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An in-depth appreciation of organ form and function relies on the ability to image intact
tissues across multiple scales. Difficulties associated with imaging deep within organs,
however, can preclude high-resolution multidimensional imaging of live and fixed tissues.
This is particularly challenging in the mammary gland, where the epithelium lies deeply
encased within a stromal matrix. Recent advances in deep-tissue and live imaging
methodologies are increasingly facilitating the visualization of complex cellular structures
within their native environment. Alongside, refinements in optical tissue clearing and
immunostaining methods are enabling 3D fluorescence imaging of whole organs at
unprecedented resolutions. Collectively, these methods are illuminating the dynamic
biological processes underlying tissue morphogenesis, homeostasis, and disease. This
review provides a snapshot of the current and state-of-the-art multidimensional imaging
techniques applied to the postnatal mammary gland, illustrating how these approaches
have revealed important new insights into mammary gland ductal development
and lactation. Continual evolution of multidimensional image acquisition and analysis
methods will undoubtedly offer further insights into mammary gland biology that
promises to shed new light on the perturbations leading to breast cancer.

Keywords: mammary gland development, breast cancer, 3D imaging, 4D imaging, intravital microscopy,
mammary stem cells, lactation

INTRODUCTION

Life is underpinned by a series of dynamic biological events tightly coordinated in space and
time. Consequently, real-time visualization of cellular processes unfolding in their most relevant
contexts is paramount for an in-depth understanding of tissue development and disease (Follain
et al., 2017). Recent advances in rapid, high-resolution imaging methodologies, genetically-encoded
fluorophores and in vivo models are enabling this endeavor, illuminating the dynamic cellular
and subcellular events that underpin life (Follain et al., 2017). This mini-review focuses on the
application of multidimensional imaging methods to the mammary gland, a secretory organ
essential for mammalian offspring survival.

The adult mammary gland comprises of a branched ductal epithelium sheathed by an adipocyte-
rich stroma. Two principle cell lineages form the mammary epithelial bi-layer; an inner layer of
luminal cells enveloped by a layer of myoepithelial (basal) cells. Mammary gland development
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is a multi-stage process, occurring during embryogenesis, puberty
and repeated pregnancy cycles (Watson and Khaled, 2008; Macias
and Hinck, 2012). This dynamicity was first depicted in 1933 via
a sequence of camera lucida drawings of murine mammary gland
morphology at different stages of development (Cole, 1933).
Subsequent advances in light and electron microscopy rapidly
revealed the intricate architecture of the mammary epithelium,
laying the groundwork for future studies into the molecular
mechanisms that underlie mammary gland form and function
(reviewed in Neville, 2009). The mouse is an excellent model
for investigating processes regulating human mammary gland
biology, providing relevant insights into the perturbations that
give rise to breast cancer (Sreekumar et al., 2015).

Historically, detailed microscopic analyses of mammary
gland tissues have been restricted to thin, two-dimensional
(2D) sections. While informative, with enduring relevance,
tissue sections lack architectural context and are hampered by
assumptions regarding the uniformity of a particular 2D plane
(Sale and Pavelic, 2015; Lloyd-Lewis et al., 2016). Moreover,
biological entities are intrinsically three-dimensional (3D), and
their true nature cannot be ascertained by a thin section
(Richardson and Lichtman, 2015). Volumetric 3D imaging,
therefore, is necessary to reveal the spatially complex topology
of the branched mammary epithelium. In addition, as fixed
tissue analyses are limited to snapshots in time, four-dimensional
(4D, x-, y-, z-, t-) live cell imaging is required to interrogate
the inherently dynamic processes underpinning the development
and function of this complex tissue.

Herein, this mini-review provides an overview of the available
strategies for high-resolution multidimensional fluorescence
imaging of mammary gland tissues at the microscopic scale.
Due to space constraints, technologies for imaging at the nano-,
meso-, and macro-scale will not be discussed here. Subsequently,
this article will briefly highlight recent 3D and 4D imaging
studies that have provided important insights into mammary
gland ductal development and lactation, which could not have
been resolved using conventional histological techniques.

FLUORESCENCE LIGHT MICROSCOPY
PLATFORMS FOR HIGH-RESOLUTION
MULTIDIMENSIONAL IMAGING

High-resolution fluorescence 3D and 4D microscopic imaging
can be performed using optical sectioning techniques such
as confocal (Conchello and Lichtman, 2005), multiphoton
(Helmchen and Denk, 2005; Dunn and Young, 2006) and light
sheet microscopy (LSFM) (Huisken et al., 2004; Keller et al.,
2008). Broadly, optical sectioning acquires images of thin focal
planes within thick specimens by eliminating the contribution of
out-of-focus light and scatter in each image plane. This provides
greater contrast, allowing stacks of images captured at serial focal
planes to be computationally combined for 3D reconstruction
(Conchello and Lichtman, 2005). The universal utility of
these imaging approaches for multidimensional microscopy,
particularly for in vivo cell biology, are discussed in detail
elsewhere (Timpson et al., 2011; Follain et al., 2017).

