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Parkinson disease, the second most common movement disorder, is a complex
neurodegenerative disorder hallmarked by the accumulation of alpha-synuclein, a
neural-specific small protein associated with neuronal synapses. Mutations in the
glucocerebrosidase gene (GBA1), implicated in the rare, autosomal recessive lysosomal
disorder Gaucher disease, are the most common known genetic risk factor for
Parkinson disease. Insights into the inverse relationship between glucocerebrosidase
and alpha-synuclein have led to new therapeutic approaches for the treatment of
Gaucher disease and GBA1-associated Parkinson disease. Unlike the current drugs
used to treat Gaucher disease, which are highly expensive and do not cross the
blood-brain-barrier, new small molecules therapies, including competitive and non-
competitive chaperones that enhance glucocerebrosidase levels are being developed
to overcome these limitations. Some of these include iminosugars, ambroxol, other
competitive glucocerebrosidase inhibitors, and non-inhibitory chaperones or activators
that do not compete for the active site. These drugs, which have been shown in
different disease models to increase glucocerebrosidase activity, could have potential as
a therapy for Gaucher disease and GBA1- associated Parkinson disease. Some have
been demonstrated to reduce α-synuclein levels in pre-clinical studies using cell-based
or animal models of GBA1-associated Parkinson disease, and may also have utility for
idiopathic Parkinson disease.

Keywords: gaucher disease, Parkinson disease, lysosome, glucocerebrosidase, GBA1, small molecule
chaperones

INTRODUCTION

Gaucher disease (GD), first described in 1882 by Dr. Phillipe Gaucher, is an inborn
error of metabolism due to mutations in the gene GBA1, encoding the lysosomal enzyme
glucocerebrosidase (GCase) (Sidransky, 2012). GCase, a lysosomal hydrolase, cleaves both
glucosylceramide (GlcCer) to ceramide and glucose, and glucosylsphingosine (GlcSph) into
sphingosine and glucose. This rare autosomal recessive inherited disorder occurs in approximately
1:40,000–60,000 live births in the general population, whereas among Ashkenazi Jews the
frequency increases to around 1:850 (Horowitz et al., 1998). In patients with GD, “Gaucher cells,”
macrophages engorged with lysosomal GlcCer, present in the spleen, liver, and bone marrow,
lead to organomegaly and inflammation (Pastores et al., 2000; Beutler and Grabowski, 2001;
Sidransky, 2012). Clinically, there are three types of GD. Type 1 or non-neuronopathic GD presents
with organomegaly, bone manifestations, anemia, and thrombocytopenia (Pastores et al., 2000;
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Beutler and Grabowski, 2001). Acute neuronopathic GD2, the
rarest form with devastating and progressive neurodegeneration
including bulbar findings, seizures, and opisthotonos, results in
death during infancy or early childhood (Beutler and Grabowski,
2001; Sidransky, 2004; Weiss et al., 2015). Chronic neuronopathic
GD3 is characterized by a slower progression of neurological
symptoms, with a later onset. These patients have extensive
visceral and skeletal involvement, but also may exhibit myoclonic
epilepsy, ataxia, impaired eye movements, developmental delay,
or intellectual deterioration (Sidransky, 2004, 2012; Gupta
et al., 2011; Sidransky and Lopez, 2012). There is considerable
phenotypic variation within each type of GD, including rare
patients who develop Parkinson disease (PD).

Parkinson disease, first described in 1817 by James Parkinson,
is found in 2–3% of individuals over age 65 (Poewe et al.,
2017). This disease is characterized by the loss of dopaminergic
(DA) neurons in the substantia nigra, as well as by Lewy
bodies containing alpha-synuclein (α-Syn) (Spillantini et al.,
1997; Surmeier et al., 2017), which ultimately result in the
classically associated symptoms, tremor, postural instability,
bradykinesia, and rigidity (Poewe et al., 2017). Currently,
mutations in GBA1 are one of the most common genetic risk
factors for PD, as well as dementia with Lewy bodies (DLB).
Mutations in GBA1 were found in 5–20% of sporadic PD
cases with an estimated odds ratio of 5.4. In DLB the odds
ratio was 8.3 (Sidransky et al., 2009; Nalls et al., 2013; Mullin
et al., 2019). Patients with GBA1-associated PD (GBA1-PD)
resemble those with sporadic PD but exhibit an earlier disease
onset. The lysosome, the central player uniting GD and PD,
is the main organelle responsible for α-Syn degradation (Sala
et al., 2016). While the mechanism underlying the association
between GD and PD still remains controversial, one hypothesis
proposed posits that elevated substrate levels resulting from
diminished GCase could stabilize soluble oligomeric α-Syn
intermediates, enhancing oligomerization and accumulation of
α-Syn within lysosomes (Yap et al., 2011; Taguchi et al., 2017).
Increased levels of α-Syn in DA neurons could also inhibit
the translocation of GCase from the endoplasmic reticulum
(ER) to lysosomes which could lead to a gradual increase
of the lipid substrates within the lysosome (Mazzulli et al.,
2016a). This positive feedback loop with the combination
of inhibited GCase trafficking and α-Syn accumulation may
result in neurodegeneration (Balestrino and Schapira, 2018;
Stojkovska et al., 2018). Furthermore, even patients with
PD without GBA1 mutations have lower levels of GCase,
suggesting that in idiopathic PD, reduced GCase activity may
also contribute to disease progression (Gegg et al., 2012;
Murphy et al., 2014).

