combination of MET and autophagy inhibitor
significantly improved the therapeutic effect against liver cancer
(Lin et al., 2010). Previous studies further showed that the MET
inhibitors EMD1214063 and PHA665752 promote protective
autophagy and cause tumor cell resistance to human gastric
cancer cells (Humbert et al., 2013). This is consistent with
the conclusion proposed by Lin et al., which stated that MET
inhibitors could induce autophagy-related protein expression
and flux increase. MET inhibitors increase autophagy in gastric
cancer cells through the mTOR and ULK1 de-phosphorylation
mechanisms. The combined use of MET and autophagy
inhibitors can effectively inhibit tumor growth (Lin et al., 2019).

Although the aforementioned studies suggest that MET
inhibitors can induce protective autophagy in tumor cells, which
allows these cells to acquire resistance to MET inhibition, it
is yet not clear whether a combination of inhibitors targeting
both MET and autophagy could improve the therapeutic efficacy.
Schroeder et al. (2017) found that autophagy inhibitors are not
effective at enhancing the efficacy of MET inhibitors. Their
study showed that crizotinib is sufficient to promote autophagy,
and autophagy inhibitors prevent cytochrome c release, thus
attenuating apoptosis. Therefore, they speculated that autophagy
is required for crizotinib-induced apoptosis in MET-amplified
gastric cancer cells (Schroeder et al., 2017). Similarly, one study
reported that MET inhibitors increased the ratio of autophagy
and the inhibition of autophagy down-regulated oridonin-
induced apoptosis. They also found that apoptosis increases

autophagy in cells co-treated with oridonin and SU11274 (a MET
inhibitor) (Liu et al., 2013).

Taken together, the aforementioned reports highlight that,
despite the fact that MET inhibitors effectively promote
autophagy, this process is still dependent on the specific
biological conditions of the cells, such as the stress to which they
are subjected. Therefore, the mechanism of autophagy-induced
MET inhibitor resistance needs further confirmation (Figure 3).

Immunological Regulation
Accumulating evidence suggests a close relationship between
MET and immune regulation. For instance, constitutive
MET expression was observed in hematopoietic progenitor
cells and antigen-presenting cells, including B cells,
monocytes/macrophages, and dendritic cells (DCs). Moreover,
exposure to pro-inflammatory cytokines can lead to the
induction or upregulation of MET expression in various cell
types. In addition, HGF/MET signaling affects numerous
immune cells, including mast cells (McCall-Culbreath et al.,
2008), DCs (Baek et al., 2012), Langerhans cells (Sagi and
Hieronymus, 2018), and neutrophils (Finisguerra et al., 2015).

The binding of Listeria monocytogenes internalin B to MET
provides the functionality required for peritoneal mast cell
activation, and crosstalk between MET and α2β1 integrin may
contribute to mast-cell activation in autoimmune conditions
(McCall-Culbreath et al., 2008). Baek et al. (2012) found
MET signaling regulated matrix metalloproteinase (MMP)2 and
MMP9 activity, and unveiled MET signaling in DCs as a critical
determinant for the maintenance of normal immune function.
When the HGF/MET signal was blocked in DCs, dysfunction
in the migration and activation of innate immune cells was
observed (Baek et al., 2012). HGF was shown to impair DC
activation, resulting in a diminished antigen-presenting capacity
(Okunishi et al., 2005; Singhal and Sen, 2011). Furthermore,
HGF-treated DCs showed increased expression of programmed
cell death 1 ligand 1 (PD-1 ligand 1, PD-L1) and IL-27
(Benkhoucha et al., 2014). However, in response to infection or
tissue injury, the production of HGF is further stimulated by
pro-inflammatory cytokines, whereas anti-inflammatory factors
inhibit HGF production (Gohda et al., 1992a,b; Inaba et al.,
1993; Tamura et al., 1993; Liu et al., 1994). Therefore, our
understanding of HGF/MET signaling mechanisms is still in its
infancy and should be extended.