In general, confocal microscopy is the most commonly
used optical sectioning technique for fluorescence 3D imaging.
However, confocal modalities rely on excitation wavelengths
in the visible range that suffer from tissue light absorption
and scattering, limiting imaging depths to superficial regions
(∼100 µm) in most specimens (Conchello and Lichtman, 2005;
Follain et al., 2017). Nevertheless, when important biological
information can be garnered from near-surface tissue areas,
confocal microscopy is associated with a number of advantages,
including widespread accessibility, relatively fast acquisition
speeds and flexible multicolor acquisition capabilities (Egeblad
et al., 2008; Ebrahim and Weigert, 2019).

For deep tissue fluorescence imaging, multiphoton
microscopes equipped with pulsed infrared lasers are frequently
used. This approach relies on the simultaneous absorption of two
or more low-energy infrared photons for fluorophore excitation.
In turn, this confines two-photon excitation to a limited focal
volume, enabling optical sectioning alongside reduced photo-
toxicity and bleaching (Helmchen and Denk, 2005; Dunn and
Young, 2006). Moreover, long-wavelength excitation by infrared
lasers are associated with decreased tissue scattering and light
absorption, facilitating deeper light penetration and imaging
depths of up to 1 mm in many tissues. In addition, by exploiting
the physical and auto-fluorescent properties of endogenous
molecules, nonlinear multiphoton-excitation facilitate second
(SHG) (Campagnola et al., 2002) or third (THG) harmonic
generation imaging of non-labeled cellular components, such as
collagen and lipids (Friedl et al., 2007; Weigelin et al., 2016).

Light sheet fluorescence microscopy (LSFM) is a powerful
method that performs optical sectioning using a thin plane
of light, allowing focal planes to be captured in a single
exposure (Huisken et al., 2004; Keller et al., 2008). This facilitates
rapid and long-term 3D imaging of specimens, including live
mouse embryos, at high spatiotemporal resolution with minimal
photodamage (Power and Huisken, 2017; Katie McDole et al.,
2018; Wan et al., 2019). Similarly to confocal microscopy,
however, LSFM is constrained by tissue light scattering, limiting
its application to relatively transparent or thin samples (Wan
et al., 2019). In addition, the unique optical geometry inherent to
most current configurations pose significant barriers for sample
maintenance during acquisition (Benninger and Piston, 2013),
precluding in vivo imaging of adult mice by LSFM. Nevertheless,
when combined with optical tissue clearing (discussed below),
LSFM facilities rapid whole-organ 3D imaging of fixed specimens
(Keller and Ahrens, 2015; Susaki and Ueda, 2016), including the
mammary gland (Lloyd-Lewis et al., 2016).

3D IMAGING STRATEGIES FOR FIXED
TISSUES

All light microscopy methods are hampered by tissue light
scattering and absorption, which ultimately defines the limit
of depth penetration (Wan et al., 2019). The mammary
gland is a case in point, as the adipocyte-rich stroma poses
significant barriers for high-resolution, deep tissue 3D imaging.
Consequently, a number of strategies are used to improve
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mammary gland wholemount immunostaining and depth of
imaging in fixed tissues, including microdissection (Rios et al.,
2014, 2016b), enzymatic digestion (Wuidart et al., 2016, 2018;
Scheele et al., 2017; Lilja et al., 2018), and optical tissue
clearing (Davis et al., 2016; Lloyd-Lewis et al., 2016, 2018; Elias
et al., 2017; Seong et al., 2018; Chen et al., 2019; Hitchcock
et al., 2019; Rios et al., 2019; Stewart et al., 2019). Tissue
microdissection facilitates high-resolution 3D imaging of large
areas of the ductal epithelium within stroma-divested mammary
glands (Rios et al., 2014). Conversely, proteolytic digestion of
mammary tissues prior to immunostaining results in improved
antibody penetrations, enabling whole-gland 3D imaging of
slide-mounted tissues (Wuidart et al., 2016, 2018; Scheele
et al., 2017; Lilja et al., 2018). This approach, however, risks
damaging or depleting epithelial and stromal cell populations
within the mammary fat pad (Rios et al., 2016a), prohibiting its
widespread utility. Alternatively, tissue clearing techniques can
be harnessed to improve optical access and depth of imaging in
intact mammary gland tissues (Richardson and Lichtman, 2015;
Lloyd-Lewis et al., 2016).

