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Background: In periodontal patients with jawbone resorption, the autologous bone
graft is considered a “gold standard” procedure for the placing of dental prosthesis;
however, this procedure is a costly intervention and poses the risk of clinical
complications. Thanks to the use of adult mesenchymal stem cells, smart biomaterials,
and active biomolecules, regenerative medicine and bone tissue engineering represent
a valid alternative to the traditional procedures.

Aims: In the past, mesenchymal stem cells isolated from periodontally compromised
gingiva were considered a biological waste and discarded during surgical procedures.
This study aims to test the osteoconductive activity of FISIOGRAFT Bone Granular R© and
Matriderm R© collagen scaffolds on mesenchymal stem cells isolated from periodontally
compromised gingiva as a low-cost and painless strategy of autologous bone
tissue regeneration.

Materials and Methods: We isolated human mesenchymal stem cells from 22 healthy
and 26 periodontally compromised gingival biopsy tissues and confirmed the stem cell
phenotype by doubling time assay, colony-forming unit assay, and expression of surface
and nuclear mesenchymal stem cell markers, respectively by cytofluorimetry and real-
time quantitative PCR. Healthy and periodontally compromised gingival mesenchymal
stem cells were seeded on FISIOGRAFT Bone Granular R© and Matriderm R© scaffolds, and
in vitro cell viability and bone differentiation were then evaluated.

Results: Even though preliminary, the results demonstrate that FISIOGRAFT Bone
Granular R© is not suitable for in vitro growth and osteogenic differentiation of healthy and
periodontally compromised mesenchymal stem cells, which, instead, are able to grow,
homogeneously distribute, and bone differentiate in the Matriderm R© collagen scaffold.
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Conclusion: Matriderm R© represents a biocompatible scaffold able to support the in vitro
cell growth and osteodifferentiation ability of gingival mesenchymal stem cells isolated
from waste gingiva, and could be employed to develop low-cost and painless strategy
of autologous bone tissue regeneration.

Keywords: periodontal disease, bone resorption, waste gingival tissue, oral MSCs, periodontally compromised
GMSCs, FISIOGRAFT Bone Granular R©, Matriderm R©, autologous bone tissue regeneration

INTRODUCTION

Periodontitis is a multifactorial inflammatory disease affecting
gingiva and deeper tissues like bone and periodontal ligaments
(Löe et al., 1986; Flemmig, 1999; Highfield, 2009). It starts
from a localized inflammation of the gingiva, induced by the
microorganisms of the dental plaque, that, if not properly treated,
progresses until periodontal tissues resorb and create a pocket
responsible for tooth loss (Jeffcoat et al., 2003; Gotsman et al.,
2007; Darveau, 2010; Lourenço et al., 2014; Feres et al., 2016).
Chronicity of periodontitis occurs when >10 of 32 teeth are
affected by this pathologic process (Flemmig, 1999; Nair et al.,
2014; Julkunen et al., 2018).

Tooth damage or loss is currently treated by replacement with
dental implants to restore chewing, speech and esthetic functions
(Anusavice, 2012; Ye and Sun, 2017); however, osteointegration
is only possible when a sufficient bone volume is available to
place the dental implants and establish a strong connection
(Brånemark et al., 1977; Albrektsson et al., 1981). It is widely
known that patients affected by periodontal disease suffer from
bone resorption; in these patients, the restoring of the bone
volume necessary to implant dental prosthesis is currently one
of the main challenges in dentistry field (Becker and Becker,
1991; Tomasi et al., 2008; Lesolang et al., 2009; Esposito et al.,
2014). Thanks to its excellent biocompatibility, osteoinductive
and osteoconductive properties, the autologous bone graft
represents the “gold standard” of Guided Bone Regeneration
(GBR) procedures used to treat bone resorption (Esposito et al.,
2009; Kolk et al., 2012). Nevertheless, its use is limited by the
requirement of a second surgical site, resulting in an increased
probability of clinical complications, higher morbidity and costs
of interventions. For these reasons, easier and low-cost dental
surgical procedures are urgently needed (Becker and Becker,
1991; Al-Nawas and Schiegnitz, 2014; Esposito et al., 2014).

Regenerative Medicine (RM) and Tissue Engineering (TE),
also indicated as TERM, provide new strategies to treat diseases
and regenerate injured tissues and organs (Ballini et al., 2017;
Gomes et al., 2017). They rely on three main elements to
regenerate tissues: mesenchymal stem cells (MSCs), provided of
clonogenicity self-renewal and multi-differentiation ability, and
biomaterials and bioactive molecules (Langer and Vacanti, 1993;
Salgado et al., 2004, 2013; Mason and Dunnill, 2008). Autologous
MSCs isolated from human adult tissues represent the ideal stem
cell population for autografts (Pittenger et al., 1999; Horwitz et al.,
2005; Caplan, 2007; Hipp and Atala, 2008; Ullah et al., 2015).
Indeed, thanks to their ability to differentiate toward different
cell lineages, human MSCs (hMSCs) can regenerate a wide
range of adult tissues such as bone, cartilage, skeletal muscles,

tendons, neurons, etc. Moreover, their immunomodulatory,
trophic, reparative properties and neuronal plasticity have made
hMSCs a valuable candidate for regenerative therapy in the
case of tumor ablative techniques in cancer patients as well
as an encouraging perspective for use in potential strategies
of brain repairing in patients with neurodegenerative diseases
(Tatullo et al., 2017).

As it is well known, bone marrow (BM), umbilical cord blood
and adipose tissue are currently among the most investigated
tissues as sources of hMSCs; however, the harvesting methods
can be invasive and painful and, especially in the case of BM,
the number, the differentiation potential and the maximal life
cycle of hMSCs decrease with the age of the subject (Zuk et al.,
2002; Kern et al., 2006). More recently, the oro-facial hMSCs
[e.g., dental pulp stem cells (DPSCs), stem cells from human
exfoliated deciduous teeth (SHEDs) and gingival mesenchymal
stem cells (GMSCs)], have shown promising in vitro and in vivo
TERM potential (Gronthos et al., 2000; Miura et al., 2003;
Seo et al., 2004; Sonoyama et al., 2008; Zhang et al., 2010;
Egusa et al., 2012; Kawashima, 2012; Jones and Klein, 2013).
GMSCs, isolated for the first time in 2009 by Zhang et al.
(2010), represent a subpopulation of gingival fibroblasts, with
well-demonstrated in vitro and in vivo abilities of self-renewal,
multi-lineage differentiation and immunomodulation (Fournier
et al., 2010; Tang et al., 2011).