Due to this apparent reciprocal association between
GCase and α-Syn, attention is being directed toward
designing therapeutics for GD with implications for PD.
Currently, patients with type 1 GD are commonly treated
with enzyme replacement therapy (ERT) (Jung et al., 2016)
which alleviates the hematological, visceral, and sometimes
skeletal manifestations, but does not cross the blood-brain-
barrier, and thus does not impact neurological involvement
or PD manifestations (Valayannopoulos, 2013). Substrate

reduction therapy (SRT), a second approach for treating
GD, focuses on upstream targets, ultimately inhibiting the
accumulation of GlcCer (Lukina et al., 2019). Two SRT
drugs approved by FDA have shown efficacy in type 1 GD
(Schiffmann et al., 2008; Bennett and Turcotte, 2015) and
some cross the blood-brain-barrier. However, the current
SRTs have not been efficacious for neuronopathic GD (nGD)
(Bennett and Turcotte, 2015; Mistry et al., 2018; Zimran
et al., 2018) and there are several pharmacokinetic limitations
(Henley et al., 2014).

Pharmacological chaperones, small molecules designed
to bind to a specific target protein and assist in the
folding of the protein, are also being developed as an
alternative treatment approach for GD or GD-associated
PD. They further function by stabilizing the enzyme to
prevent misfolding and to enhance accurate translocation
of the protein from the ER to the Golgi and lysosome
(Compain et al., 2006; Lieberman et al., 2007). Since most
mutations encountered in GD or GBA1-PD are missense
mutations leading to misfolded enzyme, pharmacological
chaperones which cross the blood-brain-barrier provide an
attractive therapeutic strategy. Here we review studies of
chaperones as a treatment for GD and GBA1-PD, focusing on
preclinical developments.

IMINOSUGARS

The first chaperone considered for GCase was an iminosugar,
N-(n-nonyl) deoxynojirimycin (NN-DNJ). Sawkar et al.
(2002) reported that the addition of NN-DNJ to fibroblast
culture medium increased the activity of GCase in
N370S mutant and wild-type but not L444P mutant
cells. However, NN-DNJ also inhibits α-glucosidase and
GlcCer synthase, rendering it difficult to use as a target-
specific drug. Another iminosugar, α-1-C-Nonyl-DIX that
specifically inhibits GCase, but not α-glucosidase, doubled
the residual cellular activity of GCase in N370S/N370S
fibroblasts (Compain et al., 2006). Bicyclic nojirimycin (NJ)
analogs with a sp2-iminosugar structure were found to be
stronger chaperones as well as selective and competitive
inhibitors of lysosomal GCase (Luan et al., 2009, 2010;
Tiscornia et al., 2013). Some of the new sp2-iminosugar
derivatives inhibited enzyme activity by 10-fold at pH 5
(Mena-Barragan et al., 2016).