Recent innovations in optical sectioning microscopy,
particularly LSFM, have precipitated the development of
numerous optical tissue clearing techniques aimed at rendering
biological specimens transparent (Richardson and Lichtman,
2015; Tainaka et al., 2016). These methods seek to increase
tissue imaging depths by minimizing light scattering caused by
mismatches in refractive indices (RIs) between heterogeneous
cellular components. Broadly, optical clearing methods rely
on organic solvent-based (e.g., 3DISCO; Erturk et al., 2012) or
aqueous reagent-based clearing agents (e.g., Scale, Hama et al.,
2015; SeeDB, Ke et al., 2013; CUBIC, Susaki et al., 2014; FRUIT,
Hou et al., 2015; Ce3D, Li et al., 2017; UbasM, Chen et al., 2017)
to equilibrate RIs within a tissue (Table 1 and recently reviewed
in Matryba et al., 2019). Samples may also be hydrogel-embedded
prior to clearing to preserve cellular structures (e.g., “active”
and “passive” CLARITY methods; Chung and Deisseroth, 2013;
Yang et al., 2014).

By testing a number of these techniques in the mammary
gland, a recent study demonstrated that SeeDB (Ke et al.,
2013) and CUBIC (Susaki et al., 2014) protocols enable high-
resolution 3D imaging of expansive regions of the mammary
epithelium within its native stroma (Figure 1A and Table 1;
Lloyd-Lewis et al., 2016). These protocols have subsequently
been further developed (Ke et al., 2016; Tainaka et al., 2018),
although they remain to be tested in mammary tissues. A recent
study also determined the compatibility of CLARITY tissue
clearing with 3D imaging of human breast tumor biopsies and
archived paraffin embedded samples, highlighting the utility
of this approach for enhanced visualization of intra-tumoral
heterogeneity in breast cancers (Chen et al., 2019). Thus, optical
tissue clearing and 3D imaging of surgically-resected breast
tumors holds great potential for improved tumor classification,
and thereby treatment strategies, in breast cancer patients.
Nonetheless, several tissue clearing methods are disadvantaged
by long incubation times, particularly when combined with
immunostaining protocols (Richardson and Lichtman, 2015).
Difficulties associated with sample mounting, in addition to

antibody penetration and performance, also pose challenges
for comprehensive deep tissue 3D imaging of mammary gland
wholemounts and tumors (Lloyd-Lewis et al., 2016). To address
these constraints, a recent study developed a new aqueous-
reagent-based tissue clearing reagent (FUnGI) that renders
human and murine mammary tissues transparent in 2 h (Rios
et al., 2019). When combined with immunolabeling, this protocol
spans 3 days, achieving uniform antibody staining that enables
large-scale 3D imaging of the mammary epithelium and tumors
at single-cell resolution (Rios et al., 2019). The continual
development of tissue clearing reagents and 3D image analysis
pipelines adapted for human organs (Zhao et al., 2020) will
undoubtedly help facilitate the transfer of high-resolution 3D
imaging to clinical practice.

Thus far, high-resolution deep tissue and/or whole-gland 3D
imaging has mostly been harnessed in genetic fate-mapping
studies in the mammary gland (Rios et al., 2014; Davis
et al., 2016; Wuidart et al., 2016, 2018; Elias et al., 2017;
Lilja et al., 2018; Lloyd-Lewis et al., 2018; Seong et al.,
2018) and tumors (Van Keymeulen et al., 2015; Rios et al.,
2019), where the ability to visualize expansive regions of the
mammary epithelium is paramount for accurate and quantitative
clonal analysis. Notably, in contrast to enzymatic digestion or
mechanical dissection, most optical tissue clearing protocols
preserve tissue and matrix architecture (Lloyd-Lewis et al., 2016).
This provides opportunities, therefore, to explore interactions
between mammary epithelial cells and their surrounding cellular
and non-cellular [e.g., extracellular matrix (ECM)] niche by
deep tissue 3D imaging (Inman et al., 2015). In this vein, two
recent studies used optical tissue clearing and deep tissue 3D
imaging to characterize mammary resident CD45+ leucocyte
(Hitchcock et al., 2019), and more specifically macrophage
(Stewart et al., 2019), populations at different stages of
mammary gland development. Whilst CD45+ cells/macrophages
were observed at all developmental stages, their prevalence,
morphology, localization and interactions with the mammary
epithelial bilayer exhibited stage-specific differences (Hitchcock
et al., 2019; Stewart et al., 2019). These interesting findings
suggest a surprisingly dynamic interplay between immune cells
and the mammary epithelium, which could not have been
revealed using conventional histological techniques.

