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The progress in the field of high-dimensional cytometry has greatly increased the number
of markers that can be simultaneously analyzed producing datasets with large numbers
of parameters. Traditional biaxial manual gating might not be optimal for such datasets.
To overcome this, a large number of automated tools have been developed to aid with
cellular clustering of multi-dimensional datasets. Here were review two large categories
of such tools; unsupervised and supervised clustering tools. After a thorough review
of the popularity and use of each of the available unsupervised clustering tools, we
focus on the top six tools to discuss their advantages and limitations. Furthermore, we
employ a publicly available dataset to directly compare the usability, speed, and relative
effectiveness of the available unsupervised and supervised tools. Finally, we discuss the
current challenges for existing methods and future direction for the new generation of
cell type identification approaches.
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INTRODUCTION

Cytometry is a field of measuring molecular and physical characteristics of individual cells used
both in clinical practice and research settings that has allowed for significant advancements in
medicine and biology. This can be used for studying cells in suspension, the focus of this review
with various methods described below, or adherent cells by image cytometry, reviewed elsewhere.
For several decades, flow cytometry has enabled simultaneous identification of multiple features or
antigens found on the surface or inside individual cells at a single cell resolution. This technique
relies on the detection of fluorescence emitted by fluorophore conjugated antibodies that emit
fluorescence at particular wavelength upon excitation by specific lasers (Bendall et al., 2012; Comi
et al., 2017). It can be applied to any cellular suspension both for cellular analysis and for cell sorting
to isolate specific groups of cells using panels of antibodies. The number of fluorophores that can be
combined and simultaneously detected is limited by the number of lasers available and the spectral
overlay of each fluorophore used. Additionally, the spectral overlay between various fluorophores
creates an overlap between them that requires compensation of the data generated to ensure
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specificity and limit the interaction between the fluorophores,
a process usually accomplished by using single-color controls
(beads or cells that are stained for one fluorophore at a
time) (Doerr, 2011). Moreover, to eliminate the background
contribution of cellular autofluorescence, unstained controls
must be included in the experiment. Routinely, panels have
consisted of 8–10 antibodies.

With advancement of flow cytometers such as implementation
of multiple lasers and increase in available reagents, ∼20–30
antigens can be reliably measured (Verschoor et al., 2015).
Additionally, recent advancement in the cytometry field such as
spectral cytometry (Aurora, Cytek) and mass cytometry (CyTOF,
Fluidigm) have further extended these capabilities with ability
to measure 30–60 individual markers simultaneously. Spectral
cytometry relies on simultaneous detection of the full emission
spectrum of each fluorochrome used across all lasers instead of
just the peak emission that is detected in standard flow cytometry
(Schmutz et al., 2016). This allows one to combine fluorochromes
with similar peak emission but distinct full emission signatures
into the same panel greatly expanding upon the flow cytometry
capabilities (Ferrer-Font et al., 2019). In CyTOF, instead of
fluorophores, the markers of interest are labeled with stable
heavy metal isotopes that are rarely present in live cells and
detected by time of flight mass spectroscopy. A detailed review
and comparison of these platforms is beyond the scope of this
review, but they have been extensively reviewed in many other
publications (Maaten and Hinton, 2008; Schmutz et al., 2016;
Hartmann and Bendall, 2019; Zielinski, 2019).

The focus of this review, on the other hand, is to evaluate
the tools that are available for cellular populations clustering
and identification using multi-parameter cytometry data. Ever
since its development in 1984 by the Society for Advancement
of Cytometry (ISAC), flow cytometry data and subsequently
spectral and mass cytometry data, are all stored by convention
in Flow Cytometry Standard (FCS) format files (Murphy and
Chused, 1984). These files contain textual metadata describing
the experiment combined with binary data of the results. The data
are stored as an array or a matrix where each row is an event or
an individual cell and each column is a value that corresponds
to the magnitude of the signal in a particular “channel.” For
flow cytometry data, these channels correspond to either the
fluorophores used in the experiment or the scatter channels that
correspond to the light scattered by the individual cells passing
through a flow cell. In mass cytometry data, channels correspond
to the heavy metals. Additionally, for flow cytometry data, a
compensation matrix, or a correction factor, that adjusts for the
spillover of a primary channel into other channels obtained from
single-color controls mentioned above, must be applied to the
data before analysis (Bagwell and Adams, 1993; Roederer, 2001).

There are several approaches to analyze cytometry data.
Traditionally, this has been accomplished by manual gating,
a sequential selection of specific parameters represented by
the channels in the FCS files, to identify the populations
of interest. This process is known as hierarchical sequential
gating strategies (Bendall et al., 2012; Verschoor et al., 2015)
and is usually accomplished by plotting bi-axial dot plots that
compare two parameters (two channels) at a time and manually

drawing “gates” representing the positive or negative population
for the particular parameter combination. Manual gating was
the earliest method used to define known cell populations
from cytometry data, e.g., CD45+ CD3+ for T cells, and
continues to be widely applied. Various tools are available to
aid with manual gating that include commercially available
platforms or those available through R packages. However,
relying solely on manual gating for interpretation of high-
dimensional cytometry data with a large number of parameters
has its limitations. It is laborious, time-consuming and depends
on the end user’s fundamental understanding of what markers
define specific cellular populations. Moreover, it is subjected
to human bias both during the manual gating process when
the end user identifies where to draw positive and negative
gates to define cellular populations as well as on preconceived
notions of what antibodies mark particular cellular populations.
Furthermore, biaxial plots are unable to capture the increased
complexity of cellular populations afforded by high dimensional
panels. Therefore, novel computational approaches are needed
to capture the complexity allowed by the higher dimensional
data acquired through mass and spectral cytometry and higher
dimensional flow cytometry.

As such, a number of automated tools have been developed
including spanning-tree progression analysis of density-
normalized events (SPADE), Phenograph and Self-Organizing
Map (FlowSOM) among many others, that organize individual
cells with similar marker expression into clusters or categories
(Qiu et al., 2011; Levine et al., 2015; Van Gassen et al., 2015).
These clusters can then be further annotated to provide biological
relevance based on their markers’ expression. For example, a
particular cluster might have high values for CD45, CD3, CD4,
CD45RA, and CCR7 and would therefore represent naïve helper
T cells or a different cluster might be low for CD45 and high
for EPCAM representing epithelial cells. As such, instead of
sequentially defining populations of interest as done in manual
gating, in automated clustering, the populations are already
identified by the algorithm and the end user assigns biological
relevance to each cluster by their overall marker expression.

However, no standard nomenclature has been developed to
apply to these tools. In this review, we propose to categorize the
available computer-assisted automated cell clustering algorithms
into three major categories: (1) unsupervised clustering methods,
(2) supervised clustering methods, and (3) trajectory inference
(TI) methods. Unsupervised clustering tools group cells into
categories based on their marker expression using computational
machine learning algorithms without a requirement for any
prior knowledge while supervised clustering methods rely on
prior knowledge or supplemental information for the tools
to properly cluster the cells or annotate the cellular clusters
generated. TI algorithms, on the other hand, are used to
establish a relationship or a trajectory between the cellular
groups via an unsupervised computational method. As there
are several published comprehensive TI reviews (Cannoodt
et al., 2016; Saelens et al., 2019) that benchmark the available
algorithms and provide general guidelines for their applications,
this review will focus exclusively on unsupervised and supervised
clustering algorithms. In Table 1 and Figure 1 we provide a big
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TABLE 1 | Comparison of manual gating, unsupervised and supervised clustering methods.