MET is required for chemoattraction and cytotoxicity of
neutrophil in response to its ligand, HGF. MET deletion in
neutrophils leads to the enhancement of tumor growth and
metastasis (Finisguerra et al., 2015). Thus, MET blockade in
antitumor neutrophils limits the therapeutic efficacy of systemic
MET inhibitors (No authors listed, 2015). However, Glodde
et al. (2017) found that in the absence of MET inhibition,
neutrophils were recruited to T cell-inflamed microenvironments
(with CD8 + T cell infiltration and type I interferons) (Woo et al.,
2015; Spranger, 2016) and rapidly acquired immunosuppressive
properties, thus restraining T cell expansion and effector
function. This result demonstrates a role for the HGF/MET
pathway in neutrophil recruitment and function and suggests
that MET inhibitor co-treatment may improve responses to
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FIGURE 3 | Autophagic compensation in resistance to MET-targeted therapy. CagA protein negatively regulates autophagy via the MET-mTOR signaling pathway;
MET inhibition induces mTOR activation and ULK1 dephosphorylation to increase autophagy; Y1234/1235 dephosphorylation of MET mediates the metabolic
transformation to autophagy; crizotinib and oridonin strengthen the positive feedback loop between autophagy and apoptosis in the resistance. mTOR, mammalian
target of rapamycin; PDHC, pyruvate dehydrogenase complex; GLS, glutaminase; ULK1, UNC-51–like kinase.

cancer immunotherapy in MET-independent tumors by directly
activating T cell-mediated anti-cancer immunity (Glodde et al.,
2017). Overall, MET inhibitors affect MET expression in tumor-
associated immune cells and are a potential mechanism for
drug resistance.

Many recent studies have focused on the application of
immune checkpoint inhibitors in combination with other drugs.
Li et al. showed that MET downregulates PD-L1 expression
through the phosphorylation and activation of glycogen synthase
kinase 3β. Experiments confirmed that MET-specific inhibitors
upregulate the expression of PD-L1, thereby compromising
the tumor-killing effect of MET inhibitors (Li et al., 2019).
However, Martin et al. discovered that PD-L1 and PD-L2 were
upregulated in MET-amplified tumor cells after interferon-γ
(IFNγ) treatment. MET inhibitors could neutralize the activation
of Janus kinases/STAT1 (signal transducers downstream of
the IFNγ receptor) and counteract the induction of PD-1
ligands by IFNγ in MET-amplified cancers (Martin et al.,
2019). Interestingly, both articles concluded that MET inhibitors
combined with immune checkpoint inhibitors might have
additional clinical benefits. Therefore, the mechanisms of
resistance to MET inhibitors should be confirmed by further
research involving immune checkpoints. The context-dependent
effects of MET on PD-L1 and other immune checkpoints may

be a promising research direction to overcome HGF/MET-related
drug resistance (Figure 4).

Microenvironmental Interference
The tumor microenvironment includes fibroblasts, the
extracellular matrix (ECM), immune and other cells, and
molecules. It has recently been recognized as an important factor
in sustained resistance to targeted therapies. For example, the
production of ligands in a paracrine manner can activate signals
that are able to compensate for drug-inhibited pathways in tumor
cells (Harbinski et al., 2012; Straussman et al., 2012; Wilson et al.,
2012). Tumor-associated fibroblasts are important factors in
the tumor microenvironment and constitute a heterogenous
group of fibroblasts whose function is pirated by cancer cells
and redirected toward carcinogenesis (Marsh et al., 2013).
Tumor-associated fibroblasts secrete HGF, whose overexpression
activates downstream signals, causing primary or secondary
tumor resistance (Straussman et al., 2012; Wilson et al., 2012).

Ahn et al. (2017) also showed that HGF caused MET inhibitor
resistance in a paracrine manner. MET inhibitors inhibit
proliferation, invasion, migration, and HGF/MET downstream
signaling in gastric MET-amplified cancer cells, but HGF
overexpression in cancer cells impairs this phenomenon.
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FIGURE 4 | Immunological regulation of resistance to MET-targeted therapy. MET inhibition impairs the recruitment of reactive neutrophils to tumor cells, potentiating
T cell-mediated anti-tumor immunity; tumor-derived TNFα or inflammatory stimuli increase MET expression in anti-tumor neutrophils to release more nitric oxide,
facilitating tumor cell killing; MET inhibitors downregulate PD-L1 expression via different signaling molecules. PD-L1, programmed cell-death ligand 1; GSK3B,
glycogen synthase kinase 3β; JAK, Janus kinase; TNFα; tumor necrosis factor α.