4D INTRAVITAL IMAGING IN THE
MAMMARY GLAND: TECHNICAL
CONSIDERATIONS

In vivo imaging is an indispensable tool in basic, pre-
clinical and clinical research, and is routinely used in medical
practice (Condeelis and Weissleder, 2010). While low-resolution
imaging approaches (including computed tomography, magnetic
resonance imaging, and positron emission tomography) provide
valuable anatomic and physiological information into biological
tissues and tumors, these imaging modalities lack the resolution
to visualize individual cells in vivo. By contrast, high-resolution
intravital microscopy (IVM) facilitates real-time microscopic
imaging of individual cells within intact tissues in live
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TABLE 1 | An overview of the tissue clearing methods applied to mammary gland tissues and/or tumors.

Preservation
Time to Clearing Mammary gland Original

Method Method overview Key components RI clearb capability IHC Structure FP references references

3DISCO Organic solvent
based

Dichloromethane/
dibenzyl ether

1.56 2 days Strong Difficult (iDisco)c Compromised –
shrinkage

Rapid loss Erturk et al., 2012;
Lloyd-Lewis et al.,
2016

Erturk et al., 2012

CLARITY Aqueous solution
based – hydrogel
embedding

SDS/acrylamide/Rapiclear/
80% glycerol

1.52 10 days Strong Compatible Preserved Preserved Chen et al., 2019 Chung and
Deisseroth, 2013

PACTa Aqueous solution
based – hydrogel
embedding

SDS/acrylamide/
sRIMS/Rapiclear

1.45–1.46 10–14 days Weak Compatible Preserved – mild
expansion

Preserved Lloyd-Lewis et al.,
2016

Yang et al., 2014

Ce3D Aqueous solution
based – simple
immersion

N-methylacetamide/
Histodenz

1.49–1.5 2 h Strong Not tested Not analyzed Not tested Rios et al., 2019 Li et al., 2017

SeeDB Aqueous solution
based – simple
immersion

Fructose/thioglycerol 1.49 5 days Moderate Compatible Preserved – mild
shrinkage

Preserved Davis et al., 2016;
Lloyd-Lewis et al.,
2016, 2018; Elias
et al., 2017

Ke et al., 2013

FRUIT Aqueous solution
based – simple
immersion

Fructose/Urea 1.49–1.5 3 days Poor Not tested Not analyzed Not tested Rios et al., 2019 Hou et al., 2015

ScaleS Aqueous solution
based – simple
immersion

Urea/Sorbitol 1.38 3 days Strong Not tested Not analyzed Not tested Rios et al., 2019 Hama et al., 2015

FUnGI Aqueous solution
based – simple
immersion

Urea/fructose/
glycerol

1.46 2 h Strong Compatible Preserved Preserved Rios et al., 2019 Rios et al., 2019

UbasM Aqueous solution
based – simple
immersion

Urea/Amino-sugars Not provided 7–12 days Not shown Not tested Not analyzed Preserved Chen et al., 2017 Chen et al., 2017

CUBIC Aqueous solution
based – simple
immersion

Urea/sucrose 1.48–1.49 5 days Strong Semi-compatibled Preserved – mild
expansion

Some lossd Davis et al., 2016;
Lloyd-Lewis et al.,
2016, 2018; Seong
et al., 2018;
Hitchcock et al.,
2019; Stewart
et al., 2019