Manual gating Unsupervised clustering methods Supervised clustering methods

Ease of use Easy and straight forward for biologist Tool dependent, generally easy to
apply. See Table 3

Tool dependent, generally requires more steps
than unsupervised clustering methods

Reproducibility Reproducible between data for same
user

Majority of the tools allow for setting a
“seed” enabaling the reproducibility of
the results. See Table 3

Variable (tool dependent)

Time cost Experience and sample size dependent Tool dependent, see Table 3 Tool dependent, generaly high. See Table 4

Flexibility High, depends on user manual setting Moderate, users can only adjust some
parameters

Low

Novel subpopulation detection Yes Yes (tool dependent) No (can only detect previously defined clusters)

Subpopulation/cluster identification Manual (based on gating strategy) Manual (based on cluster marker
expression)

Automated (based on training set)

# of subpopulations/clusters Experiment dependent Variable (some allow users input; some
automatically optimize #) See Table 3

Fixed (based on training set)

Prior knowledge requirement Gating Experience, Marker expression
for cellular identification

None for clustering; knowledge of
marker expression for cluster
identification

Training dataset or marker matrix, familiarity
with bioinformatics

FIGURE 1 | Overview of manual gating, unsupervised and supervised clustering tools for high-dimensional cytometry data analysis.

picture comparison between (1) unsupervised clustering tools,
(2) supervised clustering tools and manually gated data.

Overview of Clustering Tools Reviews
Several groups have reviewed many of the such computational
tools (Chester and Maecker, 2015; Mair et al., 2016; Saeys et al.,
2016; Weber and Robinson, 2016; Nowicka et al., 2017; Kimball
et al., 2018; Mair, 2019; Todorov and Saeys, 2019; Zielinski,
2019). These publications are summarized in Table 2. Most
of these reviews have focused on a selected subgroup of 5–10
tools from those available, to illustrate how automated clustering
and visualization methods can facilitate cellular population’s
identification. Many of these tools can be applied to any high

dimensional cytometry data. Of the reviews summarized in
Table 2, the two by Nowicka et al. (2017) and Kimball et al.
(2018) focus more on applying the computational tools to CyTOF
data, while Saeys et al. (2016) focus on flow cytometry data and
Weber and Robinson (2016) apply the tools to both flow and
mass cytometry data.

Although majority of these papers provide some practical
applications of real cytometry data to illustrate how the clustering
algorithms function, these review papers have some limitations.
(1) Categorization and definition of these computational tools are
inconsistent across the review papers. (2) No comprehensive list
of clustering tools is provided. With the exception of two reviews
that summarized 12 and 18 available tools (Saeys et al., 2016;
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TABLE 2 | Overview of reviews of clustering tools.

Title Citation
(Author, year)

Focus of the
paper (datasets
discussed)

Visualization tools Clustering tools
(#: tool names)

Trajectory
inference tools

Tool categorization
nomenclature

Practical
application

Quantitative
evaluation?

Algorithmic Tools
for Mining
High-Dimensional
Cytometry Data

Chester and
Maecker, 2015

High-dimensional
cytometry data

PCA, viSNE 4: ACCENSE, SPADE,
FlowSOM, Citrus

Wanderlust * Dimensionality-reduction
techniques

Description of the
applications

No

* Clustering-based analysis

* Trajectory detection
algorithm

The end of gating?
An introduction to
automated analysis
of high dimensional
cytometry data

Mair et al., 2016 High-dimensional
cytometry data

PCA 5: SPADE, t-SNE, PSM,
Citrus, Phenograph

Wanderlust * Algorithms for analysis of
high-dimensional data

* Describe the applications
in other publications
* 14-parameter flow
cytometry dataset as an
practical example and be
associated with
Mair et al. (2016)

No

Gate to the future:
Computational
analysis of
immunophenotyping
data

Mair, 2019 High-dimensional
cytometry data

t-SNE 6: FlowDensity, FlowType,
FlowLearn, FlowSOM,
Phenograph, SPADE

None * Manual gating Description of the
applications

No

* Algorithm-assisted gating

* Algorithm-based
clustering

A Beginner’s Guide
to Analyzing and
Visualizing Mass
Cytometry Data

Kimball et al., 2018 Mass cytometry
data

t-SNE, SPADE, others
to match tools
discussed

5: viSNE, SPADE, X-shift,
Citrus, PhenoGraph

None * Automated data analysis Provide a detailed
user-guide using two
murine dataset

No

Comparison of
Clustering Methods
for
High-Dimensional
Single-Cell Flow
and Mass
Cytometry Data

Weber and
Robinson, 2016

High-dimensional
cytometry data

none, only performance
comparison

18: ACCENSE, ClusterX,
DensVM, FLOCK,
flowClust, flowMeans,
flowMerge, flowPeaks,
FlowSOM, FlowSOM_pre,
immunoClust, k-means,
PhenoGraph, Rcluterpp,
SamSPECTRAL, SPADE,
SWIFT, X-shift

None * Clustering methods Evaluate the tool
performance with 6 dataset
(4 CyTOF and 2 Flow
Cytometry)

Yes (F1 score,
running time,
expression profiles,
stability of the
clustering results)

Computational flow
cytometry: helping
to make sense of
high-dimensional
immunology data

Saeys et al., 2016 Flow cytometry
data

SPADE, FlowMap,
FlowSOM, viSNE,
PhenoGraph, Scaffold
map, DREMI-DREVI

12: FLAME, FLOCK,
ACCENSE, flowClust,
flowMerge, flowMeans,
SamSPECTRAL,
immunoClust, flowPeaks,
FlowSOM meta, HDPGMM,
SWIFT, ASPIRE

None * Methods based on
dimensionality reduction
techniques

Apply visualization
techniques using a manual
gated dataset and marker
visualization application

No

(Continued)
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TABLE 2 | Continued

Title Citation
(Author, year)

Focus of the
paper (datasets
discussed)

Visualization
tools

Clustering tools
(#: tool names)

Trajectory
inference tools

Tool categorization
nomenclature

Practical
application

Quantitative
evaluation?

* Clustering based techniques

* Automated population identification

* Biomarker identification

* Cell development modeling

Computational
approaches for
high-throughput
single-cell data
analysis

Todorov and Saeys, 2019 Single-cell
RNA-seq

PCA, MDS, tSNE,
Diffusion maps,
SPRING, SPADE,
FLOWSOM, Scaffold
Maps, FLOWMAP,
Phenograph

7: SPADE, FLOWSOM,
ACCENSE, PhenoGraph,
FLOWCAP, ViSNE, Citrus

None * Visualizing high-dimensional
single-cell data

Visualization application using
a publicly available scRNA-
Seq PBMC dataset

No

* Dimensionality reduction clustering

* Cell type identification

* Cell type identification

* clustering-based approach

* Approaches for modeling gradual
transitions

* Differential analysis

* Cytometry-based approaches

* Sequencing-based approaches

Meeting the
Challenges of
High-Dimensional
Single-Cell Data
Analysis in
Immunology

Zielinski, 2019 Single-cell
RNA-seq

tSNE, PCA, UMAP 2: SPADE, FlowSOM Diffusion
pseudotime (DPT);
Partition-based
graph abstraction
(PAGA)

* Linear dimensionality reduction Visualization and clustering
application of a publicly
available scRNA-Seq PBMC
dataset

No

* Non-linear dimensionality reduction

* Clustering methods; single-cell
resolution is lost

* Trajectory inference and graph
abstraction

CyTOF workflow:
differential
discovery in
high-throughput
high-dimensional
cytometry datasets

Nowicka et al., 2017 Mass cytometry
data

UMAP, tSNE. MDS 2: FlowSOM and
ConsensusClusterPlus

None * Differential analysis
* Cell population identification

Detailed data analysis
workflow: data pre-processing,
clustering, differential analysis
and visualization of a publically
available CyTOF PBMC dataset

No

BMC, peripheral blood mononuclear cells.
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Weber and Robinson, 2016), majority of the reviews focused on
a small subgroup of methods (Chester and Maecker, 2015; Mair
et al., 2016; Nowicka et al., 2017; Kimball et al., 2018; Mair, 2019;
Todorov and Saeys, 2019; Zielinski, 2019). (3) These reviews
do not include comparisons of supervised machine learning
algorithms that have gained some popularity in cytometry data
analysis. As such, in the current review, we aim to build on the
available data to (1) simplify the nomenclature of the categories
of available tools, (2) provide a comprehensive comparison of
the available unsupervised tools with a real dataset example and
systematically review the top six most popular algorithms and (3)
review supervised methods that aid in cellular identification.