Another type of iminosugar, isofagomine (IFG), was reported
to bind to the GCase active site, increase GCase activity
in cell lysates and restore lysosomal trafficking of GCase in
N370S cells (Lieberman et al., 2007). Incubation of GD patient-
derived lymphoblastoid or fibroblast lines with IFG increased
GCase activity 3.5- and 1.3-fold and reduced endogenous
GlcCer levels (Khanna et al., 2010). Testing the effects of
IFG on GCase activity in a complex nGD mouse model,
4L;C∗ (V394L/V394L + saposin C−/−) showed that IFG
administration extended lifespan and increased GCase activity
and protein levels in the brain and visceral tissue, with
attenuation of proinflammatory responses (Sun et al., 2011).
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Further, in vivo tests of IFG in homozygous V394L, D409H,
and D409V mice, which are nGD models demonstrated
increased GCase activity in visceral tissues and brain extracts
(Sun et al., 2012). Whether the effect of IFG on wild-
type GCase could be beneficial in synucleinopathies was
evaluated using mice overexpressing human wild-type α-
Syn (Thy1- α-Syn). Treating with IFG (AT2101) orally for
4 months improved motor function, diminished microglial
inflammatory response in the substantia nigra, reduced α-Syn
immunoreactivity in nigral DA neurons, and reduced small
α-Syn aggregates (Richter et al., 2014). Another study in
4L;C∗ mice reported that IFG did not alter the GlcCer and
GlcSph accumulation, but attenuated disease progression and
altered global expression profiles of brain mRNA and miRNAs
(Dasgupta et al., 2015). Treating Drosophila manipulated to
express human wild-type, N370S and L444P GBA1, with IFG
resulted in decreased ER stress and preserved motor function,
suggesting that IFG might have potential as a PD therapy
(Sanchez-Martinez et al., 2016).

De La Mata et al. reported that a distinct iminosugar, NAdBT-
AIJ restored mitochondrial dysfunction and GCase activity in
L444P mice in combination with coenzyme Q10 (De La Mata
et al., 2015). Another pyrrolidine-based iminosugar, α-1-C-
tridecyl-DAB (5j) was shown to function as a chaperone inhibitor
of GCase enhancing enzyme activity at concentrations 10 times
lower than IFG (Kato et al., 2016).

AMBROXOL

Ambroxol (ABX), a drug used to treat airway mucus
hypersecretion and hyaline membrane disease in newborns,
was found to be a pH-dependent, mixed-type inhibitor of
GCase, and thus a potential therapy for GD. With its inhibitory
activity maximal at neutral pH, ABX is found in the ER,
and is undetectable at the acidic pH of lysosomes (Maegawa
et al., 2009). GCase activity was enhanced in ABX-treated
GD fibroblasts and lymphoblasts. Furthermore, modeling
studies indicated that ABX interacts with both active site and
non-active site residues of GCase (Maegawa et al., 2009). The
tolerability and efficacy of ABX was evaluated in 12 patients
with type 1 GD not receiving ERT. While only three patients
who continued on ABX for a year had improved platelet counts
and decreased organ volumes, the others remained stable,
supporting the need for a larger clinical trial (Zimran et al.,
2013). The chaperone activity and cytotoxicity of ABX was
tested in vitro, demonstrating low cytotoxicity and significantly
increased GCase activity in GD and GD+PD fibroblasts with
different GD mutations, without any serious adverse effects
(Bendikov Bar et al., 2013; Luan et al., 2013; McNeill et al.,
2014). Another study in GBA1-mutant fibroblasts showed that
ABX enhanced GCase activity by increasing Sap C and LIMP-2
protein levels (Ambrosi et al., 2015). Testing in vivo efficacy
of 12 days of ABX in wild-type, L444P carrier and transgenic
mice overexpressing human α-Syn demonstrated increased brain
GCase activity and decreased total and phosphorylated α-Syn
levels (Migdalska-Richards et al., 2016). In nonhuman primates,

daily administration of ABX increased brain GCase activity,
supporting clinical testing in humans (Migdalska-Richards
et al., 2017a). In Drosophila melanogaster with a mutated
GBA1b ortholog, treatment with ABX did not rescue GCase
activity, but did ameliorate the unfolded protein response,
inflammation and neuroinflammation, and enhance the life span
(Cabasso et al., 2019). Several pilot clinical studies of ABX were
performed in patients with nGD (Narita et al., 2016; Pawlinski
et al., 2018; Kim et al., 2019). One study in five patients with
GD3 showed that high-dose oral ABX had good safety and
tolerability, significantly increased lymphocyte GCase activity,
permeated the blood–brain barrier, and decreased GlcSph
levels in the cerebrospinal fluid. The investigators reported
that myoclonus, seizures, and pupillary light reflex dysfunction
improved, leading to the recovery of gross motor function
in two patients (Narita et al., 2016). Another study of the
long-term safety and efficacy of combined high-dose ABX up to
21 mg/kg/day) and ERT in GD3 showed that during the first 2
years seizure frequency and neurocognitive function worsened,
but after the ABX dosage was increased to 27 mg/kg/day, seizure
frequency markedly decreased from the baseline, neurocognitive
function improved and the drug was tolerated without severe
adverse events (Kim et al., 2019). However, these are primarily
antidotal reports, and a double-blind placebo-control study is
needed. ABX is currently being tested under a single-center
phase II clinical trial in 75 subjects with mild to moderate PD by
randomizing participants into ABX high-dose (1,050 mg/day),
low-dose (525 mg/day), or placebo group (Silveira et al.,
2019), and reasonable cerebrospinal fluid levels were attained
(Mullin et al., 2020).