Susaki et al., 2014

aPACT (passive clarity technique) performed using either Rapiclear or sRIMS (sorbitol RI-matching solution) for imaging in Lloyd-Lewis et al. (2016). b Including fixation time. c3DISCO protocol combined with optimized
whole-mount immunolabeling procedures (iDISCO). Fluorescence signal is rapidly quenched using benzyl alcohol benzyl benzoate (BABB) and specialized imaging chambers are required for imaging in dibenzyl ether.
dMay be improved using second generation CUBIC protocol (R1A, unpublished, protocol available at http://cubic.riken.jp/) and newer derivatives (Tainaka et al., 2018). RI, refractive index; FP, fluorescent protein; IHC,
immunohistochemical analysis. Not analyzed/tested means not assessed in mammary gland tissues.
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FIGURE 1 | Microscopic 3D and 4D imaging of mammary gland ductal development and lactation. (A) Optical tissue clearing and 3D imaging of fixed mammary
tissues. Transmission images of harvested abdominal mammary glands before and after tissue clearing using CUBIC or SeeDB protocols. Grid width: 2 mm. 3D
confocal imaging of mammary epithelial structures immunostained for Smooth Muscle Actin (SMA) in cleared virgin and lactating mammary tissues. Scale bars,
100 µm. (B) 4D intravital imaging approaches. Intravital microscopy can be performed either by surgically exposing the tissue via a skin-flap incision for multiple
hours (non-recovery imaging, <40 h), or by implanting optical imaging windows for longitudinal imaging spanning multiple days to weeks. While confocal microscopy
is suitable for imaging superficial tissue regions, multiphoton excitation is required for deep-tissue imaging, particularly through mammary imaging windows.
(C) Clonal patterns arising from the genetic labeling of a single EYFP+ epithelial cell in the mammary gland of a ∼7 week old R26[CA]30EYFP mouse. SeeDB tissue
clearing and immunostaining were performed prior to 3D imaging by confocal microscopy. Labeled progeny span multiple ducts and branches, and exhibit a
sporadic, interspersed labeling pattern, emphasizing the importance of performing whole-gland and/or deep tissue 3D imaging for accurate clonal analysis. These
patterns likely arise from the proliferation and intermixing of both labeled and unlabeled terminal end bud (TEB)-resident precursors, which have equipotent potential
to contribute to ductal elongation. Scale bars, 100 µm. (D) Confocal intravital imaging of fluorescent BODIPY-stained lipid droplets (LDs) in surgically-exposed
lactating mammary glands. Release of LDs from the apical surface is mediated by oxytocin (OT)-induced myoepithelial cell contractions. 3D images and 2D sections
of the same alveolus before and after OT exposure are shown. White arrowhead points to an LD that was embedded in the cytoplasm prior to alveolus contraction.
Scale bars, 30 µm. Images in (A,C) adapted from Davis et al. (2016) Nature Communications, under https://creativecommons.org/licenses/by/4.0/. Images in (D)
adapted from Masedunskas et al. (2017) Mol Biol Cell, under https://creativecommons.org/licenses/by-nc-sa/3.0/.
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animals (Pittet and Weissleder, 2011). This powerful approach
is increasingly harnessed in experimental and pre-clinical
studies in fields spanning developmental biology, immunology,
neuroscience, and cancer research (Condeelis and Weissleder,
2010; Nobis et al., 2018). Although currently limited, the utility
of high-resolution IVM for clinical use (e.g., in dermatology, laser
endomicroscopy) is an active area of research (Coste et al., 2019).

To undertake high-resolution IVM of internal organs, they
must be made available to the microscope’s objective. The
superficial location of the mammary gland makes it amenable
to IVM via a “skin-flap” incision, which exposes the tissue
for imaging while maintaining its structure and perfusion in
the anesthetized mouse (Figure 1B; Ewald et al., 2011a,c).
This strategy is appropriate for short-to-medium-term IVM of
mammary glands for up to 40 h under non-recovery anesthesia
(Egeblad et al., 2008; Ewald et al., 2011b,c). For consecutive
IVM in longitudinal studies, however, surgical implantation of
an optical mammary imaging window is required (Figure 1B;
Kedrin et al., 2008; Gligorijevic et al., 2009; Ritsma et al., 2012;
Zomer et al., 2013). This facilitates tracking of individual cells in
live tissues over extended periods of time in near physiological
conditions (Alieva et al., 2014). Cell type-specific fluorescent
reporters, optogenetic tools and dyes can be combined for
simultaneous imaging by multi-color IVM, allowing dynamic
interactions between different mammary cell types and cellular
structures to be visualized in situ (Ellenbroek and Van Rheenen,
2014; Nobis et al., 2018; Perrin et al., 2019). The majority of IVM
studies rely on multiphoton modalities for deep tissue imaging
(Pittet and Weissleder, 2011; Ellenbroek and Van Rheenen, 2014;
Perrin et al., 2019). Nevertheless, the increased surface epithelial
mass and lower adipocyte content of lactating mammary tissues
and tumors, for example, make these contexts more acquiescent
to confocal IVM (Ebrahim and Weigert, 2019).

For visualizing biological phenomenon that remain beyond
the capabilities of current IVM tools, alternative ex vivo
approaches may be used. For example, limited 4D imaging can
be performed on excised mammary gland tissue pieces (Davis
et al., 2015). Inadequate diffusion of extracellular molecules
into thick adult tissues, however, results in artifacts such as
tissue hypoxia, restricting this approach to short-term imaging
(Shamir and Ewald, 2014; Davis et al., 2015; Lloyd-Lewis et al.,
2017). Conversely, many fetal tissues, including the embryonic
mammary gland, are able to be maintained ex vivo in explant
cultures for extended periods (Kratochwil, 1969; Hens et al.,
2007; Voutilainen et al., 2012, 2013). Embryonic mammary
buds and their surrounding mesenchyme can be established in
culture from embryonic day E11.5, allowing real-time ex vivo
visualization of mammary embryonic branching morphogenesis
(Voutilainen et al., 2012, 2013). Mammary embryonic explant
cultures, therefore, represent a powerful and accessible tool
for dissecting the cellular mechanisms underlying embryonic
mammogenesis, an often overlooked phase in mammary gland
development. Alternatively, 3D in vitro mammary cell culture
systems – including mammary organoids that recapitulate the
organization and epithelial hierarchy observed in vivo – can be
used for real-time imaging of mammary epithelial cell behaviors
in an experimentally tractable setting (Simian et al., 2001;