Many properties make GMSCs ideal for TERM procedures:

1. They are easy to isolate and the patient can be submitted
to surgical biopsy without worrying about delayed healing;
in addition, the vast majority of dissected gingival tissue
is usually discarded during routine surgical procedures
(Rossmann et al., 1994; Tang et al., 2011);

2. In presence of specific conditions, GMSCs can differentiate
toward mature osteoblasts, chondrocytes and adipocytes,
expressing the relative cell lineage markers, phenotype and
activity (Wang et al., 2011; Treves-Manusevitz et al., 2013;
Xu et al., 2014; Fawzy El-Sayed and Dörfer, 2016);

3. GMSCs have a higher proliferation rate and multi-
differentiation ability than bone marrow mesenchymal
stem cells (BM-MSCs) (Tomar et al., 2010);

4. GMSCs display a stable phenotype, karyotype and
normal telomerase activity in long-term cultures
(Tomar et al., 2010).

Furthermore, more recently, inflammatory
microenvironments, which characterizes various oral
pathological conditions, have demonstrated that they are
not only capable of altering the properties of hMSCs but also of
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improving them in some cases. Further, periapical inflamed cysts
are a rich source of immature hMSCs with high regeneration
abilities (Tatullo et al., 2017) and the inflammation condition
characterizing the periodontally affected periodontium positively
affects the stem cell properties of GMSCs, displaying a higher
rate of proliferation, expression of MSC markers, and ability of
multi-lineage differentiation (Tomasello et al., 2017).

Along with hMSCs, biomaterials are one of the main pillars
of bone TERM and, as widely demonstrated, their composition,
structure, and properties influence cell attachment, growth,
and multi-differentiation (Nooeaid et al., 2012; Asti and
Gioglio, 2014). Synthetically produced or naturally derived,
biomaterials should have optimal properties, with a functional
micro-architecture and well-distributed and interconnected
pores along the surface to ensure the regeneration of target
tissue (Schumann et al., 2009; Zou et al., 2013). Many
types of approaches have been investigated to improve the
bone regeneration properties of biomaterials. For instance,
nanotechnology has been demonstrated to strongly support
the development of scaffolding with its enhanced abilities of
bone repair, regeneration, and remodeling (Barry et al., 2016).
Additionally, combining nanocomposite scaffolds with cell
adhesion and osteoconductive properties, and nanomaterials
with osteoinductive and osteoconductive properties may
highly improve the bone regeneration ability of a scaffold
(Kerativitayanan et al., 2017).

In this study, we confirmed the stem cell phenotype by means
of colony-forming unit assay and the expression of the canonical
hMSC surface markers (i.e., CD29, CD90, CD73, and CD105) and
nuclear markers (i.e., Oct4, SOX2, and NANOG). Afterward, we
assessed the in vitro cell growth and osteogenic differentiation
ability of adult hMSCs derived from waste-inflamed gingiva
of periodontal patients on two different types of biomaterials:
FISIOGRAFT Bone Granular R©, a synthetic scaffold consisting
of nanohydroxyapatite (NHA) micro granules that is able to
mimic the natural bone inorganic phase, and, for this reason, is
promising for bone regeneration purposes; and Matriderm R©, a
three-dimensional matrix scaffold consisting of collagen type I
(bovine collagen) and elastin (extracted from bovine ligamentum
nuchae) that mimics the most represented organic polymer of
bone matrix, collagen type I. Matriderm R© supports the crucial
steps of tissue regeneration and successfully regenerates skin
and cartilage tissues (Stark et al., 2006; Ryssel et al., 2008; Keck
et al., 2009); however, to our knowledge no study has yet been
performed about its potential in bone regeneration.

This study aims to develop a new, easy, and low-cost strategy
of autologous bone tissue regeneration by identifying the most
suitable scaffold for the growth and osteogenic differentiation
of hMSCs derived from discarded gingiva and evaluating the
potential of the pro-osteoblastic isoflavone Biochanin A to
improve the osteogenic differentiation.

MATERIALS AND METHODS

Ethics
The protocol was approved by the Internal Ethical Committee
of the University Hospital A.U.O.P “P. Giaccone” of Palermo

(Internal registry: 5/2014). All subjects gave written informed
consent in accordance with the Declaration of Helsinki.

Patient Identification and Gingival Tissue
Extraction
Twenty-two healthy adult patients (ages 18–75) who needed
their wisdom teeth extracted for orthodontic reasons (control
group) and 26 adult patients (ages 18–75) who needed extraction
as a result of severe periodontal disease (mobility grade III)
(test group), were recruited for the study (females were not
suspected to be or visibly pregnant). Both the control and test
gingival tissues were resected from gingiva flaps during oral
surgery procedures.

Before the extraction each patient was asked to do a mouth
rinse with 0.2% chlorhexidine for 1 min (Meridol R©, Gaba
Vebas S.r.l., Rome, Italy) to ensure optimal decontamination of
the oral cavity.

Sample Collection and Establishment of
Gingival Cell Cultures
After surgery, the harvested gingival tissues were collected in a
50-ml tube with cold, sterile Dulbecco’s Phosphate Buffer Saline
Solution w/o Calcium w/o Magnesium (DPBS w/o Ca2+/Mg2+)
(Euroclone, Milan, Italy), containing 0.25 mg/ml Levofloxacin,
0.40 mg/ml Gentamicin, 5 mg/ml Meropenem, and 0.25 mg/ml
Fluconazole, and were transported to the laboratory within
30 min and digested within 3 h.