Additionally, HGF promotes the formation of anchorage-
independent colonies of MET-amplified gastric cancer cells (Cui
et al., 2016). Apicella et al. (2018) showed that lactate enhanced
the formation of HGF by tumor-associated fibroblasts, which
in turn activated MET-dependent signaling pathways in cancer
cells, causing resistance to MET inhibitors. Tumor-associated
fibroblasts are able to rework the ECM to include more paracrine
HGF. HGF overexpression further affects the activation of MET
and its downstream signaling pathways, thereby causing tumor
resistance to MET inhibitors.

In addition, hypoxia is a characteristic of the tumor
microenvironment and is closely related to resistance to MET-
targeted inhibitors. Recent studies have shown that under
hypoxic conditions, tumor cells developed resistance to MET
inhibitors (PHA-665752 and SU11274) and, interestingly, could
recover their sensitivity to MET-TKI when normoxia was
restored. Hypoxia significantly reduces the phosphorylation of
critical MET residues, whereas MET downstream signaling, AKT,
and ERK are not affected. After restoration from hypoxia, MET
phosphorylation and activity can be quickly recovered (Mekki
et al., 2018). These phenotypes indicate that there are functional
transfers between MET and other similar factors when switching
from hypoxia to normoxia and vice versa. Moreover, MET-TKI
inhibitor resistance under hypoxia may be partially dependent

on the sustained activation of the HGF/MET downstream
signaling pathway. As previously mentioned, alteration of MET
phosphorylation may also cause tumor cell resistance. Hypoxia
is caused by a long-term lack of blood supply and is seen in a
variety of solid tumors. Thus, the failure of MET inhibitors in
multiple clinical phase III trials was not surprising. Therefore, the
microenvironment-relevant mechanisms for resistance to MET
inhibition should be further analyzed (Figure 5).

RECENT ADVANCES IN THE
IMPROVEMENT OF MET-TARGETED
THERAPEUTIC EFFICACY

Although many inhibitors and antibodies against HGF/MET are
available, most of them are designed to block HGF-mediated
MET activation or directly inhibit the kinase activity of MET.
However, due to the aforementioned reasons, the targeting
mechanisms of MET inhibitors may potentially cause drug
resistance and poor clinical efficacy. Therefore, it is important
to improve the clinical efficacy of MET inhibitors to reduce
the occurrence of drug resistance. According to these needs,
we have constructed an anti-MET single-domain nanoantibody
(VHH) pool to improve the efficacy of MET inhibitors. The
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FIGURE 5 | Microenvironmental interference in resistance to MET-targeted therapy. Hypoxia induces the reduction of MET phosphorylation, causing resistance to
MET inhibitors. Metabolic changes contribute to tumor cells’ resistance to MET inhibitors by promoting CAFs to secrete more HGF. CAF, cancer-associated
fibroblast; HGF, hepatocyte growth factor; NFκB, nuclear factor-κB.

anti-MET VHH pool against the whole MET ectodomain
can effectively decrease MET phosphorylation and protein
expression, and inhibit tumor cell proliferation, invasion, and
tumor growth (Su et al., 2019). However, further studies are still
needed to examine its potential clinical effects and establish its
suitability for patients with MET-inhibitor resistance. In addition,
recent studies suggest that the MET antibody mixture, Sym015,
overcomes acquired resistance. An emibetuzumab-resistant cell
line remained sensitive to the Sym015 antibody, which can
induce antibody-dependent cell-mediated cytotoxicity to inhibit
tumor growth, thereby overcoming emibetuzumab resistance
(Kim et al., 2019).