Dimensionality Reduction and
Visualization Tools Accompanying
Clustering Algorithms
Given that cytometry data are multi-dimensional, meaning each
individual cell is quantified by multiple parameters (i.e., 30–50
markers for CyTOF experiments), in order to simultaneously
visualize these parameters in a low-dimensional manner (i.e., 2
or 3 dimensions), several classical methods have been applied
that reduce high dimensional data into low dimensional space
(Torgerson, 1952; Wold et al., 1987; Coifman et al., 2005;
Maaten and Hinton, 2008; McInnes et al., 2018). Two such
common algorithms are principal component analysis (PCA)
and t-Distributed Stochastic Neighbor Embedding (t-SNE)
(Maaten and Hinton, 2008). PCA linearly transforms the data
into orthogonal variables that then can be visualized in low-
dimensional space. tSNE employs non-linear transformation of
the data to retain probabilities instead of variances and has
the benefit of separating individual clusters while preserving
the local environment (Maaten and Hinton, 2008). Although
tSNE has been widely used to visualize cytometry data, it has
a number of limitations including (1) slow computation speed
and (2) that the distance between cells cannot be interpreted as
cluster relatedness but rather a meaningless variable. Multiple
t-SNE based visualization methods have been published to
accelerate t-SNE, such as Barnes-Hut t-SNE (Van Der Maaten,
2014) and FIt-SNE (Linderman et al., 2019). Recently another
non-linear dimensional reduction technique, uniform manifold
approximation and projection (UMAP), has been increasingly
used for cluster visualization (McInnes et al., 2018). In a direct
comparison between UMAP, t-SNE and other visualization tools,
Etienne Becht et al. demonstrated that UMAP performs similar
to t-SNE while also preserving the global cluster structure
and has superior run time performance (Becht et al., 2019).
Although some of the clustering tools described in this review
(Table 3), utilize their own unique visualization tools, most of the
aforementioned visualization tools can be applied to visualize the
clusters generated by any of the algorithms.

To illustrate this, we have applied PCA, t-SNE and UMAP
tools to visualize a peripheral blood mononuclear cell (PBMC)
dataset manually gated for twenty immune populations (the
generation and details of the dataset are described in a later
section) (Figure 2). The twenty identified populations were color
coded so that the colors representing a particular population, i.e.,
dark red for naïve B cells, are conserved across the plots. Both

t-SNE and UMAP offer significant separation of the individual
clusters beyond that provided by PCA (Figure 2). Moreover,
the separation is even more pronounced using UMAP than
t-SNE (Figure 2).

In addition to being used as visualization tools, dimensionality
reduction methods can also be used to guide manual
gating (Eshghi et al., 2019) and have been incorporated
into clustering algorithms such as automatic classification
of cellular expression by non-linear stochastic embedding
(ACCENSE) and density-based clustering aided by support
vector machine (DensVM) to reduce the complexity of the
dataset as described below.

Unsupervised Clustering Algorithms
As previously introduced, a number of automated, unbiased
analysis tools have been developed to assist with clustering of
cellular populations in complex datasets. We have grouped these
as unsupervised clustering tools. In this review, we summarized
32 of such tools by describing their popularity (Figure 3 and
Supplementary Table S1) as well as each tools’ short description,
availability, unique visualization platform if offered and easiness
to install and run the tool (Table 3). Using Google Scholar, we
determined the popularity of each of these methods (Figure 3
and Supplementary Table S1) by summarizing the total number
of times each tool has been referenced, or cited, overall and in
each of the 7 top immunology journals since 2015 (Figure 3A
and Supplementary Table S1). In order to adjust for when
the tool was developed, we have also calculated the average
annual number of times the tool has been cited (Figure 3A
and Supplementary Table S1). Moreover, we have also reviewed
the number of times these tools have been directly applied in
manuscripts but not just referenced, number of applications
across the seven journals and overall since 2015 (Figure 3B
and Supplementary Table S1). Based on the tools that have the
highest sum of citations and applications overall, we selected the
top six tools for a more detailed review outlining their specific
advantages and disadvantages.

ACCENSE (Automatic Classification of
Cellular Expression by Nonlinear
Stochastic Embedding)
Similar to the other tools discussed in this section, ACCENSE,
is a tool for cellular classification of high-dimensional data. It
combines dimensionality reduction with density-based clustering
to identify sub-populations present in a dataset while retaining
the single cell resolution (Shekhar et al., 2014) (Table 3 and
Supplementary Table S1).

In ACCENSE cell subpopulation detection and classification
is accomplished in a three-step process. (1) The first step in
the process is t-SNE based non-linear dimensionality reduction
to reduce the complexity of the data and to improve the
speed of the analysis. (2) The second step is to identify
cellular subpopulations or clusters. This is accomplished by
using kernel-based methodology to determine the local density
“peaks” or maxima of the t-SNE generated features and thereby
identify the location of the clusters. (3) The final step in the
process is to assign the marker expression of each marker
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TABLE 3 | Unsupervised clustering tools.

ID (References) Name Short description Availability Visualization Easy to install
and run

Cluster #
flexibility

Reproducible Running time
(min)

ARI F-measure

Unsupervised (compatible with any # of Samples)

1. Shekhar et al.,
2014

ACCENSE 1. t-SNE dimensionality reduction; 2. k-means
or density-based clustering

GUI application n/a Yes No No 2.48* 0.28* 0.60*

2. Anchang et al.,
2014

CCAST 1. identify cell population; 2. refine cluster
assignment; 3. estimate a gating scheme by
decision tree; 4. optimize the decision tree

R package
“CCAST”

Decision tree Yes Yes Yes 77.32 0.71 0.72

3. Chen et al.,
2016

ClusterX 1. t-SNE dimensionality reduction; 2. local
density estimation; 3. peak detection; 4.
clustering assigning

R package
“cytofkit”

n/a Yes No Yes 105.14 0.25 0.22

4. Commenges
et al., 2018

Cytometree Implements a binary tree algorithm for
clustering

R package
“cytometree”

Binary tree Yes No No 12.30 0.08 0.20

5. Ding et al.,
2016

densityCUT 1. density estimation; 2. density refinement; 3.
local-maxima based clustering; 4. hierarchical
stable clustering

R package
“densitycut”

n/a Yes No Yes 3.94 0.78 0.34

6. Becher et al.,
2014

DensVM 1. t-SNE dimension reduction; 2. density-based
peak calling and clustering; 3. SVM
classification for less-confident cells

R package
“cytofkit”

n/a Yes No No 43.83* 0.71* 0.69*

7. Theorell et al.,
2019

DEPECHE k-means clustering R package
“depecheR”

n/a Yes Yes No 3.46 0.75 0.53

8. MacQueen,
1967; Qian et al.,
2010

FLOCK 1. hypergrid creation; 2. identifying dense
hyperregions; 3. merging neighboring dense
hyperregions; 4. clustering

Available at
ImmPort online

n/a Yes (Need to
register at Galaxy)

No (can adjust # of
bins and density)