First, the tissues were mechanically digested using sterile
scalpels and then enzymatically digested using a solution of
Collagenase Type II (Gibco, Milan, Italy) 1 mg/ml for 2 h at 37◦C
under agitation. After the digests containing gingival primary
cells were centrifuged at 1,200 rpm for 6′, the supernatant
was removed, the pellet was re-suspended in fresh Dulbecco’s
Modified Eagle Medium/Nutrient Mixture F-12 (DMEM F-
12) (Thermo Fisher Scientific, Milan, Italy) containing 10% of
fetal bovine serum (FBS) (Euroclone, Milan, Italy), 100 µg/ml
Levofloxacin, 50 µg/ml Gentamicin, 50 µg/ml Meropenem,
and 1.5 µg/ml Fluconazole, transferred in a T25 culture flask
(EuroClone, Milan, Italy), referred to as passage 0 (P0), and
incubated at 37◦C and 5% CO2. The primary cells started to
adhere to the flask in 4–5 days and when they resulted in 80%
confluence (approximately 2 weeks), they were sub-cultured and
referred to as P1. By subculture P3, the antibiotic and antifungal
cover had decreased, and by subculture P4 it had completely been
abolished. Gingival primary cells between P1 and P6 were used
for the experiments in this study.

MSCs isolated from the gingiva of human healthy patients
are referred to as H-GMSCs; MSCs derived from gingiva of
periodontal disease patients are referred to as P-GMSCs.

Colony-Forming Unit (CFU) Assay
H-GMSCs and P-GMSCs (P1) were seeded in 10-cm dishes
at a density of 300 cells/dish and cultured under conventional
conditions; old medium was replaced every 3 days. After
14 days, the cells were washed twice with DPBS, fixed in 4%
paraformaldehyde, and stained with 0.1% crystal violet. Cellular
groups containing only more than 50 cells were considered
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colonies. Three sets of experiments for each sample were
performed for calculations.

Population Doubling (DT) and Cell
Proliferation Curve
The proliferation rate of H-GMSC and P-GMSCs was evaluated
by trypan blue assay (Sigma-Aldrich, Milan, Italy) following the
manufacturer’s instructions. H-GMSCs and P-GMSCs (P2) were
seeded at a density of 4 × 103 cells/cm2 in a 24-well plate
and grown up to 120 h. The cells were counted every 24 h by
observation under the optical microscope after being stained with
trypan blue. The DT was calculated according to the literature
data (Roth, 2006, on the website http://www.doublingtime.com/
compute.php). Three sets of experiments for each sample were
performed for calculations.

Flow Cytometric Immunophenotyping
H-GMSCs and P-GMSCs (P5) were harvested and the cell pellet
was re-suspended in DPBS w/o Ca2+/Mg2+ at a concentration of
1× 106 cells/ml; then, 5× 105 cells/100 µl of cell suspension was
used for every cytofluorimetric test.

Briefly, the H-GMSCs and P-GMSCs were tested for
expression of hematopoietic stem cell surface markers using FITC
human anti-HLA-DR and anti-CD45 monoclonal antibodies
and for expression of MSC surface markers using FITC
human anti-CD29, CD90, CD105, and PE human anti-CD73
(Table 1). Table 1 describes the conditions of antibody
dilution, incubation, and detection, in accordance with the
manufacturer’s instructions.

All reactions were then acquired using the FACS Calibur
flow cytometer (Becton-Dickinson, New Jersey, Franklin Lakes,
United States) and analyzed by the CellQuest Pro software.
Specific IgG isotype antibodies were used as internal negative
control. Unstained cells were used as negative control and BM-
MSCs as a positive control (not shown).

Isolation of Total RNA and Real-Time
Quantitative PCR (RT-qPCR)
Isolation and purification of total RNA was performed using
the RNeasy Mini Kit (Qiagen, Milan, Italy) according to the
manufacturer’s instructions. RNA quantity and quality were
evaluated by Nano Drop 2000 (Thermo Scientific, Milan, Italy);
2 µg of MSC total RNA were reverse-transcribed to cDNA in

TABLE 1 | Human anti-monoclonal antibodies list used in flow cytometry analysis
for mesenchymal stem cell markers detection.

Fluorescently-
conjugated antibody/
localization marker

Brand/code number Dilution Incubation

CD-105/FITC, surface Milteny Biotec, 130-098-774 1:11 30′, +4◦C

CD-29/FITC, surface Milteny Biotec, 130-101-256 1:11 30′, +4◦C

CD-90/FITC, surface Milteny Biotec, 130-114-859 1:50 30′, +4◦C

CD-73/PE, surface PE Milteny Biotec, 130-111-908 1:50 30′, +4◦C

CD-45/FITC, surface Milteny Biotec, 130-110-631 1:50 30′, +4◦C

HLA-DR/FITC, surface BD Pharmingen, 555811 1:5 30′, +4◦C

a volume of 20 µl with Oligo dT primers using the QuantiTect
Reverse Transcription Kit (Qiagen, Milan, Italy). To analyze the
stem gene profile and the osteogenic differentiation, quantitative
PCR (qPCR) was performed using the QuantiNova SYBR Green
PCR Kit and the RotorGene Q Instrument (Qiagen, Milan, Italy).
Briefly, the cDNA samples were mixed with SYBR Green PCR
master mix and the specific pair of primers is presented in
Table 2. The qPCR conditions were as follows: denaturation at
95◦C for 3 min for 1 cycle, followed by 44 cycles of denaturation
at 95◦C for 20 s, annealing at 60◦C for 30 s, and elongation
at 72◦C for 60 s. Three technical replicates were performed
for every sample. The specificity of the amplified products was
determined by melting peak analysis. The relative expression of
target genes was calculated using the 11Ct method according
to the guidelines (Livak and Schmittgen, 2001). β-actin was used
as the housekeeping gene to normalize the expression of target
genes, and BM-MSCs—used as a positive cell control—were
used to compare gene expression. The results were presented
in histograms using GraphPad software setting at 1 the gene
expression of the positive cell control. P3 hMSCs were used for
the RT-qPCR analysis.

Biomaterials
The biomaterials used in the study were FISIOGRAFT Bone
Granular R© from GHIMAS Spa (Bologna, Italy), comprising
sintered nanohydroxyapatite (NHA) microgranules with a
diameter between 0.250 and 0.500 mm and obtained by crashing
HA porous blocks, which were derived by a specific burn-out
process of polyurethane sponge. MatriDerm R© from Medskin
Solution (Dr. Otto Suwelack Skin and Health Care GmbH,
Billerbeck, Germany), which is a three-dimensional matrix
consisting of collagen (bovine collagen) and elastin (extracted
from bovine ligamentum nuchae), with a porosity approximately
of 100 µm, a size corresponding to 1 cm in length, 1 cm in
width, and 1 mm in thickness, and obtained by the Advanced

TABLE 2 | Real-time qPCR primer sequence list for amplification of
mesenchymal stem cell cDNA.