Debnath et al., 2003; Fata et al., 2007; Ewald et al., 2008; Pasic
et al., 2011; Jardé et al., 2016). As this mini-review is focused
on imaging mammary gland tissues, these systems will not be
discussed further here (for further details see; Shamir and Ewald,
2014; Rios and Clevers, 2018).

MULTIDIMENSIONAL INSIGHTS INTO
MAMMARY GLAND DEVELOPMENT

3D and 4D imaging of the mammary gland is increasingly
used to address fundamental questions relating to breast biology
and cancer. The in vivo accessibility of this tissue makes it a
particularly excellent model system for high-resolution intravital
imaging of tumorigenic processes. The application of IVM to
study tumorigenesis, including mammary, has been extensively
reviewed elsewhere (Condeelis and Weissleder, 2010; Ellenbroek
and Van Rheenen, 2014; Suijkerbuijk and van Rheenen, 2017;
Nobis et al., 2018). The following, instead, highlights recent
IVM and 3D imaging studies focused on physiological mammary
gland development and function, and the insights revealed using
these approaches.

Multidimensional Imaging of Mammary
Ductal Morphogenesis
While the mammary epithelium begins its morphogenetic
journey in the embryo, the majority of its development occurs
postnatally. Hormonal stimulation during puberty promotes the
elongation and branching of a rudimentary ductal tree, fueled
by the proliferative activity of adult mammary stem/progenitor
cells housed in terminal end bud (TEB) structures (Watson
and Khaled, 2008; Macias and Hinck, 2012). The differentiation
potential of these cells – i.e., their ability to generate one
or both of the mammary epithelial cell lineages – is an
area of intense interest. Early population-based genetic fate-
mapping studies in the postnatal mammary gland generated
conflicting results, providing evidence in support of both
unipotent and bi/multipotent capacities of adult stem/progenitor
cells under physiological conditions (for a detailed overview
see Lloyd-Lewis et al., 2017; Seldin et al., 2017; Rodilla
and Fre, 2018). Discrepancies between these studies may
be, in part, attributable to the temporal and promiscuous
labeling of cells by selected pathway-specific or lineage-specific
promoters. Misleading results may also have arisen due to
the limited power of population-based lineage tracing to
accurately detect single clones using 2D mammary tissue
sections, particularly when labeling is performed above clonal
density (Lloyd-Lewis et al., 2017).

To resolve these inconsistencies, more recent genetic fate-
mapping studies in the mammary gland – encompassing single
cell, neutral, or saturation lineage tracing techniques – have relied
on deep tissue and/or whole-gland 3D imaging for quantitative
clonal analyses. By combining fate-mapping techniques with the
3D imaging strategies described above, it was established that
unipotent luminal and basal progenitors maintain the mammary
epithelial lineages during postnatal mammary gland development
(Davis et al., 2016; Wuidart et al., 2016; Scheele et al., 2017;
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Lloyd-Lewis et al., 2018). Moreover, 3D imaging revealed that the
progeny of a single labeled cell can be distributed in a stochastic,
interspersed pattern throughout the length of the branching
epithelium (Figure 1C). These studies indicate that, despite
displaying heterogeneity in gene expression at the single cell
level (Scheele et al., 2017), proliferative, unipotent TEB-resident
cells actively and stochastically contribute to mammary ductal
development (Davis et al., 2016; Lloyd-Lewis et al., 2017, 2018;
Scheele et al., 2017). Static lineage tracing methods, however,
are limited in their ability to reveal the dynamics of individual
clone behaviors, necessitating the use of IVM in this context
(Scheele et al., 2017; Fumagalli et al., 2019). Interestingly, time-
lapse IVM of mammary gland ductal development revealed
that TEB-resident mammary epithelial cells continually divide
and intermix, with each lineage-restricted cell type maintaining
equipotent potential to contribute to ductal elongation (Scheele
et al., 2017; Fumagalli et al., 2019). Notably, these quantitative
3D and 4D imaging methods provide avenues for biostatistical
modeling of mammary stem/progenitor cell fate, and how this
translates into organ structure (Paine et al., 2016; Wuidart et al.,
2016; Scheele et al., 2017; Lilja et al., 2018). Thus, when combined
with genetic lineage-tracing, the ability to image the mammary
epithelium in multiple dimensions (Davis et al., 2016; Wuidart
et al., 2016, 2018; Scheele et al., 2017; Lilja et al., 2018; Lloyd-Lewis
et al., 2018) has provided important insights into clonal dynamics
and cell behaviors during mammary gland development that
could not have been attained by examining thin tissue sections
(Sale and Pavelic, 2015; Lloyd-Lewis et al., 2017).

