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Despite almost 50 years of research and over 20 years of preclinical and clinical studies,
the question of curative potential of mesenchymal stem/stromal cells (MSCs) is still
widely discussed in the scientific community. Non-reproducible treatment outcomes
or even absence of treatment effects in comparison to control groups challenges
the potential of these cells for routine application both in tissue engineering and in
regenerative medicine. One of the reasons of such outcomes is non-standardized and
often disadvantageous ex vivo manipulation of MSCs prior therapy. In most cases,
clinically relevant cell numbers for MSC-based therapies can be only obtained by in vitro
expansion of isolated cells. In this mini review, we will discuss point by point possible
pitfalls in the production of human MSCs for cell therapies, without consideration of
material-based applications. Starting with cell source, choice of donor and recipient,
as well as isolation methods, we will then discuss existing expansion protocols (two-
/three-dimensional cultivation, basal medium, medium supplements, static/dynamic
conditions, and hypoxic/normoxic conditions) and influence of these strategies on the
cell functionality after implantation. The role of potency assays will also be addressed.
The final aim of this mini review is to illustrate the heterogeneity of current strategies
for gaining MSCs for clinical applications with their strengths and weaknesses. Only a
careful consideration and standardization of all pretreatment processes/methods for the
different applications of MSCs will ensure robust and reproducible performance of these
cell populations in the different experimental and clinical settings.

Keywords: mesenchymal stem/stromal cell, donor variability, expansion protocols, bioreactor, potency

INTRODUCTION

Mesenchymal stem/stromal cells (MSCs) have the capacity to differentiate into cells and
tissues of one germ layer, here the mesodermal lineage, and are consequently multipotent.
MSCs also secrete a variety of soluble factors and exosomes and, via contact with host cells,
modulate functions of effector cells (Kabat et al., 2020). These features endow them with
immunomodulatory, tissue-engrafting, cell-empowering (Najar et al., 2018), migratory, and
homing properties. Despite a large history of research and use in clinical trials including some
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successful and spectacular examples based on either their
differentiating capacities (Horwitz et al., 1999; Horwitz et al.,
2002) or their secretory properties (Le Blanc et al., 2004)
and nicely summarized in a plethora of reviews (e.g., Ballini
et al., 2018 or Kabat et al., 2020), the understanding of MSC
biology, their mechanism of action (MoA) in different biological
contexts, and their targeted and routine use in the clinics is
limited (Hoogduijn and Lombardo, 2019). In this mini review,
we propose a hexagon of steps to consider during selection,
pretreatment, analysis, and application of MSCs in order to
improve the transferability of promising preclinical results into
clinical success (Figure 1). In the following, the six steps will be
discussed in detail.

CELL SOURCE: ADULT TISSUES OR
BIRTH-ASSOCIATED TISSUES

Bone marrow (BM) from animals was the protagonist tissue
of origin in the 1960s when these cells were first identified
(Friedenstein et al., 1968). Meanwhile, MSCs are isolated
and expanded from a number of tissues from adult human
donors (BM, adipose and dental tissue, muscle, and skin)
and from birth-associated human tissues (placenta, amnion,
Wharton jelly of the umbilical cord, or umbilical cord blood).
Birth-associated tissues offer the advantage of non-invasive
acquisition; the cells are in a developmentally early state and
have higher immunosuppressive activity (Haase et al., 2009;
Deuse et al., 2011; Hass et al., 2011). Despite similarities in
morphology, immunophenotype with respect to selected cell
surface antigens [while others depend on the tissue source
(Lv et al., 2014)] and differentiation in vitro, MSCs sourced
from distinct tissues may have a different developmental origin
(Bosch et al., 2012) and do not necessarily have equivalent
biological properties (Reinisch et al., 2015; Sacchetti et al.,
2016). This is illustrated by several examples: (i) It was shown
that MSC populations from different tissues differed widely
in their in vivo differentiation potential and transcriptomic
signature (Sacchetti et al., 2016). (ii) HLA class I expression
was significantly reduced in human amnion MSCs compared
to MSCs from BM until passage 6 (Pogozhykh et al., 2015).
This indicates that the immunomodulatory and immunoevasive
properties of MSCs (Ankrum et al., 2014) from different tissue
sources may vary. (iii) Clinical studies using MSCs from BM
were considered to be safe even with systemic application by
infusion. However, because of the higher expression of tissue
factor (also called CD142) on MSCs from adipose or birth-
associated tissue compared to MSCs from BM, there is a
notably increased risk for incompatibility with blood during
intravascular application, caused by the instant blood-mediated
inflammatory reaction (IBMIR). This leads to thrombotic
complications and reduced engraftment (Moll et al., 2019). In
summary, the intended mode of application (systemic or local,
cell suspension, or mixed with a carrier system) and MoA
of the cells (e. g differentiation into a desired cell type or
secretion for immunomodulation) from different sources need
to be carefully considered and compared for the choice of

tissue source as indicated by forward and backward arrows in
Figure 2A.