NON-INHIBITORY CHAPERONES

A major limitation of inhibitory chaperones is that the chaperone
activity must be balanced against the functional inhibition of
GCase. In contrast, non-inhibitory chaperones can assist in the
folding of mutant GCase in the ER and the translocation to
lysosomes without interfering with the active site of the enzyme,
and thus can restore enzyme activity in the lysosome. Several
non-inhibitory compounds were identified by a high throughput
screening (HTS) assay using an extract of spleen from a patient
with GD as the source of mutant enzyme (Goldin et al., 2012).
In this screen, saposin C and other potential cofactors were
present in the extract, likely enhancing the detection of non-
inhibitory chaperones. The activities of the compounds were
confirmed in subsequent cell-based assays using patient-derived
fibroblasts. The screen yielded novel pyrazolopyrimidine-
based non-inhibitory pharmacological chaperones (Patnaik
et al., 2012). Aflaki et al. (2014) assessed the efficacy of
one non-inhibitory chaperone identified by HTS as a drug
candidate for GD or GBA1-PD. Since fibroblasts do not
store GlcCer, monocyte-derived macrophages from 20 patients
with GD and GD iPSC-differentiated macrophages were
examined. The non-inhibitory chaperone, NCGC758, enhanced
GCase activity, reduced glycolipid storage, and normalized
chemotaxis and the production of reactive oxygen species in
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TABLE 1 | Small molecules considered as therapeutics for GD and GBA1-associated PD.

Name of small
molecules

Disease modeled GBA1 mutations tested Model organisms Effect of small molecules References

Inhibitory chaperones

NN-DNJ GD1 N370S Fibroblasts Increased GCase activity Sawkar et al., 2002

α-1-C-Nonyl-DIX GD1 N370S Fibroblasts Increased GCase activity Compain et al., 2006

sp2-iminosugar GD1 F213I, N370S Fibroblasts Increased GCase activity Luan et al., 2009

nGD L444P, G202R DA neurons from iPSCs Increased GCase activity and protein level Tiscornia et al., 2013

Isofagomine GD1 N370S Fibroblasts Increased GCase activity Lieberman et al., 2007

nGD L444P Fibroblasts and lymphoblasts Increased GCase activity
Reduced GlcCer levels

Khanna et al., 2010

nGD L444P Mouse Increased GCase activity in relevant tissues Khanna et al., 2010

nGD V394L/V394L + saposin C−/− Mouse Extended lifespan
Increased GCase activity and protein levels
Attenuation of proinflammatory response

Sun et al., 2011

nGD V394L, D409H, and D409V Mouse Increased GCase activity in relevant tissues Sun et al., 2012

PD α-Syn overexpression Mouse Improved motor function
Reduced α-Syn immunoreactivity
Reduced α-Syn aggregates

Richter et al., 2014

nGD V394L/V394L + saposin C−/− Mouse Extended lifespan
Attenuation of proinflammatory response
Altered expression of DEGs*

Dasgupta et al., 2015

GBA1-PD N370S, L444P Drosophila Decreased ER** stress
Restored motor function

Sanchez-Martinez et al., 2016

NAdBT-AIJ + coQ nGD L444P Mouse Restored mitochondrial dysfunction
Increased GCase activity

De La Mata et al., 2015

α-1-C-tridecyl-DAB GD1 N370S Fibroblasts Increased GCase activity Kato et al., 2016

Ambroxol GD1 N370S, F213I Fibroblasts and lymphoblasts Increased GCase activity and protein levels
Reduced GlcCer levels

Maegawa et al., 2009

GD1,2&3 N370S, F213I, N188S,
G193W, R120W

Fibroblasts Increased GCase activity Luan et al., 2013

GD1,2&3 N370S, V394L, R120W,
R415R, R131C

Fibroblasts Increased GCase activity Bendikov Bar et al., 2013

(Continued)
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TABLE 1 | Continued