Gene Primer sequence Brand/code
number

β-actin F:5′-CCACACTGTGCCCATCTACG-3′

R:5′-AGGATCTTCATGAGGTAGTCAGTCAG-3′
Eurofins

Genomics

NANOG QT01844808

Oct4 QT00210840

SOX2 F:5′-GGAGACGGAGCTGAAGCCGC-3′

R:5′-GACGCGGTCCGGGCTTGTTTT-3′
MWG

RUNX2
(Runt-related
transcription
factor 2)

QT00020517

OPN
(Osteopontin)

QT01008798

OCN
(Osteocalcin)

QT00232771

F = forward; R = reverse.
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CryoSafeTM Method, which is able to preserve and refine the
natural features and properties of the biomaterials.

Cell Seeding
Both types of biomaterials were provided in sterile conditions.
They were incubated in culture media for 30 min at 37◦C and
5% CO2, prior to cell seeding.

For the viability test, 7,400 cells/cm2 were seeded in 5 mg
of FISIOGRAFT Bone Granular R© scaffold (Gürpinar and Onur,
2005), in a low-adhesion 96-well plate to inhibit the attachment
of the cells to the bottom of the well and avoid a false-positive.
After seeding, they were incubated at 37◦C and 5% CO2 and the
viability of H-GMSCs and P-GMSCs was evaluated after 24, 48,
and 72 h by Water Soluble Tetrazolium Salt 1 (WST1).

To perform the viability test on the Matriderm R© scaffold,
10,000 cells/cm2 were seeded in the scaffolds using a 24-
well plate. After cell seeding, the scaffolds were incubated at
37◦C and 5% CO2 for 5 min without culture medium to
promote the cell attachment; then, 1 ml of fresh complete
medium was added to each scaffold and kept at 37◦C and 5%
CO2. After 24, 48, and 72 h, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay was performed to
evaluate the viability of the cells.

WST1 Viability Assay
A WST1 viability assay was performed to evaluate the viability
of H-GMSCs and P-GMSCs (P3) seeded on FISIOGRAFT Bone
Granular R©. H-GMSCs and P-GMSCs without scaffolds were
used as controls.

Briefly, after 3 h of incubation with 2-(4-iodophenyl)-
3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium
monosodium salt at 37◦C and 5% CO2, the absorbance of
the supernatant was read at 450 nm, using a microplate reader.
Three sets of experiments for each sample were performed
for calculations.

MTT Viability Assay
An MTT viability assay was performed to evaluate the viability
of H-GMSCs and P-GMSCs (P3) seeded on Matriderm R© scaffold.
H-GMSCs and P-GMSCs without scaffolds were used as controls.

Briefly, after 4 h of incubation with 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide salt at 37◦C and 5% CO2,
the absorbance of the supernatant was read at 570 nm, using
a microplate reader. Three sets of experiments for each sample
were performed for calculations.

Live/Dead Assay
Live/Dead assay was performed to evaluate the survival of
H-GMSCs and P-GMSCs (P5) seeded on Matriderm R© scaffold.
Briefly, a dye mix of Ethidium Bromide (100 µg/ml) and Acridine
Orange (100 µg/ml) in DPBS was used for the staining. After 24,
48, and 72 h, the scaffolds were washed twice with DPBS (100 µl).
Every wash was run for 5 min by slight agitation. Live/Dead dye
mix (30 µl) was added to each scaffold for 5 min and images were
acquired using a Nikon fluorescence microscope (10×) by FITC
(green) and TRITC (red) filters. All images acquired with FITC

and TRITC channels were overlapped to distinguish respectively
live and dead cells.

DAPI/Actin Green Assay
The confocal microscopy analysis was performed to evaluate
the colonization rate of Matriderm R© scaffold by H-GMSCs and
P-GMSCs (P5) and the distribution of the cells. Briefly, after 2, 7,
and 10 days, the scaffolds were fixed with 4% paraformaldehyde
in DPBS (300 µl) at room temperature for 15 min. They were
washed with DPBS and incubated with 0.1% Triton-X 100 in
DPBS (300 µl) at room temperature for 4 min. Finally, they were
incubated with 1:1,000 DAPI (Sigma Aldrich, Milan, Italy) in
distilled H2O (300 µl) at room temperature for 30 min to stain
the nuclei, and 2 drops/ml ActinGreenTM 488 ReadyProbesTM

Reagent (Thermo Fisher Scientific, Milan, Italy) in DPBS (300 µl)
at room temperature for 1 h to stain cellular cytoskeleton.

The scaffolds were analyzed by Nikon A1 confocal microscope
and the software ImageJ1. The volumetric analysis has been
performed by NIS Elements AR software (Nikon).

In vitro GMSC Osteogenic Differentiation
on Matriderm R© Scaffold
To test the osteogenic differentiation ability of H-GMSCs and
P-GMSCs (P3) grown in the Matriderm R© scaffold, the cells
were grown in 24-well plates to confluence under standard
culture conditions and then maintained in homemade osteogenic
differentiation medium (ODM) consisting of DMEM F-12
supplemented with 15% FBS, 10 nM dexamethasone (Sigma-
Aldrich, Milan, Italy), 10 mM glycerophosphate (Sigma-Aldrich,
Milan, Italy), and 0.05 mM ascorbic acid (Sigma-Aldrich, Milan,
Italy), with or without the isoflavone Biochanin A at two different
concentrations, 300 nM and 1 µM. H-GMSCs and P-GMSCs
cultured without scaffolds were used as a control. After 21 days
of culture in the ODM, H-GMSCs and P-GMSCs with or without
scaffolds were stained with Alizarin Red S (Sigma-Aldrich,
Milan, Italy) to detect calcium deposits. Briefly, scaffolds were
transferred in a new 24-well plate, and H-GMSCs and P-GMSCs
with or without the scaffolds were gently washed with DPBS,
fixed with 4% paraformaldehyde solution for 15 min at room
temperature, and rinsed twice with distilled H2O. Cells were
stained with 40 mM Alizarin Red S (pH 4.1) for 30 min at
room temperature with gentle shaking, washed with DPBS and
observed under a light optical microscope. The images were
acquired with a Nikon DS-fi1. Due to the thickness of the
scaffolds, only images of control H-GMSCs and P-GMSCs were
acquired. The quantification of the calcium deposits in H-GMSCs
and P-GMSCs with or without scaffolds was then evaluated by
measurement of Alizarin Red S optical density (OD) at 550 nm.