CHOICE OF DONOR AND RECIPIENT

Isolation and expansion of MSCs from human BM were reported
in 1992, and in 1999, these cells were administered into human
patients (Horwitz et al., 1999). Since that time, as well autologous
as allogeneic applications have shown success, with most studies
using allogeneic cells (Pittenger et al., 2019). Such allogeneic
use is possible because MSCs are considered to be immune
evasive (Ankrum et al., 2014). Autologous cells may be an
attractive option, available even from perinatal tissue when
cryostored—here, however, the system of cryobanks needs to
be expanded (Bieback and Brinkmann, 2010; Brown et al.,
2019; Kamal and Kassem, 2020). However, the prerequisite for
use of autologous cells is that they are not affected by the
disease to be treated or by comorbidities. Only an allogeneic
setting offers the option to select for cell populations with
particular properties (arrows in Figure 2A). This choice, however,
also depends on the tissue source for cell retrieval. In a
proinflammatory environment, the immunosuppressive activity
of MSCs is affected with low doses of inflammatory cytokines
inducing an immunostimulating phenotype but high doses
inducing an immunosuppressive phenotype as demonstrated
in a number of studies, e.g., reviewed in Najar et al. (2018).
Consequently, the recipients/patients and their disease to be
treated may become a decisive factor for success of MSC-based
therapies (Martin et al., 2019). Figure 2A summarizes some
important points.

ISOLATION METHODS

In the case of a fluid tissue such as BM, mononuclear cells
are used directly or purified by density gradient centrifugation
and plated at defined (clonal or non-clonal) or non-defined
cell density. In the case of solid tissues, explant cultures or
enzymatic digestion are used (Hoffmann et al., 2017). MSCs are
subsequently identified as compact colonies containing spindle-
shaped cells. The first passage is usually performed by detaching
the cells with a protease once individual clones have reached
a certain size as defined by the individual scientist. Although
macrophages also grow in a plastic-adherent manner, they do
not persist in the cultures as demonstrated by the absence
of expression of antigens such as CD11b, CD13, and CD163
(e.g., Schack et al., 2013). Histological investigations with spatial
resolution of tissue or single-cell analyses by flow cytometry
revealed different subpopulations in different microanatomic
sites, even for BM as a single tissue (Rasini et al., 2013) or
resulted in isolation of selected subpopulations [CD271: (Kuci
et al., 2013), STRO-1: (Shi and Gronthos, 2003)].

Multicolor lentiviral barcode labeling was applied to follow the
clonal dynamics of in vitro MSC isolation and expansion from
pieces of umbilical cord (Selich et al., 2016). MSCs migrating out
of the tissue pieces during explant culture initially demonstrated
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FIGURE 1 | Hexagon toward translating MSCs’ promise into clinical reality. (I) As a first step, the isolated cells’ identity has to be analyzed. Here, the cell source in
terms of donor and tissue of origin, as well as population heterogeneity, plays an important role and is discussed in sections “Cell Source: Adult Tissues or
Birth-Associated Tissues”, “Choice of Donor and Recipient”, “Isolation Methods”, and “Biological Properties of MSCs in vivo”. (II) The decisive role of expansion
protocols and (III) cell product identity for preparing MSC products for clinical use are explained in section “Expansion Protocols and Culture Conditions”. (IV) The
importance of revealing mechanisms of action and (V) choice of valid potency assays or matrix of assays are detailed in section “Potency Assays”. (VI) Finally, during
clinical application the selection of recipients (reviewed in section “Choice of Donor and Recipient”) and measurement of clinical effects have to be considered.

a highly complex mixture of different cell clones. However, with
time, a massive reduction in abundance of clones was detected.
This led to a preference for only few cell clones within few
passages that are necessary to generate clinically relevant cell
numbers. Also interesting, initiating novel MSC cultures from
the same piece of tissue revealed the existence of more primitive
cells as evidenced by a stronger secretion of cytokines after
stimulation (Selich et al., 2019). It seems highly likely that similar
observations would be found not only for MSCs isolated from
solid tissues but also for MSCs from a fluid tissue as BM. Such
clonality needs to be considered in the future development of
refined cell isolation protocols (Figure 2A) as they may result,
for example, from more research into the biological properties of
these cells in vivo.