Name of small
molecules

Disease modeled GBA1 mutations tested Model organisms Effect of small molecules References

GD1 and GBA1-PD N370S, etc. Fibroblasts Increased GCase activity and protein levels
increase GCase mRNA and TFEB mRNA

McNeill et al., 2014

GBA1-PD and
non-GBA1-PD

N370S, L444P Fibroblasts, drosophila Increased GCase activity
Increased Sap C

Ambrosi et al., 2015

PD L444P, α-Syn overexpression Mouse Increased GCase activity in brains
Reduced α-Syn levels

Migdalska-Richards et al., 2016

PD wildtype Non-human primate Increased GCase activity in brains Migdalska-Richards et al., 2017a

nGD C-terrminal 133aa deletion in
GBAb

Drosophila Reduced unfolded protein response
Reduced neuroinflammation
Enhanced lifespan

Cabasso et al., 2019

Non-inhibitory Chaperonea

NCGC758 GD1
GD2

N370S, L444P, c.84dupG,
IVS2+1

Macrophages from iPSCs Increased GCase activity
Reduced GlcCer levels
Recovered ROS*** production
Improved chemotaxis

Aflaki et al., 2014

NCGC758 GD1 N370S Macrophages from iPSCs Induced autophagy and Reduced IL-1β

secretion
Aflaki et al., 2016a

NCGC758 nGD N370S, c.84dupG DA neurons from iPSCs Increased GCase activity
Reduced α-Syn levels
Improved lysosomal function

Mazzulli et al., 2016b

NCGC607 GD, GD with
parkinsonism

N370S, c.84dupG, IVS2+1,
L444P

DA neurons from iPSCs Increased GCase activity
Reduced GlcCer and GlcSph levels
Reduced α-Syn levels

Aflaki et al., 2016a

Others

LB-250 GD N370S, L444P Fibroblasts Inhibit histone deacetylase activity
Increased GCase activity and protein levels

Lu et al., 2011

S-181 GBA1-PD and
non-GBA1-PD

c.84dupG, wildtype DA neurons from iPSCs Increased GCase activity
Reduced GlcCer levels
Reduced the oxidized dopamine and α-Syn

Burbulla et al., 2019

S-181 GBA1-PD D409V Mouse Reduced GlcCer and GlcSph levels in brain
Reduced α-Syn levels in brain

Burbulla et al., 2019

*Differentially expressed brain mRNAs. **Endoplasmic reticulum. ***Reactive oxygen species.
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the macrophages. NCGC758 also reversed inflammatory defects
in GD macrophages by inducing autophagy and reducing IL-
1b secretion (Aflaki et al., 2016b). Another lead non-inhibitory
small molecule, NCGC607, was tested in dopaminergic (DA)
neurons differentiated from type 1 and 2 GD and GD+PD
iPSCs (Aflaki et al., 2016a). NCGC607 restored GCase activity
and protein levels, and reduced glycolipid storage in GD
DA neurons, indicating its therapeutic potential for GD. In
addition, NCGC607 reduced α-Syn levels in DA neurons from
patients with parkinsonism, suggesting that NCGC607 or a
derivative of this lead compound may have efficacy as a
treatment for PD (Aflaki et al., 2016a). NCGC758 also reduced
α-Syn levels and improved lysosomal function in iPSC-derived
DA neurons differentiated from patients with GD and PD
(Mazzulli et al., 2016b).

OTHER SMALL MOLECULES

Histone deacetylase inhibitors (HDACi) have also been explored
for the treatment of GD by modulating a GCase-associated
ubiquitin–proteasome pathway (Lu et al., 2011). It was shown
that a known HDACi (SAHA) and a unique small-molecule
HDACi (LB-205) rescued GCase levels and increased enzymatic
activity in fibroblasts derived from patients with GD1 and GD2.
It was further shown that HDACi inhibits the deacetylation of
heat shock protein (HSP90), resulting in impaired recognition
of the mutant peptide by HSP90, thus protecting GCase from
degradation (Yang et al., 2013).

Recently, S-181, a new small-molecule capable of stabilizing
wild-type GCase was developed. S-181 increased GCase activity
in iPSC-derived DA neurons from patients with idiopathic PD,
as well as in patients with PD carrying GBA1 mutation c.84dupG
and mutations in other PD genes (Burbulla et al., 2019). S-181
treatment in these DA neurons reversed pathogenic phenotypes
including the reduced accumulation of oxidized dopamine. It was
also shown in Table 1 that treating wild-type and heterozygous
D409V mice with S-181 increased GCase activity in both,
resulting in reduction of the lipid substrates and α-Syn in brain
(Burbulla et al., 2019).