Yes 0.30 0.73 0.65

9. Lo et al., 2009 flowClust t-mixture models with the Box-Cox
transformation

R package
“flowClust”

n/a Yes Yes Yes 4.99 0.41 0.43

10. Ye and Ho,
2018

FlowGrid density-based clustering algorithm DBSCAN
with the scalability of grid-based clustering

Github (Python
package
“FlowGrid”)

n/a Yes No (can adjust # of
bins and density)

Yes 0.25ˆ 0.54 0.48

11. Aghaeepour
et al., 2011

flowMeans k-means clustering R package
“flowMeans”

n/a Yes Yes Yes 6.01 0.64 0.63

12. Ge and
Sealfon, 2012

flowPeaks 1. k-means; 2. Gaussian finite mixture to model
the density function; 3. peak search and
merging; 4. cluster tightening

R package
“flowPeaks”

n/a Yes Yes Yes 0.19 0.64 0.55

13. Van Gassen
et al., 2015

FlowSOM 1. self-organization map building; 2. MST
building; 3. perform meta-clustering

R package
“FlowSOM” and
“cytofkit”

MST, Chart plot Yes Yes Yes (if set a seed) 0.19 0.62 0.67

14. Li Y. H. et al.,
2017

PAC-MAN 1. partitioning by density-based methods; 2.
post-processing

R package “PAC” n/a Yes Yes Yes 0.35 0.78 0.74

15. Levine et al.,
2015

PhenoGraph 1. Construct nearest-neighbor graph; 2.
community partitioning

R package
“cytofkit”

n/a Yes No (Can adjust # of
nearest neighbours)

Yes 5.89 0.71 0.78

(Continued)
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TABLE 3 | Continued

ID (References) Name Short description Availability Visualization Easy to install
and run

Cluster #
flexibility

Reproducible Running
time (min)

ARI F-measure

16. [github] Rclusterpp flexible native hierarchical clustering R package
“Rclusterpp”

Hierarchical-
structure

Yes (Need to
manually download
source file)

No Yes 17.40 0.70 0.71

17. Zare et al.,
2010

SamSPECTRAL Spectral-clustering with
data reduction scheme

R package
“SamSPECTRAL”

n/a No (requires
manual tuning for
optimal results)

Yes Yes 24.70 0.57 0.33

18. Qiu et al., 2011 SPADE 1. Density-dependent down-sampling;
2. MST construction

R package “spade”MST Yes Yes (given cluster
number K, it can
create between
[k/2,3k/2] clusters

No 2.83 0.58 0.66

19. Mosmann
et al., 2014

SWIFT 1. Fit GMM; 2. Refine GMM; 3. agglomerative
merging

GUI application by
Matlab

n/a Yes No (can adjust # of
bins and density)

No 20.02* 0.06* 0.29*

20. Samusik et al.,
2016

X-shift 1. estimate cell event density; 2. arrange
populations by maker-based classification

GUI application Divisive Marker
Trees

Yes Yes Yes 35.10 0.65 0.67

21. Sorensen et al.,
2015

immunoClust 1. iterative model-based clustering;
2. meta-clustering

R package
“immunoClust”

n/a Yes No Yes 82.72 0.29 0.47

22. Flock k-means k-means clustering R base package
“stats”

n/a Yes Yes Yes 11.68 0.63 0.63

Unsupervised (requiring multiple samples)

23. Bruggner et al.,
2014

Citrus cluster identification, characterization and
regression

R package “Citrus” n/a n/a n/a n/a n/a n/a n/a

24. Arvaniti and
Claassen, 2017

CellCnn convolutional neural networks Python 2.7
package on Github

n/a n/a n/a n/a n/a n/a n/a

25. Lun et al., 2017Cydar 1. cell alignment in hyperspheres in high
dimensional space; 2. differential abundance
analysis

R package “cydar” n/a n/a n/a n/a n/a n/a n/a

26. Weber et al.,
2018

diffcyt 1. FlowSOM clustering; 2. empirical Bayes
moderated tests for differential abundance analysis

R package “diffcyt” n/a n/a n/a n/a n/a n/a n/a

Unsupervised (other)

27. Pouyan et al.,
2016

AUTO-SPADE 1. Fuzzy-C-Mean clustering; 2. Merging clusters
using Markov clustering; 3. Integration with SPADE

No tool available

28. Linderman
et al., 2012

CytoSPADE SPADE clustering No tool available

29. Walther et al.,
2009

DBM density based merging (DBM) algorithm No tool available

30. Vinh et al.,
2009

FLAME multivariate skew t mixture models No full tool pipeline available

31. Finak et al.,
2009

flowMerge 1. clustering based on flowClust models;
2. merge clusters

For the downsampled data, number of cluster ranging from 15 to 25 wa applied, but it showed out NA
merged result.

32. Pouyan and
Nourani, 2015

Flow-SNE 1. t-SNE data embedding; 2. cluster number
estimation;
3. k-means clustering; 4. merging of clusters

No tool available

∗ If the tool cannot complete the running within 3 h, it was applied to a down-sampled data (with 20K cells) for evaluation. ˆcomputing time varies with different setting, but generally fast. MST, minimum spanning tree.
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FIGURE 2 | Visualization of dimensionality reduction tools. (A) Principal component analysis (PCA); (B) t-Distributed Stochastic Neighbor Embedding (t-SNE) and
(C) Uniform Manifold Approximation and Projection (UMAP). All three dimensional reduction approaches were applied to the same sample from Fluidigm Maxpar
Direct Immune Profiling Assay dataset available of Cytobank. The input data was 184,968 CD45 + cells and 21 markers were used (Supplementary Table S2).
PCA, t-SNE and UMAP were performed in R using prcomp, Rtsne, and umap functions respectively. Manually gated subpopulations were uniformly colored across
all the three plots.

in the clusters identified. This is accomplished by performing
a phenotypic “coarse-graining” of each individual marker
by categorizing its expression pattern as high, intermediate
or low in each of the resulting clusters (Table 3 and
Figure 4B).

Advantages: The main advantage of ACCENSE is its
ease of usability as it is available through the graphical
user interface (GUI), an interface that does not require
substantial computer skills and makes it attractive for

non-computational biologists. Additionally, given that
ACCENSE relies on dimensionality reduction with the non-
linear t-SNE algorithm, it is able to capture the non-linear
phenotypic relationships between cells that are often observed in
complex biological systems.

Limitations: However, there are several limitations to
ACCENSE use. Although the usability of this tool is improved
by having the package available through GUI, as mentioned
above, the lack of a script-based package (such as R or Python)
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FIGURE 3 | Number of citations and applications for unsupervised clustering tools in seven immunology journals since 2015. (A) Number of total citations based on
Google Scholar; (B) Number of tool applications, only counting citations with real data application by the tools.

that would allow for end-user modifications or streamlining of
data analysis is restrictive. Additionally, as is evident in Table 3,
where we measured the running time of the same dataset across

multiple clustering methods, ACCENSE requires significant
down-sampling of the data (from 180,000 to 20,000 cells) to have
a reasonable running time. Another limitation of this algorithm
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FIGURE 4 | t-SNE visualizations for manual gating and five popular unsupervised clustering tools. (A) Manual gating, (B) ACCENSE, (C) DensVM, (D) SPADE,
(E) FlowSOM and (F) PhenoGraph. Manual gating and these five tools were applied to the same data as illustrated in Figure 2. The original t-SNE (Supplementary
Figure S4) was altered so that all clustering results were visualized with uniform color coding, where one color represents the same population across all the t-SNE
plots. Clusters were manually annotated based on marker expression in each cluster by each clustering method (Supplementary Figure S3). Tools were applied to
the full dataset with 180K cells, except for ACCENSE and DensVM, where the data was down-sampled to 20K cells prior to applying the tools as using the full
dataset had a running time greater than 3 h. For SPADE and FlowSOM, we set the number of clusters to 20. For ACCENSE, PhenoGraph and DensVM, the number
of clusters was automatically optimized by the tool.
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is its reliance on cellular density for cluster identification that can
miss rare populations. Finally, this algorithm does not contain
a user modifiable parameter to control the number of clusters
generated. As is evident in Figure 4B, where we show that
ACCENSE analysis of a dataset used across multiple clustering
algorithms, resulted in over 50 clusters, the default parameter
setting tends to detect large number of clusters making biological
investigation difficult.