To perform RT-qPCR analysis, the scaffolds were
mechanically digested and incubated with RNA lysis RLT
buffer (300 µl) (Qiagen, Milan, Italy), and the supernatant
used to perform the RNA extraction and RT-qPCR analysis as
above described.

1http://imagej.nih.gov/ij/
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Statistical Analysis
All the experiments of the study were performed in triplicate,
and results are reported as means ± SD and compared by the
Student’s unpaired two sample T-test. P ≤ 0.05 was considered
statistically significant.

RESULTS

Adherent P-GMSCs Show Higher
Proliferation Rate Than H-GMSCs
Twenty-two healthy patients (control group) and twenty-six
periodontally affected patients (test group) were used in the
study to isolate the GMSCs. For each patient, a gingival flap was
used to extract gingival tissue. Ten samples, respectively four
of the control group and six of the test group were removed
from the study, because of high bacterial contamination. After
sequential mechanic and enzymatic digestion, a cell suspension
was generated, as shown in the Figures 1A,B, for all 38
samples. Primary cells (P0) derived from both the control
and test group started to adhere to the flask approximately
between the 4th and the 5th day after digestion. All primary
cells from both the control and test group cultures showed a
typical fibroblast-like morphology, a homogeneous shape, and
size (Figures 1C,D) and reached an 80% confluence between
12 and 18 days; both populations initially showed the same
rate of cell growth. After having reached the confluence, they
were trypsinized and sub-cultured (referring to them as P1) and
then showed a modification in behavior, as is highlighted in cell
growth curve (Figure 2A). 24 h after seeding, P-GMSC started to
proliferate faster than H-GMSC, showing a higher proliferation
rate. The doubling time (DT) was calculated as 26.4 ± 2 h vs.
30.2 ± 1 h (P ≤ 0.05), respectively, for P-GMSCs and H-GMSCs
(Figure 2B).

Adherent P-GMSCs Show Increased CFU
Ability Than H-GMSCs
To analyze the clonogenic potential of H-GMSCs and P-GMSCs,
the CFU assay was performed. GMSCs from both the control
and test group were able to form adherent colony-forming units
on the plastic dish after 14 days of incubation under standard
conditions (Figure 2C); an increase in the number of CFU
colonies was observed in P-GMSCs compared to the healthy
counterpart, thus showing a higher clonogenic activity. The
counting performed by software ImageJ showed 156.8 ± 9.3 and
116.7 ± 5.9 (P ≤ 0.01) CFU colonies after 14 days of culture
(Figure 2D), respectively, for P-GMSCs and H-GMSCs.

H-GMSCs and P-GMSCs Are Positive to
the Adult MSC Surface and Nuclear
Markers and Negative to the Adult
Hematopoietic Stem Cell Markers
Both populations of GMSCs analyzed resulted negative for the
hematopoietic surface markers CD45 and HLA-DR (Figure 3A)
and positive for putative adult MSC surface markers CD73,

FIGURE 1 | GMSC cultures (P0). Representative image of (A) healthy and (B)
periodontally compromised GMSCs immediately after mechanical and
enzymatic digestion, showing a rounded morphology (10×); representative
image of (C) healthy and (D) periodontally compromised GMSCs at 7th day
from digestion, with the typical fibroblast-like morphology (10×).

CD29, CD90, and CD105 (Figure 3B). CD73 and CD29 were
highly expressed by all samples (approximately 100%); however,
a slightly increased expression of CD90 and CD105 was detected
in P-GMSCs compared to H-GMSCs (P ≤ 0.05) (Table 3).

The expression of adult MSC nuclear markers Oct4, SOX2,
and NANOG was positive in both populations, even if it was
higher in P-GMSCs than H-GMSCs (P ≤ 0.05) (Figure 3C).
The adult MSC profile was more highly expressed in P-GMSCs
than H-GMSCs.

WST1 Cell Viability Assay on
FISIOGRAFT Bone Granular R©

H-GMSCs and P-GMSCs were seeded on FISIOGRAFT Bone
Granular R© in the presence of low-adhesion conditions, and
the viability evaluated at 24, 48, and 72 h by Water Soluble
Tetrazolium Salt 1 (WST1) (Figure 4A). The histogram showed
that the viability of H-GMSCs and P-GMSCs grown in presence
of the scaffold results in a decrease (roughly 50%) compared
to H-GMSCs and P-GMSCs grown without the scaffold, both
in standard and low-adhesion conditions, demonstrating that
the properties of the scaffold are not suitable for in vitro
experimental purposes.

MTT Cell Viability Assay on Matriderm R©

Collagen Scaffold
H-GMSCs and P-GMSCs were seeded on Matriderm R© collagen
scaffold for 24, 48, and 72 h and the viability was then evaluated
by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay (Figure 4B). The data displayed in
the histogram demonstrated the continuous cell growth in
presence of the scaffold and a higher proliferation rate of both
H-GMSCs and P-GMSCs in presence of the scaffold compared
to control cells grown without the scaffold. As expected, the
proliferation rate of P-GMSCs was higher than H-GMSCs.
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FIGURE 2 | Cell growth analysis and colony-forming unit assay. Panels (A) and (B) respectively show the cell growth curve of H-GMSCs and P-GMSCs (P2)
evaluated by Trypan blue viability assay and the doubling time of H-GMSCs and P-GMSCs calculated according to the literature data
(http://www.doublingtime.com/compute.php); Panels (C) and (D) respectively show the colonies (<50 cells) (left) and the monolayer subculture (right) of H-GMSCs
and P-GMSCs (P1) stained with Crystal Violet, and the quantification histogram of the colony-forming unit assay (CFU-F); data are reported as mean values ± SD of
three independent experiments. P-value *P ≤ 0.05; **P ≤ 0.01.