DISCUSSION

There are several FDA-approved ERT (Cerezyme, etc.) and SRT
(Zaversca, etc.) drugs to treat GD. However, ERT does not have
utility for GBA1-PD since it does not cross the blood-brain-
barrier and since substrate accumulation inGBA1-PD is minimal,
it is unlikely that SRT will be efficacious (Sidransky et al.,
2019). Small molecule pharmacological chaperones have been
developed to overcome these limitations. The first iminosugar
developed, NN-DNJ, increased GCase activity in cells from
patients with GD (Sawkar et al., 2002) by strong binding to
GCase (Thirumal Kumar et al., 2019). However, NN-DNJ only
increases enzymatic activity in lines with specificGBA1mutations
(Sawkar et al., 2002; Thirumal Kumar et al., 2019) and also
inhibits GlcCer synthase activity in a dose-dependent manner

(Compain et al., 2006). Isofagomine (IFG) appears to have more
target-specific inhibition and broader pre-clinical efficacy in both
in vitro and in vivo models of different types of GD and PD.
However, like other inhibitory small molecule chaperones, IFG
also causes dosage-dependent inhibition of GCase, limiting its
clinical utility. A phase II clinical trial of IFG failed to improve
clinical symptoms in patients with GD, likely due to dosing
challenges. Ambroxol (ABX) has been evaluated as an inhibitory
chaperone with fewer side effects and better efficacy, because
its inhibitory effect does not occur at the low pH present in
lysosomes. A recent comparative molecular docking analysis
showed that ABX has more broad binding affinity toward GCase
than NN-DNJ and other SRT drugs (Thirumal Kumar et al.,
2019). A phase II clinical study of ABX for PD is currently
underway (Silveira et al., 2019).

Non-inhibitory chaperones are highly attractive candidate
drugs for the treatment of GD or GBA1-PD because they avoid
the primary problem associated with inhibitory chaperones, the
inhibitory competition with substrates of GCase in the lysosome.
A few non-inhibitory chaperones identified by HTS were shown
to have disease-reversing effects in cellular models of GD or
GBA1-PD (Aflaki et al., 2014, 2016a). However, there are also
difficulties in developing non-inhibitory chaperones. The binding
of non-inhibitory chaperones to sites other than the active site
makes it difficult to perform structure-guided optimization of
drug efficacy and challenging to evaluate the potential activity
of candidate molecules from HTS. To resolve this problem,
visualizing the activity of endogenous levels of GCase in live cells
is required. This might be achieved through the development of
a fluorescence-based substrate probe representing GCase activity
in lysosomes of live cells (Jung et al., 2016).

To increase the likelihood of success in clinical trials, a
properly designed pre-clinical drug testing strategy is essential.
Thus, appropriate in vitro and in vivo disease models which
mimic key features of the disease are cessary. DA neurons
differentiated from patient iPSCs accumulate α-Syn and oxidized
dopamine, and thus can be used to test the efficacy of
small molecules for PD (Aflaki et al., 2016a; Burbulla et al.,
2019). However, mouse models accurately replicating PD
phenotypes are still needed. A previous study showed that mice
carrying the L444P mutation had increased stability of over-
expressed human wild-type and A53T mutant α-Syn (Fishbein
et al., 2014). However, the L444P mice did not demonstrate
accumulation of α-Syn and there was no PD phenotypes in
the L444P carrier mice (Migdalska-Richards et al., 2017b).
While heterozygous L444P mice overexpressing mutant α-
Syn had exacerbated motor deficits (Fishbein et al., 2014)
and enhanced dopaminergic neurodegeneration (Migdalska-
Richards et al., 2017b), it is not clear whether this phenotype
can be used to establish drug efficacy, especially as in
patients, the α-Syn levels are not as high, and the protein
is not mutated. To identify and optimize candidate non-
inhibitory chaperones, new methods for evaluating GCase
activity in live cells and more appropriate GBA1-PD animal
models need to be developed. Three dimensional in-vitro cell
culture systems can be also considered for drug screening and
preclinical validation of candidate drugs, because they more
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closely resembles the in-vivo cell environment than routine in-
vitro cell culture (Langhans, 2018).
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