DensVM (Density-Based Clustering
Aided by Support Vector Machine)
The DensVM clustering tool is similar to ACCENSE with some
additional modifications to improve the cellular classification
(Becher et al., 2014). Similar to the ACCENSE, this algorithm
performs dimensionality reduction through t-SNE and detects
cellular clusters based on density peaks. However, DensVM
contains additional steps to assign cells that are at the
periphery of the clusters to the appropriate clusters. This
is accomplished in a two-step process, where the algorithm
first uses only the cells in any particular cluster whose
distances from the peak can be confidently calculated as a
training set. The remaining cells that were not assigned to
any peak are then grouped into a testing set. The support
vector machine (SVM) classifier is then applied to the
training set to learn the model and predict the cell cluster
assignments for the testing set, where eventually, all cells are
grouped into clusters and reported by the algorithm (Table 3
and Figure 4C).

Advantages: Similar to ACCENSE, DensVM takes
advantage of the t-SNE algorithm to perform dimensionality
reduction allowing for the capture of non-linear phenotypic
relationships between cells. One advantage over ACCENSE
is that by employing SVM classifiers, cells with confident
peak assignment can assist the clustering of uncertain cells.
This also reduces the over-clustering seen in ACCENSE
(Figure 4B versus 4C).

Limitations: The limitations of DensVM are similar to
ACCENSE, except that DensVM can be implemented through an
R package allowing users for increased customization and to run
larger datasets.

SPADE (Spanning-Tree Progression
Analysis of Density-Normalized Events)
SPADE is a clustering tool that provides a platform for
both cell clustering and data visualization that retains the
complex relationship between cellular populations (Murphy
and Chused, 1984). The workflow for SPADE analysis consists
of four computational steps: (1) First, the algorithm down-
samples the data based on cellular density whereby equalizing
the representation of rare and major cell populations; (2) It
then performs clustering on the down-sampled cells to group
cells with similar phenotypes into clusters or “nodes”; (3) It
subsequently constructs a minimum spanning tree between
all the generated nodes, where each “node” represents a
combination of cells with similar properties; (4) As the last
step, it maps all the cells in the dataset to the existing

clusters, known as up-sampling (Table 3 and Figures 4D,
5A). SPADE offers a unique visualization tool comprised of
nodes that are linked to each other by tree like branches
where the size of each node corresponds to the number of
cells contained within the node (Figure 4A). Moreover, each
node can be color coded by the relative expression of a
particular marker, i.e., CD3 in Figure 5A, to aid with node
identification. This kind of summarized tree-structure plot
provides an overview of the cell clusters but will miss the single
cell resolution.

Advantages: There are numerous advantages to SPADE.
First, SPADE is able to subsample the entire population
of cells to achieve an even cell distribution. The algorithm
used for the down-sampling of events allows for an equal
representation of both dominant and rare populations.
Additionally, the spanning tree structure of the output
permits the identification of the hierarchical relationship
between the various clusters identified. For example, cellular
populations that are similar to one another are found in the
same branch of the dendrogram, while the subtypes located
at different branches are minimally related. The algorithm
is user friendly and highly modifiable so that the number
of nodes and the similarity of cells within the node can
easily be adjusted.

Limitations: However, there are a number of limitations to this
method. Because the program color codes the entire dendrogram
to represent the relative expression of each marker in every node,
visualization of more than one marker at a time is challenging.
Additionally, although theoretically SPADE should be able to
detect rare populations, as reported by Weber and Robinson
(2016), SPADE did not perform well to balance precision and
recall for rare population detection. However, some of the
issues have been overcome by the updated version of SPADE
(Qiu, 2017).

FlowSOM (Self-Organizing Map
Clustering)
FlowSOM uses consensus clustering to organize cells and aims to
analyze cytometry data with Self-Organizing Maps (SOM) (Van
Gassen et al., 2015). FlowSOM clustering algorithm includes four
computational steps: (1) Scaling within each marker; (2) Building
up a SOM with nodes representing the overall composition
of neighboring cells and assigning cells to the closest node;
(3) Visualizing the SOM by building a minimal spanning
tree to connect the nodes into a graph; (4) Calculating the
meta-clustering of the nodes and automatically suggesting the
best number of clusters for each particular dataset (Table 3
and Figure 4E).

Advantages: One of the main advantages of FlowSOM is
that it is one of the fastest clustering tools available. In our
direct comparison, it had the shortest running time of 0.19 min
for 1,800,000 events, only comparable to flowPEAK (Table 3).
Additionally, FlowSOM nodes can be visualized by star charts
that simultaneously show the mean value of multiple markers
in a pie chart (Figure 5B), greatly facilitating with cluster or
node identification.
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FIGURE 5 | Tree-structure visualization for SPADE and FlowSOM. (A) SPADE tree colored by CD3 intensity. (B) FlowSOM tree with multiple maker intensities. Both
tools were applied to the example from Figure 2.

Limitations: FlowSOM improves marker visualization with
the ability to visualize multiple simultaneously allowing for
easier population identification. However, if too many markers
are visualized at the same time, the interpretation can still be
difficult (Figure 5B).

PhenoGraph (an Algorithm for Defining
Cellular Phenotypes in High-Dimensional
Single-Cell Data)
The PhenoGraph algorithm is another automated clustering tool
that identifies clusters of phenotypically similar cells (Levine
et al., 2015). Cellular clusters are generated in a two-step
process. (1) First, the tool defines the nearest neighbors for each
cell by using Euclidean distance, and then constructs a graph
where each node represents an individual cell and each edge
represents the number of shared neighbors. (2) PhenoGraph
then partitions the graph into distinct populations based on the
Louvain community detection method where cells with similar
phenotypes are clustered together. In this way, each community
represent a unique population of cells with similar phenotypic
features, and the connections between communities represent
the correlation between the various populations (Table 3
and Figure 4F).

Advantages: PhenoGraph is able to retain the single cell
nature of the data and uses the relationship between cells to
identify communities. Additionally, PhenoGraph is especially
powerful for datasets containing a large number of samples
or large number of cells per samples, where it can efficiently
perform clustering of hundreds of thousands or even millions
of cells without the need for down sampling. Finally, another
advantage of this tools is its ability to determine cluster number
automatically, without any known prior information and without
producing too many clusters (Table 3 and Figure 4F), i.e., 31
clusters produced for the example dataset.

Limitations: The PhenoGraph clustering results can be
visualized by t-SNE, PCA, or a heatmap, however, the community
graph data presented in the original paper (Ferrer-Font et al.,
2019) is not available in the current version of R package. In
the current R package, the number of clusters are automatically
determined by the algorithm. Although PhenoGraph is designed
to optimize cluster number automatically, because this parameter
cannot be altered by the end user, it sometimes results in a large
number of clusters than might not have biological significance
(Figure 4F). The algorithm performs efficiently when users apply
default settings, but the time needed for cluster generation
increases as users alter these settings (Table 3 and Figure 4).