As we have previously explained, the HGF/MET signaling
pathway is closely related to tumor immunity and, thus,
researchers reconsidered an HGF/MET-targeted strategy for
immunological stimulation and activation to obtain better
tumor-killing effects. A bispecific monoclonal antibody targeting
MET and PD-1 has been designed, developed, and tested for
multiple cancer models by Sun et al. (2017). They achieved
good preclinical results, revealing that the bispecific MET/PD-
1 antibody could effectively promote the degradation of MET
protein. Thus, the antibody inhibits the activation of HGF/MET
axis downstream signaling and tumor growth, and reduces the
release of the inflammatory factor IL-6, thus suggesting a vast
therapeutic potential (Sun et al., 2017). Similarly, Thayaparan
et al. (2017) reported that NK1-targeted chimeric antigen
receptors mediated MET-dependent T-cell activation and the
destruction of mesothelioma cells. Since the HGF/MET signaling
pathway plays a crucial role in tumor progression, the design of

new antibodies and inhibitors considering different perspectives
is of great value for improving the efficacy of MET-targeted
drugs. MET inhibitors or antibody drugs resulted in excellent
results in preclinical studies, but no satisfactory clinical outcomes
have been obtained in subsequent clinical studies. Therefore,
improvements in the efficacy of MET inhibitors should be further
explored in future studies.

FURTHER CONSIDERATIONS

Acquired resistance to targeted therapy can occur through
numerous mechanisms, including MET point mutations,
increasing copy number, and bypassing signaling pathway
activation. Some studies suggested that switching from type I to
type II inhibitors, or vice versa, results in an acquired resistance
mutation to each type (Engstrom et al., 2017; Reungwetwattana
et al., 2017). For instance, Engstrom et al. (2017) reported that
MET-addicted SNU-638 gastric cancer cells with D1228N and
Y1230C/H MET mutations were resistant to type I MET-TKIs
but sensitive to glesatinib (type II) (Engstrom et al., 2017).
However, switching from type I to type II, or vice versa, may not
always be effective in MET-TKI resistant tumors. Some secondary
mutations, such as D1228A/Y, cause tumor resistance to both
type I and type II MET-TKIs. Moreover, concurrent aberrations,
such as KRAS mutation or amplification with MET amplification
and the upregulation of HGF, may also have an influence on
sensitivity to MET-TKIs (Bahcall et al., 2018; Suzawa et al., 2019).
Additionally, unsatisfactory outcomes of the clinical applications
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of drugs targeting MET kinase activity or activation suggest the
need to consider whether the kinase-independent functions of
MET have been neglected. For instance, MET is closely related
to tumor autophagy, metabolism, and microenvironment, all of
which are not entirely dependent on the kinase activity of MET.

Cancer promotion and survival depend on the complex
signaling network between tumor and stromal cells in the
surrounding microenvironment. Furthermore, HGF is secreted
by both cancer and stromal cells. As Katayama et al. (2012)
suggested, the stromal secretion of stem cell factors leads
to the activation of its receptor, KIT, which may promote
crizotinib resistance. Likewise, Apicella et al. (2018) reported that
cancer-associated fibroblasts produce HGF, further activating
MET-dependent signaling in cancer cells and resulting in
sustained resistance to TKIs. Therefore, the paracrine factors of
tumor and stromal cells have a potentially important role in
driving TKI resistance.

The HGF/MET pathway is considered a promising target
in multiple cancer types. Resistance is the result of the
complex interactions among various receptor tyrosine kinases
and other proliferative signals. Thus, the mere inhibition of
MET phosphorylation with a single drug treatment may be
insufficient to suppress the HGF/MET pathway (Morgillo et al.,
2017). Encouraging preclinical results have shown that the
combination of MET-TKI and immunotherapy achieved effective
anti-tumor effects and also brought new hope for the next-
generation of MET-TKIs.

Taken together, the role of HGF/MET in cancer seems to be
quite complicated. HGF/MET has oncogenic and pro-metastatic
effects, but also has anti-cancer functions. Accumulating evidence
suggests a close relationship between the HGF/MET signaling
pathway and induction of the immune response. Thus, it
remains uncertain whether it acts as an immunosuppressive
or an immune-positive stimulus. Therefore, more in-depth

investigations of these controversies should be performed to
provide a better understanding of the mechanisms of resistance
and accelerate the development of next-generation MET-TKI-
targeting drugs.
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