While recent genetic fate-mapping studies have demonstrated
the unipotency of postnatal mammary lineage precursors in
physiological conditions, the durable plasticity of these cells is
becoming increasingly apparent (Seldin et al., 2017; Wahl and
Spike, 2017; Rodilla and Fre, 2018). Unipotent precursors have
been shown to reacquire multi-lineage differentiation capacity in
transplantation assays (Stingl et al., 2006; Van Keymeulen et al.,
2011; van Amerongen et al., 2012), in response to oncogenic
induction (Liu et al., 2007; Koren et al., 2015; Van Keymeulen
et al., 2015; Tao et al., 2017) and upon ectopic expression of
critical fate determinants of the opposing lineage (Lilja et al.,
2018; Wuidart et al., 2018). A recent study also demonstrated
that genotoxic exposure results in mammary epithelial cell
hyperplasia and lineage infidelity, possibly mediated by signals
from the tissue microenvironment (Seldin and Macara, 2019).
The future application of IVM in this context is fundamental
for revealing the dynamic cellular processes and behaviors
underlying mammary epithelial cell plasticity (Fumagalli et al.,
2019). Moreover, as this plasticity is likely exploited during
mammary tumorigenesis (Liu et al., 2007; Koren et al., 2015;
Van Keymeulen et al., 2015; Hein et al., 2016; Tao et al.,
2017) – possibly via reactivation of embryonic developmental
programs in adult breast tissues (Spike et al., 2012; Zvelebil et al.,
2013; Rodilla and Fre, 2018) – an improved understanding will
provide important insights into the critical steps leading to breast
cancer initiation.

Mammary ductal morphogenesis is heavily dependent
on reciprocal interactions between epithelial cells and the
microenvironment (Inman et al., 2015; Lloyd-Lewis et al., 2019).

Mammary tissue resident macrophages, for example, are
recruited to TEB structures during puberty, and have been
shown to be essential for normal ductal development (Gouon-
Evans et al., 2000, 2002). Preliminary IVM studies in pubertal
Csf1r-EGFP macrophage reporter mice (Sasmono et al., 2003)
revealed that macrophages adjacent to putative TEB structures
move rapidly along collagen fibrils, where they promote collagen
fibrillogenesis to steer TEB invasion through the mammary fat
pad (Ingman et al., 2006). Interestingly, recent 3D deep tissue
imaging in optically-cleared mammary tissues revealed that
macrophages envelop and infiltrate TEB structures (Stewart
et al., 2019), and can intercalate between the epithelial bilayer
within ductal regions (Hitchcock et al., 2019; Stewart et al.,
2019). Collectively, these 3D and 4D imaging studies suggest
a close functional relationship between macrophages and
the mammary epithelium, supporting recent findings that
established macrophages as important components of the
mammary basal stem/progenitor cell niche (Chakrabarti et al.,
2018). Detailed insights into these intriguing results awaits
further IVM studies of mammary ductal development in
Csf1r-EGFP mice (Stewart et al., 2019).

Multidimensional Imaging of the
Lactating Mammary Gland
Pregnancy is marked by a distinct phase of mammary epithelial
growth, branching, and differentiation, resulting in the formation
of abundant secretory (milk-producing) lobuloalveolar structures
(Watson and Khaled, 2008). Milk secreted into the alveolar
lumen is expelled for the suckling neonate by the contraction of
alveolar basal cells in response to maternally-produced oxytocin,
a process dependent on calcium ions (Gimpl and Fahrenholz,
2001; Haaksma et al., 2011; Davis et al., 2015). Lipids, particularly
triacylglycerols, are major milk constituents (Oftedal, 1984) that
are packaged and secreted in the form of membrane-coated
lipid droplets (LDs) during lactation (Walther et al., 2017).
While classical biochemical and morphological analyses have
revealed valuable insights into LD assembly, fusion and secretion,
the kinetics underlying this dynamic process remained unclear
(Mather and Keenan, 1998; McManaman, 2012).