Citrus (Cluster Identification,
Characterization, and Regression)
Citrus is a data-driven approach to identify cell populations
present in high-dimensional data sets and correlate them to
particular outcomes (Bruggner et al., 2014). It accomplishes
this by performing first unsupervised cell clustering followed by
supervised prediction modeling to identify cell responses that
are highly correlated with experimental endpoint in a three-step
process. (1) Citrus first conglomerates individual cells from all
samples together into one dataset and then performs hierarchical
clustering of all the cells. The algorithm then filters out all clusters
below a minimal threshold (this can be adjusted) and uses the
remaining clusters for subsequent analysis. (2) As the second
step, individual cells are then reassigned back to the original
samples and Citrus generates a matrix of descriptive features and
metadata for each sample. (3) Finally, Citrus builds a regression
model of the data based on the feature matrix and the metadata
provided to correlate cellular clusters with the experimental
endpoint (Table 3).

Advantages: Compared with other clustering method, Citrus
can not only identify cell subpopulations, but can also detect
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which cellular subsets correlate with the experimental endpoints
of interest. This tool is provided both as an R package and
easy-to-use GUI, making it convenient for most users.

Limitations: One of the main limitations of Citrus is its
inability identify less frequent cell populations as one of the
steps in the algorithm filters out cell clusters below a minimum
cluster threshold. Additionally, Citrus requires at least 8 samples
in each experimental group for optimal performance and this is
not always possible to obtain.

Overall Summary of Unsupervised
Clustering Methods
As shown in Table 1, unsupervised clustering tools as a group
have the following advantages: (1) Compared with manual gating,
these clustering pipelines are unbiased and fully automated; (2)
Although the computing time is variable and depends on the
particular tool used, overall the computing speed is generally fast.
(3) Unlike manual gating that requires prior-knowledge by the
end user, these clustering tools perform “blindly” that allows for
the detection of novel cell types and rare cell populations. This
is accomplished in some methods by specific density-dependent
dimensionality reduction, where down-sampling allows for equal
representation of rare and abundant cell types. (4) Some
algorithms can suggest the optimal number of cell clusters to be
generated such as PhenoGraph, DensVM, and ClusterX, while
other algorithms such as SPADE, FlowSOM, and CCAST are also
able to accept manual input for the desired number of clusters to
be generated (Table 3).

However, there are a number of limitations to the current
unsupervised clustering tools that potentially can be improved.
First, although these algorithms cluster cells into subpopulations,
the identification of these clusters requires annotation by the
end-user, that can be time consuming, biased and prone to
errors. To address this issue, tools such as the combination of
MEM (Diggins et al., 2017) + flowCL (Courtot et al., 2015) can
automatically identify the marker signatures and match with cell
ontogenies of known cell types. Furthermore, this has led to the
development of supervised clustering tools that can not only
cluster the cells but also annotate the resulting clusters. These
will be discussed below. Another disadvantage of the currently
available tools is the inconsistency in their implementation
pipeline, where some methods are primarily based on a GUI
application while others only have script-based packages available
with very few allowing for both possibilities. GUI-based packages
make the analysis more user-friendly. However, tools only using
GUI are usually less efficient for processing large datasets and
offer less flexibility in adapting the preset parameters to the end
user’s needs. On the other hand, tools that only have script-
based packages available are less accessible to users with limited
computational training. As such, it would be beneficial for
clustering tools to offer both pipelines.

Supervised or Semi-Supervised
Clustering Tools
Recently supervised and semi-supervised clustering algorithms
have been developed that allow simultaneous cellular clustering

and cluster annotations (Table 4). Based on the additional
information required for the implementation of these methods,
they can be classified into the following subtypes: (1) Supervised
machine learning clustering algorithms that rely on annotated
training sets as input, to “train” them for patterns associated with
each cluster to predict cluster identity of new samples. Some
of these tools use computer learning algorithms such as linear
discriminant analysis (LDA) (Abdelaal et al., 2018) or neural
networks (Li H. et al., 2017) to apply the patterns extracted from
the training sets to annotate cells from a new dataset. (2) The
semi-supervised clustering algorithms incorporate user provided
marker matrix of known marker associations with particular cell
types (Lee et al., 2017; Ji et al., 2018) to guide cellular clustering
and identification. These marker matrices are composed of
marker expression patterns in various cell types that serve as a
cluster dictionaries indicating whether the markers are negative,
positive or ignorable for each cell types. Others, for example
openCyto (Finak et al., 2014), rely on a gating template hierarchy
to facilitate with cluster annotation. Yet another tool, flowLearn
(Lux et al., 2018) aligns markers’ density from manually gated
data to other samples to estimate the gating threshold. These
methods provide alternatives to unsupervised clustering tools
with an example of each type is outlines below.

DeepCyTOF
DeepCyTOF is an example of a supervised machine learning
algorithm that integrates deep machine learning into automatic
cell population gating (Li H. et al., 2017). This algorithm relies on
manually gated examples for cellular population identification in
new samples. The algorithm accomplishes cluster identification
in a three-step process. (1) It first uses the provided manually
gated and annotated data as a training set. (2) It then performs
denoising and data calibration of the new data with the training
sets to reduce batch effects and (3) performs cellular classification
of the new data based on the training set provided through a
feed-forward neural network model (Zell, 1994).

Advantages: One advantage of DeepCyTOF in addition to that
offered by the supervised machine learning algorithms at large,
is that it is able to calibrate new data to training sets, limiting
the batch to batch variation that can happen in data that are not
simultaneously generated.

Limitations: One of the limitation specific to DeepCyTOF is
that it relies on an annotated training set of data. Although this
step allows for cluster annotation, it also introduces end-user
bias in requiring manually gated cellular populations. In addition,
similar to all other supervised learning approaches, DeepCyTOF
is not able to identify novel cell populations as they are not
predefined in the training set.

ACDC (Automated Cell Type Discovery
and Classification)
ACDC is an example of a semi-supervised clustering algorithm
that incorporates a user-specified marker matrix to identify
cellular cluster (Lee et al., 2017). It then uses this matrix
to define cellular populations based upon particular markers.
The marker matrix is composed of all markers used in a
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TABLE 4 | Supervised clustering tools.

ID (References) Name Short description Availability Additional
information

Implementation Running time
(min)

ARI F measure Notes

1. Finak et al., 2014 OpenCyto A method
mimicking manual
gating by
incorporating
information from a
gating template

R package “openCyto”
available on
Bioconductor

Gating template, can
be a complete table or
added inline one cell
type at a time

Tututorials avaialble,
preparing the gating
template is
challanginng

Fast (running time
depends on the
choice of
algorithms in the
gating template)

Not evaluated Not
evaluated

We did not evaluate
ARI and F measure
because OpenCyto is
not fully automated, it
needs user"s
supervision and fine
parameterization.

2. Li H. et al., 2017 DeepCyTOF Uses training data
to predict cell types
based on deep
learning techniques

Python, Github Training data Time consuming to
understand examples
scripts and adapt it to
your own data

1.36 0.96 0.93 50% of the cells in the
sample were randomly
chosen as training
sample

3. Abdelaal et al., 2018 CyTOF Linear
Classifier

Uses training data
to predict the cell
types based on
linear discriminant
analysis (LDA)

R, Matlab, Github Training data Easy to run 0.12 0.91 0.92 50% of the cells in the
sample were randomly
chosen as training
sample

4. Lee et al., 2017 ACDC Uses a marker
matrix information
to predict the cell
types based on
semi-supervised
learning techniques

Python package
(Bitbucket)

Markers matrix Time consuming to
understand examples
scripts and adapt it to
your own data

24 0.81 0.77 –

5. Ji et al., 2018 MP (Mondrian) Uses a marker
matrix to predict
cell types through a
Bayesian model

Python, github Markers matrix Time consuming to
understand examples
scripts and adapt it to
your own data

109 0.55 0.49 50% of the cells in the
sample were randomly
chosen as training
sample

6. Lux et al., 2018 flowLearn Uses gates from
training data to
predict gating
threshold in other
samples through a
density alignment

R package flowLearn,
github

Training data Not fully automate,
gate one marker at a
step.