Live/Dead Assay on Matriderm R© Collagen
Scaffold
The viability and the distribution of GMSCs from healthy and
periodontally affected tissues in Matriderm R© collagen scaffold
was also evidenced by the Live/Dead assay (Figure 5A).
Approximately 100% of both H-GMSCs and P-GMSCs, seeded
in the scaffold for 24, 48, and 72 h, were viable; the density
of the cells increased in every time-point and was higher

for P-GMSCs than H-GMSCs. We also observed that both
H-GMSCs and P-GMSCs tended to align along the direction of
collagen fibrils.

DAPI/Actin Green Assay on Matriderm R©

Collagen Scaffold
After nuclear and cytoskeleton staining, a confocal microscopy
analysis was performed to evaluate the colonization rate of
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FIGURE 3 | Mesenchymal stem cell feature analysis. Representative fields of flow-cytometric analysis of (A) hematopoietic stem cell markers CD45 and HLA-DR
and (B) MSC markers CD29, CD73, CD90, and CD105 in H-GMSCs and P-GMSCs (P5) (control: isotype anti-IgG1 for CD45, CD29, CD90, CD73, and CD105;
isotype anti-IgG2 for HLA-DR); (C) the histogram shows the expression of nuclear MSC markers NANOG, Oct4, and SOX-2 in H-GMSCs and P-GMSCs (P3). Data
are reported as mean values ± SD of three independent experiments. Actin-β was used as the housekeeping gene; FC = fold change; the mRNA expression of
analyzed genes was normalized against BM-MSCs (positive control); P-value *P ≤ 0.05.

Matriderm R© collagen scaffold by H-GMSCs and P-GMSCs
after 2, 7 and 10 days of culture under standard conditions.
Different areas of the scaffold were taken into consideration
and images were acquired. Considering the thickness of the
scaffold used (1 mm), the results in Figure 5B showed
that both H-GMSCs and P-GMSCs were able to colonize
roughly 200 µm of the scaffold and were homogeneously

distributed in axes x and y. In particular, H-GMSCs colonized
190,336 µm of the depth of the scaffold and P-GMSCs colonized
182,80 µm of the depth of the scaffold. In addition, we
observed an increasing density of cells for up to 10 days,
with a higher increase for P-GMSCs compared to H-GMSCs,
demonstrating the ability of the cells to colonize the scaffold and
grow homogeneously.
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TABLE 3 | Expression levels of MSC markers in healthy and periodontally affected
GMSCs.

MSCs CD-105 CD-29 CD-90 CD-73

H-GMSCs 34.3 ± 1.2% 98 ± 0.94% 82.01 ± 0.81% 99.1 ± 0.14%

P-GMSCs 57 ± 2.1% 100 ± 0.05% 97.05 ± 0.8% 99.2 ± 0.5%

In vitro H-GMSC and P-GMSC
Osteogenic Differentiation on
Matriderm R© Collagen Scaffold
To test the osteogenic differentiation ability of H-GMSCs and
P-GMSCs seeded on Matriderm R© scaffold, the cells, with or
without the scaffold, were grown in 24-well plates to confluence

under standard culture conditions and then maintained in
homemade ODM, in the presence or non-presence of isoflavone
Biochanin A 300 nM and 1 µM and tested by Red S Alizarin
assay (Figure 6). After 21 days, the Matriderm R© scaffold seemed
to support the osteogenic differentiation of H-GMSCs and
P-GMSCs with a slight increase in osteoblastic differentiation
ability of GMSCs grown in the scaffold; moreover, the presence
of Biochanin A at the concentration of 1 µM seemed to induce
a slight increase in osteogenic differentiation compared to the
standard ODM (Figures 6A,B).

As shown in Figure 6C, the evaluation of the osteoblastic
marker expression, i.e., Runt-related transcription factor 2
(Runx2), Osteopontin (OPN), and Osteocalcin (OCN), by
RTqPCR analysis, revealed a moderately increased expression in
the H-GMSCs and P-GMSCs grown in the Matriderm R© scaffold

FIGURE 4 | Cell viability analysis. (A) WST1 viability values of H-GMSCs and P-GMSCs (P3) grown in the FISIOGRAFT Bone Granular R© scaffold for 24, 48, and 72 h;
(B) MTT viability values of H-GMSCs and P-GMSCs (P3) grown in the Matriderm R© collagen scaffold for 24, 48, and 72 h; data are reported as mean values ± SD of
three independent experiments; P-values *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 May 2020 | Volume 8 | Article 292

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00292 May 19, 2020 Time: 19:10 # 10

Cristaldi et al. Waste Gingiva for Bone Regeneration

FIGURE 5 | Cell distribution analysis. (A) Fluorescent representative images of a Live/Dead assay of H-GMSCs and P-GMSCs (P5) grown for 24, 48, and 72 h in the
Matriderm R© collagen scaffold (4X); (B) (left) MaxI P and (right) volumetric images of DAPI/Actin Green confocal microscopy assay of H-GMSCs and P-GMSCs (P5)
grown for 2, 7, and 10 days in the Matriderm R© collagen scaffold (4X); scale bars = 100 µm; depth = 190,336 µm for H-GMSCs; depth = 182,80 µm for P-GMSCs.

in the presence of Biochanin A, particularly at the concentration
of 1 µM, when compared to the GMSCs grown on the plate
surface without the scaffold in standard ODM.

DISCUSSION

Periodontitis is prevalent both in developed and developing
countries; it affects around 20–50% of the global population and

the high prevalence in young and old people makes it a serious
public health concern (Tonetti et al., 2017).