To address this, a recent study performed time-lapse IVM of
fluorescent BODIPY-stained LDs in lactating mammary glands
to measure their dynamics at peak lactation (Masedunskas et al.,
2017). This approach showed that LDs transit to the cell apex by
relatively slow and intermitted rates of directed motion (∼0–2
µm/min) and that, regardless of size, fusion of pre-existing LD
underlined their growth. Notably, it was observed that oxytocin-
induced myoepithelial cell contraction is required to release
mature LDs from secretory cells into luminal spaces (Figure 1D;
Masedunskas et al., 2017). This suggests that LD droplet secretion
is intermittently stimulated by milk let-down (Masedunskas et al.,
2017), and is not a continuous process as previously assumed
from static observations (Mather and Keenan, 1998; Neville,
2009; McManaman, 2012). Intriguingly, alveolar cells switch their
cellular function from LD secretion to uptake during mammary
gland involution, triggering a complex program of cell death
that returns the mammary gland to a near pre-pregnant state
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(Kreuzaler et al., 2011; Sargeant et al., 2014). Although fraught
with difficulties, IVM studies investigating the mechanisms and
dynamics of LD uptake during involution is an aim for the future.

Seeking to assess the spatiotemporal dynamics of oxytocin-
induced alveolar contractions, a recent study performed 4D
ex vivo imaging of mammary tissue pieces from lactating
mice engineered to express a Ca2+ fluorescent indicator in
myoepithelial cells (Stevenson et al., 2019). This approach
revealed that Ca2+ oscillations couple to myoepithelial cell
contractions, which physically deform the inner luminal cell
layer for milk ejection (Stevenson et al., 2019). Interestingly,
4D ex vivo imaging showed that Ca2+-contraction coupling
similarly occurs in ductal myoepithelial cells, indicating that they
actively participate in milk ejection during lactation (Stevenson
et al., 2019). Together, these recent 4D in vivo and ex vivo
imaging studies (Masedunskas et al., 2017; Stevenson et al., 2019)
have provided valuable insights into the dynamic mechanisms
underlying milk lipid production, secretion, and expulsion
during lactation, building on findings obtained using static
measures (Mather and Keenan, 1998; Gimpl and Fahrenholz,
2001; Neville, 2009).

The benefits of 3D imaging over conventional 2D histological
techniques is particularly evident when imaging densely packed
tissues such as the lactating mammary gland (Rios et al., 2016b).
For example, while binucleated secretory luminal cells are readily
discernible by 3D imaging (Rios et al., 2016b; Hitchcock et al.,
2019) their prevalence is likely underestimated when analyzing
mammary tissue sections (Oliver et al., 2012; Hughes and
Watson, 2018). The impact of polyploidy – a consequence
of the requirement for DNA synthesis for lactation (Banerjee
et al., 1971; Banerjee and Wagner, 1972; Smith, 2016) – on LD
frequency and dynamics, however, remains unclear. Moreover,
recent 3D imaging of optically-cleared lactating tissues revealed
that macrophages closely mirror the stellate morphology of
adjacent and contacting alveolar myoepithelial cells, a phenotype
that is indistinguishable in thin tissue sections (Hitchcock et al.,
2019; Stewart et al., 2019). The functional significance of this
behavior, however, remains to be elucidated (Hitchcock et al.,
2019; Stewart et al., 2019).

CONCLUDING REMARKS

Tissue development and function depend on highly co-ordinated
programs of cell proliferation, differentiation, migration,
communication, and death. Static 2D measurements alone

are insufficient to unravel this complexity. Deep tissue 3D
imaging approaches are providing avenues to obtain detailed,
spatially integrated insights into the inner workings of the
mammary gland, and possess great potential for improving
breast tumor classification and characterization in future clinical
practice. In addition, the advent of high resolution IVM is
transforming the ability to explore the dynamic cellular behaviors
governing tissue physiology and dysfunction in near native
contexts. High-resolution IVM is increasingly harnessed in
experimental and translational breast cancer research, providing
valuable dynamic information into mammary tumor growth,
progression, metastasis and therapeutic response that ultimately
may impact patient care (Condeelis and Weissleder, 2010;
Ellenbroek and Van Rheenen, 2014; Suijkerbuijk and van
Rheenen, 2017). In contrast, the application of IVM to study
mammary gland postnatal development is lagging. Indeed, the
light-scattering adipose stroma that shrouds the mammary
epithelial tree poses significant challenges for high-resolution
in vivo imaging of normal and pre-neoplastic ductal structures.
Nevertheless, continual improvements in imaging tools,
including multiphoton lasers (Andresen et al., 2009), adaptive
optics (Rueckel et al., 2006), sensitive detectors and image
processing methods (Gligorijevic et al., 2014; Weigert et al., 2018;
Perrin et al., 2019) hold great promise for future IVM studies
into mammary gland development. The burgeoning application
of the multidimensional imaging approaches described herein to
the mammary gland will undoubtedly herald a new era in our
investigation and understanding of breast biology.
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