Fast for predicting
one threshold at
each step

Not evaluated Not
evaluated

We did not evaluate
ARI and F measure
because flowLearn is
not fully automated and
needs user’s
supervision.
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dataset with assigned values for each marker in various defined
cellular populations where marker assignment can be -1, 1, or
0 (never present, present or unrelated). ACDC then converts
the marker matrix into landmark points which represent cellular
population’s fingerprints, and the semi-supervised learning
algorithm is implemented through a random walk process where
each individual cell is classified to belong to one of the predefined
populations or is labeled as “unknown.”

Advantages: One of the advantages specific to ACDC, is that
it classifies ambiguous cells into an “unknown” group, which
although cannot be directly identified, can be exported for
further investigation.

Limitations: One limitation of ACDC is that the markers that
are used to define cellular populations are binary. As a large
number of markers do not have a binary expression (expressed
or not expressed) but rather are expressed on a continuum, this
method therefore either excludes these markers from defining the
cellular populations or requires the end user to arbitrarily assign
expression cut-offs for those markers.

OVERALL SUMMARY OF THE
SUPERVISED AND SEMI-SUPERVISED
AUTOMATED GATING APPROACHES

The supervised and semi-supervised machine learning clustering
algorithms combine merits offered by manual gating and
automated clustering algorithms and provide sophisticated
methods for the development of reproducible and automated
gating and cluster identification pipelines. Compared with the
unsupervised clustering methods, they not only automatically
group cell into clusters, but also provide annotation for those
clusters. The end-user prespecified gating strategies either in the
form of marker tables or in pre-gated data sets ensures that
the algorithms’ uses user accepted methods to define cellular
populations. However, this process also introduces subjectivity
and bias absent from unsupervised gating tools. Additionally,
the process relies on the end-users’ prior knowledge and is labor
intensive. Another limitation of most of these methods is that
they lack user friendly interface and rely on users’ ability to
program based on provided examples, limiting their use for
those who do not have extensive computational skills. Finally,
identification of rare and novel cell types is still challenging
for these methods.

A Practical Application
To evaluate and compare the performance of the various
unsupervised and supervised clustering tools, we applied
these algorithms to a public dataset [Fluidigm_Maxpar Direct
Immune Profiling Assay_201325_Gating Example_v1.0 (Public)]
downloaded from Cytobank (Kotecha et al., 2010) for a total of 32
unsupervised and 6 supervised/semi-supervised clustering tools.
This dataset included CyTOF data on 42 human peripheral blood
mononuclear cells (PBMCs) samples, where we randomly chose
one PBMC sample (HulmmProfiling_S1_PBMC_1) and applied
it to all the various methods. After processing the data to filter
out beads, dead cells and doublets, there were 184,968 cells that

remained in the dataset. We then manually gated the dataset
using 21 markers to predefine 20 unique cell subpopulations
(Supplementary Figure S1 and Supplementary Table S2) and
used these manually gated populations as our reference or “truth”
for comparison of the clustering algorithms performance. These
tools were compared across four categories (Tables 3 and 4): (1)
tool running time; (2) if the number of clusters can be altered or
is predefined; (3) reproducibility of the results when repeat five
times and finally (4) we also measured the consistency between
the clustering algorithms and the manual gating by two separate
measures: adjusted rand index (ARI) (Rand, 1971; Hubert and
Arabie, 1985; Vinh et al., 2009) and F-measure (Hubert and
Arabie, 1985; Sasaki, 2007; Tables 3 and 4). ARI is a measurement
for the similarity between two clusters, where ARI = 1 represents
two clusters that are the same, where an ARI value close to 0
(or even negative value) means high dissimilarity between the
two clusters (Rand, 1971; Vinh et al., 2009). ARI is calculated
by the adjustedRandIndex function of mclust package in R. The
F-measure (or F1 score) is a tool to measure similarity between
prediction and truth, which can balance precision and recall.
Both ARI and F-measure are calculated using R (3.6.1).

Precision = true positives/(true positives + false positives)

Recall = true positives/(true positives + false negatives)

F-measure = 2× Precision× Recall/(Precision + Recall)

For a given cluster in the manual gating (serving as truth),
we calculate the F-measure between this true cluster and all
the clusters reported by the methods. The highest F-measure
was regarded as the best match between this true cluster and
predicted clusters and was used as the F-measure value for this
given true cluster. For each true cluster, we repeated this step to
get the F-measure for all the true clusters. We then averaged the
F-measure values across all the true clusters and used this value to
report in Tables 3 and 4 (Weber and Robinson, 2016). Of note, we
did not intend for the comparison ARI and F-measure results to
be conclusive as we only used one sample for the data generation.
They are merely used here for direct comparison between tools.
More comprehensive evaluation is beyond the scope of this paper.

Table 3 provides the detailed results for the comparison of
the unsupervised clustering methods. We were able to apply the
model dataset to 21 out of the 32 methods listed in Table 3
as some of the methods are no longer available or could not
be implement, such as CytoSPADE (Linderman et al., 2012)
and FLAME (Pyne et al., 2009). Among those packages that we
could successfully implement, most of the tools had available R
packages and were easy to implement. For cluster generation,
we used all default parameters, unless the number of clusters
could be specified in which case we had set it to 20 or the
number of cell populations identified by manual gating. The
running time ranged from 0.19 min to over 3 h (Table 3).
Out of all the supervised algorithms tested FlowSOM, PAC-
MAN and FlowPEAKS had the fastest running time. On the
other hand, DensVM, ACCENSE and SWIFT were very slow
(over 3 h) and required down sampling to 20,000 cells to
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accelerate the clustering. The results from DensVM, SPADE,
and DEPECHE were not consistent across different runs, while
FlowSOM generated reproducible results by setting a fixed
seed. Whereas methods such as PhenoGraph, CCAST, and
Rclusterpp were consistent across multiple runs. PhenoGraph,
PAC-MAN, FLOCK, DensVM, CCAST, and Rclusterpp resulted
in clusters that were the closest to manual gated clusters with
high ARIs and F measures (Table 3). PhenoGraph and PAC-
MAN had the highest ARIs and F measures among all the tools
tested (Table 3).

The results for the comparison of supervised tools are shown
in Table 4. For those methods requiring a training dataset such as
DeepCyTOF, CyTOF linear classifer and flowLearn, we set aside
half of the cells in the dataset as the “training” set and used the
remaining cells in the dataset as the “validation” dataset. As such
the performance measure of these tools might not be reflective of
what would be obtained with an unrelated dataset. Many of the
supervised methods did not have easy to use packages available,
and relied on users to write their own code based on provided
examples. DeepCyTOF (1.36 min) and CyTOF linear classifier
(0.12 min) required the shortest amount of time to run (Table 4).
As expected, overall the semi-supervised and supervised tools
had higher ARI and F1 measures compared to unsupervised
clustering methods, since they incorporate user defined gating
strategies into the clustering and gating process.

For consistency of the results, we chose t-SNE plots for
visualization of the clustering results of all the tools tested
(Figure 4 and Supplementary Figures S2, S4). All visualizations
were generated using R (3.6.1). Figure 4 and Supplementary
Figure S4 shows the cell clusters resulting from manual
gating and the five most popular unsupervised clustering tools
(ACCENSE, DensVM, SPADE, FlowSOM, and PhenoGraph)
described in more detail in the previous sections. We did not
visualize Citrus generated data, as we only used one sample
and Citrus requires a large input. Cellular population of a
similar phenotype have been color coded across all six of the
t-SNE plots for ease of comparison based on the associated
heatmaps displaying mean marker expression level across all
clusters (Supplementary Figure S3). As described in the previous
sections, since the cluster number cannot be adjusted in
ACCENSE (56 clusters) and PhenoGraph (31 clusters), they
resulted in the highest number of clusters, whereas SPADE and
FlowSOM whose cluster number can be defined produced 20
clusters each (Figure 4 and Supplementary Figure S4). DensVM
resulted in 17 clusters (Figure 4 and Supplementary Figure S4).
Of the five top tools used, all of the unsupervised algorithms
contained at least one cluster that corresponded to one of
the twenty reference populations identified by manual gating.
However, in a number of clusters, the marker expression patterns
of reference cell types and those in the obtained clusters did not
match perfectly. In ACCENSE, we observed a significant over
splitting of the cells, resulting in many small clusters (Figure 4
and Supplementary Figure S4).