It occurs when the inflammation on gingival tissue, mainly
induced by the microorganisms of the dental plaque, is not
properly treated and progresses to periodontitis, which is
responsible for alveolar bone resorption and tooth loss (Jeffcoat
et al., 2003; Gotsman et al., 2007). In these patients, no dental
implant can be placed and the physiological oral functions are
seriously compromised (Anusavice, 2012; Ye and Sun, 2017). The
most frequently applied procedure to treat these types of bone
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FIGURE 6 | Osteoblastic differentiation assay. (A) Representative images of control H-GMSCs and P-GMSCs (P3) grown in osteogenic differentiation medium
(ODM), with or without Biochanin A 300 nM and 1 µM, and stained with Red S Alizarin (4×); (B) histogram representing the quantitative analysis of Red S Alizarin by
spectrophotometry (550 nm OD), of H-GMSCs and P-GMSCs (P3) grown in ODM, in presence or non-presence of the Matriderm R© collagen scaffold, with or without
Biochanin A 300 nM and 1 µM; (C) histogram showing the relative mRNA expression of the osteoblastic markers Runx2, OPN, and OCN in H-GMSCs and
P-GMSCs (P3) grown in ODM, in presence or non-presence of the Matriderm R© collagen scaffold, with or without Biochanin A 300 nM and 1 µM. Actin-β was used
as the housekeeping gene; FC = fold change.

defects is represented by the GBR (Esposito et al., 2009), with
autologous bone graft representing the “gold standard.” However,
because the autologous bone graft requires a second surgical
site, this leads to higher costs of intervention and an increased
probability of clinical complications (Esposito et al., 2009; Kolk
et al., 2012; Rakhmatia et al., 2013), thus alternative treatments
are urgently needed.

TERM is an interdisciplinary field that combines principles of
life science, medicine, chemistry, and engineering and has helped
to develop many strategies to treat tissue defects (Cristaldi et al.,
2018a,b). However, in light of the current sources of hMSCs
(i.e., bone marrow, umbilical cord blood, and adipose tissue)
(Zuk et al., 2002; Kern et al., 2006), a more accessible and low-
cost hMSC source is necessary and the oral cavity seems to

be a valuable candidate (Gronthos et al., 2000; Miura et al.,
2003; Seo et al., 2004; Sonoyama et al., 2008; Zhang et al., 2010;
Gronthos, 2011; Egusa et al., 2012; Kawashima, 2012; Jones
and Klein, 2013; Carnevale et al., 2018). Among the different
sources of hMSCs identified in the mouth (Miura et al., 2003;
Seo et al., 2004; Sonoyama et al., 2008; Zhang et al., 2010;
Gronthos, 2011; Egusa et al., 2012; Kawashima, 2012; Carnevale
et al., 2018), gingiva seems to be very promising. GMSCs
have high regenerative potential, with higher proliferation and
multi-lineage differentiation abilities than those of BMMSCs
(Rossmann et al., 1994; Tomar et al., 2010; Tang et al., 2011);
for these reasons, harvesting hMSCs from the gingiva, and in
particular from the gingiva of periodontally compromised teeth
that have up to now been discarded during surgical procedures,
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constitutes an encouraging, easy, and low-cost alternative to the
traditional GBR strategies.

In this study, we demonstrated that GMSCs can be isolated
both from healthy and periodontally compromised tissues.

Many studies have previously shown that the proinflammatory
cytokines such as interleukin (IL)-1β or tumor necrosis
factor (TNF)-α can trigger intracellular pathways involved
in cellular survival, proliferation, and differentiation toward
specific cellular lineages (Hess et al., 2009; Ennis et al., 2013;
Feng et al., 2013; Li et al., 2013; Yang et al., 2013; Sun
et al., 2014; Fu et al., 2015; Ma and Hottiger, 2016). GMSCs
from inflamed tissue acquire a pro-fibrotic phenotype with a
higher proliferation rate in the presence of a proinflammatory
microenvironment (Li et al., 2013); moreover, TNF-α induces
the osteogenic differentiation of DPSCs by activation of the NF-
κB pathway (Feng et al., 2013). A role in the inflammation
of the Wingless-Type MMTV Integration Site Family, Member
1 (Wnt1)/β-catenin pathway, involved in the transcription
activation of stem cell nuclear markers as NANOG, Oct4,
and SOX2, has been recently investigated (Ma and Hottiger,
2016). As previously shown by Tomasello et al. (2017), we
observed increased clonogenic activity, expression of surface and
nuclear MSC markers, and osteogenic differentiation abilities,
in GMSCs isolated from inflamed gingiva, confirming that the
inflamed microenvironment positively affects the regeneration
potential of GMSCs.

To evaluate if P-GMSCs from discarded gingiva could be
successfully employed to regenerate the bone, we tested the
ability of P-GMSCs and H-GMSCs to grow and osteogenic
differentiate in two different types of scaffolds: FISIOGRAFT
Bone Granular R© and Matriderm R©. The inorganic phase of bone
is mainly constituted of inorganic-based compounds such as
hydroxyapatite (HA) (Driessens, 1980), thus HA and calcium
phosphate derivates, which mimic the natural bone inorganic
phase, have been mostly used for bone regenerative purposes
(Li et al., 2002; Lee et al., 2014). The synthetic FISIOGRAFT
Bone Granular R©, provided by Ghimas Spa, consists of granules
derived from a HA sponge; it has pores from 500 to 1,000 µm
in size and interconnected porosity, which is optimal for cell
proliferation. The morphological structure of FISIOGRAFT Bone
Granular R© mimics the trabecular bone with very thin trabeculae,
and it could be a promising scaffold to support the growth
and the osteogenic differentiation of GMSCs. A recent clinical
study on patients with maxillary sinus bone defect showed
that it successfully regenerates the bone defect; 6 months
after the FISIOGRAFT Bone Granular R© implant in the bone
defect, the vital bone percentage was approximately 35%, with
marrow spaces percentage of approximately 45%, a residual graft
percentage of roughly 21%, and an implant survival rate of 96.4%
after 12 months (Stacchi et al., 2017). However, as it is widely
accepted, one of the main challenges in the in vitro studies is
re-producing the in vivo cell microenvironment, which is very
complex. This is constituted by factors that are able to influence
the environment of a cell or a group of cells, with direct or indirect
effects on cell behavior and phenotype. A single cell is, indeed,
affected by the composition and structure of extracellular matrix
(ECM), homotypic and heterotypic cells around the cell, growth

factors as cytokines, hormones, and other bioactive molecules
with autocrine, endocrine, and paracrine effects; in addition,
physical and mechanical factors due to the movement of the
organism or the physiological fluids as blood have to be taken in
consideration (Barthes et al., 2014). From our results, using the
WST1 viability assay, the FISIOGRAFT Bone Granular R© does not
support the growth of the GMSCs in vitro since approximately
50% of both P- and H-GMSCs showed lower viability in the
presence of the scaffold. This conclusion may be derived from
the marked difference between the in vitro and the in vivo
cellular microenvironment; thanks to the in vivo blood supply,
many factors can coordinate the biomaterial remodeling and
degradation along with the attraction of hMSCs to the target
site, supporting tissue regeneration. Additionally, the cells have
very different behaviors in 2D and 3D cultures; they, indeed,
start to have different behaviors when excised from native three-
dimensional (3D) tissues and grow confined to a monolayer. The
embryonic stem cells cultured in 3D as embryoid bodies exhibit
increased abilities to differentiate to chondrocytes compared
to being cultured in the monolayer (Tanaka et al., 2004).
The natural cell-cell intercommunication and cell-extracellular
matrix interaction in the 3D structure, mimicking the in vivo
microenvironment, can influence the hDPSC properties and
their ability to differentiate toward different cell lineages (Riccio
et al., 2010; Xu et al., 2020). Therefore, depending on in vivo or
in vitro microenvironment, cellular intercommunication could
be affected and GMSCs could differently respond to the presence
of the scaffold.

Type I collagen is the most represented organic polymer of the
bone matrix and plays an important role in the complex process
of bone formation and remodeling. For these reasons, nowadays,
thanks to the excellent biocompatibility, biodegradability, and
weak antigenicity, collagen is a biomaterial widely used for tissue
regeneration; moreover, the collagen fibrils have demonstrated to
serve as a template to guide the bone mineralization (Chvapil
and Droegemueller, 1981; Wang and Yeung, 2017). We also
tested the growth and osteogenic differentiation properties of
P-GMSCs and H-GMSCs on the Matriderm R© collagen scaffold,
a three-dimensional matrix consisting of collagen type I (bovine
collagen) and elastin with a porosity approximately of 100
µm. Our study demonstrated that Matriderm R© is able to
support the growth of H- and P-GMSCs. The viability results
showed a progressively increasing rate of cell growth in the
presence of the scaffold. These data were also confirmed by the
Live/Dead and DAPI/Actin Green assays, demonstrating that
the H- and P-GMSCs, showing the typical fibroblast-like shape,
homogeneously colonized the scaffold guided by the collagen
fibrils. Besides, we observed an increased cell density up to
10 days of culture. These data proved that the Matriderm R©

scaffold promoted the adhesion and growth of GMSCs both from
the control and test group.

To assess the osteogenic differentiation ability of P-GMSCs
and H-GMSCs in the Matriderm R© scaffold, H- and P-GMSCs
were grown on the scaffold under osteoblastic differentiation
conditions. The results derived from Alizarin S Red assay and
RTqPCR expression analysis of Runx2, OPN, and OCN show
an increased osteogenic differentiation rate of both P-GMSCs
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and H-GMSCs grown on the scaffold compared to the control
cells. However, it was demonstrated that pure collagen materials
don’t have enough osteoinductive activity to stimulate bone
formation and many strategies, based on scaffold incorporation
with bioactive molecules or hMSC treatment with bioactive
molecules, have been developed (Otsuka et al., 2013). Biochanin
A (5,7-dihydroxy-4′-methoxy-isoflavone), an isoflavone most
commonly found in legumes as red clover (Trifolium pratense),
which acts as a natural modulator of the estrogen receptor
(ER) α and ERβ, is able to enhance the transcriptional
pathways physiologically activated by estrogens and inhibited
during human pathological conditions, as osteoporosis in
postmenopausal women (Joannou et al., 1995; Brynin, 2002;
Setchell et al., 2002; Somjen et al., 2005; Yu et al., 2019).
In particular, Biochanin A has been showed to enhance the
osteoblastic differentiation pathway and inhibit the osteoclastic
differentiation pathway (Su et al., 2013a,b), contributing to the
maintenance of bone health (Booth et al., 2006; Thompson
Coon et al., 2007). Su et al. (2013b) recently demonstrated
that Biochanin A at 300 nM contributes to the osteoblastic
differentiation; thus, to improve the osteoconductive potential of
the Matriderm R© scaffold, we evaluated the effects of the isoflavone
Biochanin A 300 nM and 1 µM on the osteoblastic differentiation
rate of H- and P-GMSCs. Even if only a slight increase in
the osteodifferentiation rate of H- and P-GMSCs grown in
presence of Biochanin A, in particular at the concentration
of 1 µM, was observed, these represent preliminary results
and need to be investigated in further studies. Moreover, it is
necessary to identify the optimal dose supporting the osteogenic
differentiation of P-GMSCs grown in the Matriderm R© collagen
scaffold. The molecular mechanism, induced by Biochanin
A/ERα interaction and involved in the osteogenic differentiation,
needs to be also clarified.

CONCLUSION

Patients suffering from jawbone loss, as periodontal patients,
urgently need a low-cost strategy for alveolar bone defect
treatment and regeneration for the placement of dental implants
and restoration of oral functions. Bone TE along with RM
reproduce tissues and organs by use of adult hMSCs, supported
by smart biomaterials and bioactive molecules. In this study,
after having confirmed the stem cell phenotype of hMSCs
isolated from gingiva of healthy and periodontal patients, we
demonstrated that, probably due to the marked difference
between the in vitro and the in vivo cellular microenvironment
and behavior, the FISIOGRAFT Bone Granular R© does not
support the in vitro cell growth; future investigations will
be necessary to clarify this aspect and improve the system
for in vitro applications. On the contrary, H-GMSCs and
P-GMSCs demonstrated to progressively grow, homogeneously
distribute, and osteogenic differentiate in the Matriderm R©,
and the treatment with isoflavone Biochanin A seems to
improve the osteodifferentiation rate of the cells. These
data need to be confirmed and further investigated in
future studies. The optimal concentrations of Biochanin A

necessary to support osteogenic differentiation also need
to be identified.

Even though preliminary, we believe that hMSCs isolated
from waste gingiva, which is routinely discarded during
surgical procedures, supported by an osteoconductive scaffold
as Matriderm R©, which is suitable for in vitro cell growth and
osteodifferentiation, can be employed to develop low-cost and
painless clinical strategies of autologous bone tissue regeneration.

Such a system, which uses a biological waste tissue as a
source of hMSCs and minimizes the impact on the patient
recovery and costs of the surgery, represents an easy and 100%
biocompatible alternative to the traditional GBR procedures to
treat not only bone defects caused by periodontitis but also any
other type of bone defect.
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