Challenges and Future Directions
As reviewed in this manuscript, many methods, including
unsupervised and supervised clustering tools have been

developed in recent years to aid the analysis of high-dimensional
cytometry data. Many of these methods have been adopted by the
community and have significantly improved our understanding
of immune cell populations (Chester and Maecker, 2015; Mair
et al., 2016; Saeys et al., 2016; Weber and Robinson, 2016;
Kimball et al., 2018; Mair, 2019; Todorov and Saeys, 2019;
Zielinski, 2019). These automated gating algorithms can be
implemented on large data sets, and have the potential to detect
novel cell types and cellular relationships not easily identifiable
by manual gating. The most popular methods are ACCENSE,
DensVM, SPADE, FlowSOM, PhenoGraph, and Citrus.

In this manuscript, we implemented a significant proportion
of these methods using a test PBMC CyTOF dataset and
directly compared their performance to manual gating. Although
we have opted to use a CyTOF dataset for the comparison,
any cytometry data can be similarly used. Runtime varied
drastically between the various methods tested, but FlowSOM,
FlowPEAK, and PAC-MAN had the shortest computing time
of the unsupervised algorithms and DeepCyTOF and CyTOF
linear classifiers performed the fastest of the supervised
tools. Several of the unsupervised clustering algorithms, such
as PhenoGraph and PAC-MAN, had reproducible results
and compared well to manually gated results. As expected,
supervised methods in general had higher ARIs and F measure
than the unsupervised methods with DeepCyTOF achieving
the highest ARI and F measure among all the supervised
methods. However, more comprehensive results are needed to
validate our findings.

In respect to usability of the available tools, many of
the unsupervised clustering algorithms had easy to use
packages available, although some of them were either no
longer available or we were not able to run successfully.
On the other hand, the supervised gating methods were
more difficult to implement, as they required additional
information such as a marker matrix or samples with gated
populations for input and/or did not have easy to use
packages available. For example, methods such as DeepCyTOF
and CyTOF linear classifier require non-trivial programming
skills to implement.

Although these methods have significantly improved our
ability to work with multi-dimensional data, based on our
reviews and quantitative analysis, there remain several challenges
that should be addressed with future tool development.
Many of the clustering tools rely on the end-user to have
significant computational skills, limiting their availability for
a wider audience and as such future tools would benefit
from incorporating a GUI or shiny app interphase along with
R/python scripts for wider appeal. Current methods are not fully
automated and still rely on significant user input. Unsupervised
clustering methods rely on manual labeling of clusters to identify
the populations, whereas supervised auto-gating methods need
prior information such as a user specified marker matrix
or a manually gated training dataset. Additionally, rare and
novel population identification is challenging especially for the
supervised clustering tools. It would be beneficial for future
tools to address these challenges by incorporating built in cluster
identification methods and those that can infer potential novel
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populations based on previously known data. In order to reduce
computing time for some computationally demanding methods,
subsampling of cells has been a popular approach. Analysis of
impact of subsampling has not been fully studied, especially on
clustering accuracy and ability to identify rare population.

As these tools gain popularity and become routinely applied
to large datasets such as patient monitoring in clinical trials
other unique challenges arise that should be addressed by the
next generation of tools. These tools should be able to handle
large datasets containing millions of cells per file and large
number of files. Similarly, studies comprised of data collected
over multiple cytometry runs are prone to batch effect that
needs to be incorporated into the new algorithms. Batch effect,
or technical variability between experiments, if not accounted
for can result in overestimation of the heterogeneity of the
sample and identification of “false” clusters of cells, where
two or more clusters are actually of the same phenotype
but are represented by unique clusters secondary to non-
biological phenomena. Additionally, there are unique challenges
inherent to high-dimensional flow cytometry data that need to
addressed by future tools (Mazza et al., 2018) by incorporating
algorithms that can compensate for a number of parameters
that can introduce variability to flow data such as background
fluorescence and spreading error (Roederer, 2001), inability to
resolve a true positive population due to “spreading” of the
negative populations.

Finally, these tools have been routinely applied to cluster
immune cells, where markers that define particular cellular
identities are well defined, e.g., CD3 for T cells, CD19 or CD20 for
B cells. However, using these tools to cluster non-immune cells
or a combination of immune and non-immune cells possess its
own challenges as markers that define unique cellular populations
are not as well defined. Although in principle, all the clustering
algorithms should function similarly irrespective of the particular
markers present, classifying the identity of the generated non-
immune cellular clusters is much more challenging.

Despite current challenges, an increasing number of user-
friendly clustering methods have been developed. Future
tool development should focus on developing methods
with modifiable user-friendly interfaces, better accuracy and
reproducibility, higher computational efficiency and decreased
human intervention. Multidisciplinary collaboration is needed
to address these challenges and to push the automated clustering
tools into the next generation that is able to utilize the high-
throughput cytometry technologies, minimize user burdens and
give more insights into population identification.
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FIGURE S1 | Manual gating hierarchy for the major populations (20) used in the
real data application section.

FIGURE S2 | t-SNE visualizations for the clustering results by (A) CCAST, (B)
ClusterX, (C) densityCUT, (D) DEPECHE, (E) FLOCK, (F) flowClust, (G) FlowGrid,
(H) flowMeans, (I) flowPeaks, (J) PAC-MAN, (K) Rclusterpp, (L) SamSPECTRAL,
(M) SWIFT, (N) X-shift, (O) immunoClust and (P) k-means. These tools were
applied to the same dataset as in Figures 2, 4, 5. Colors are not matched across
the tools in this figure. Tools were applied to the full data with 180K cells, except
for SWIFT where it was down sampled to 20K cells. Clustering result for
Cytometree is not plotted because it generated more than 1,000 clusters.

FIGURE S3 | Marker expression heatmap for the clustering results Figure 4 and
Supplementary Figure S4. (A) Manual gating, (B) ACCENSE, (C) DensVM, (D)
SPADE, (E) FlowSOM and (F) PhenoGraph. Manual gating and the five popular
tools were applied to a real data to perform cell subpopulation identification. Their
results are visualized by heatmap with rows representing markers and columns for
clusters. Color darkness level (refer to color bar) indicates the marker median
metal intensity across all the cells within a given cluster.

FIGURE S4 | t-SNE visualizations for manual gating and five popular
unsupervised clustering tools. (A) Manual gating, (B) ACCENSE, (C) DensVM, (D)
SPADE, (E) FlowSOM and (F) PhenoGraph. Clusters for each tool are painted with
unique colors. Manual gating and the five popular tools were applied to the same
data as Figure 2. Tools were applied to the full dataset with 180K cells, except for
ACCENSE and DensVM, where the data was down-sampled to 20K cells prior to
applying the tools as using the full dataset had a running time greater than 3 h. For
SPADE and FlowSOM, we set the number of clusters to 20. For ACCENSE,
PhenoGraph and DensVM, the number of clusters was automatically
optimized by the tool.

TABLE S1 | (A) Unsupervised clustering tools citations. (B) Unsupervised
clustering tools applications.

TABLE S2 | Manual gating markers.
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