BIOLOGICAL PROPERTIES OF MSCs
in vivo

The straightforward preparation of MSCs in vitro has
enabled an incredible amount of studies. However, the

in vivo identity and biology are less clear and less well
characterized. Researchers identified CD146-positive cells
in BM as adventitial reticular cells in the subendothelial
layer of sinusoids (Sacchetti et al., 2007) and as the in vivo
equivalent of in vitro MSCs. Self-renewing capacity of
CD146-expressing cells as a characteristic of genuine stem
cells was demonstrated by secondary passage (Sacchetti
et al., 2007) and serial transplantation (Serafini et al., 2014).
Independent results demonstrated that MSCs apparently can
derive from pericytes (CD34−CD146+) and from adventitial
cells (CD34+CD146−), and they termed them perivascular
stromal/stem cells (Corselli et al., 2013). In September 2018,
a consortium identified “the human skeletal stem cell” as
a self-renewing, multipotent stem cell entity (Chan et al.,
2018; Ambrosi et al., 2019). This cell was characterized by
surface expression of podoplanin, CD73 (ecto-5’-nucleotidase),
and CD164 (Endolyn). It is important to state that most
of these studies avoided long-term in vitro expansion of
their isolated cell populations. From these studies, the
possibility emerges that there are several populations of
“skeletal stem cells,” which await further identification
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FIGURE 2 | (A) Flowchart of important stages for resolving the challenges on the way toward efficient MSC applications. This will need to consider several important
issues that are depicted in the present figure. This will also need a constant reiterative optimization of different aspects compared to the current state of the art. Such
a course of action will finally allow enhanced matching of in vitro and in vivo data and ultimately an enhanced translation of data from laboratory investigations into
clinical practice through a reproducible and predictable outcome. (B) Important factors and expansion conditions to consider for improving the final MSC product
quality.

and characterization, in particular with respect to their
MoA and potency.

EXPANSION PROTOCOLS AND
CULTURE CONDITIONS

Recent reviews on the clinical development of MSCs highlighted
the importance of ex vivo MSCs’ manipulation (Guadix et al.,
2019; Mastrolia et al., 2019; Yuan et al., 2019). Ex vivo expansion

and preconditioning are considered crucial for cell functionality
after implantation. Because the MoA in the treatment of different
diseases is not exactly known, it is important to maintain
all possible initial MSC functions, including retention of all
receptors (to receive external stimuli) and adhesion molecules
(for migration, homing, and interaction with other cells), as
well as production of cytokines, chemokines, growth factors, and
extracellular vesicles (for stromal function). In the following,
some factors and conditions that are considered to be important
for the final cell product quality are reviewed (Figure 2B).
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Media Composition: Basal Medium and
Supplements
Although long-term (over 40 days) expansion has a negative
impact on migration, differentiation, genetic stability, and
proliferation of MSCs (Wagner et al., 2009; Hladik et al., 2019),
rapid expansion does not guarantee the quality of the cell-based
products. Application of high-glucose medium for expansion is
considered to enable fast cell growth by the easy availability of
glucose (Nuschke et al., 2016); however, glucose concentrations
greater than 1 g/L also lead to cellular senescence (Zhang et al.,
2017), including telomere shortening and genomic instability
(Parsch et al., 2004). It was demonstrated for BM-MSCs that low-
glucose Minimum Essential Medium Eagle Alpha Modification
(1 g/L glucose) is the better medium choice compared to
Dulbecco’s Modified Eagle’s Medium and Iscove’s Modified
Dulbecco’s Media (Sotiropoulou et al., 2006). In many studies,
MSCs were expanded using fetal calf serum (FCS), whereas
nowadays the use of FCS for MSC expansion is not favored
anymore, because besides the ethical issues of FCS production
(collecting the serum from unborn calves), viral, mycoplasm,
or prion infections can be transferred to the patient (Bieback,
2013; Jonsdottir-Buch et al., 2013; Hemeda et al., 2014; Mastrolia
et al., 2019). Moreover, animal xenogenic compounds (proteins
and polysaccharides) from FCS are internalized by the cells and
can cause immune response after MSCs implantation, even if
autologous cells were used (Spees et al., 2004). As an alternative,
human serum or human platelet lysate can be used for MSCs’
expansion (Mannello and Tonti, 2007; Bieback, 2013; Hemeda
et al., 2014). Chemically defined xeno-free media could provide
acceptable cell growth and elimination of the risk of carrying over
pathogens (Spees et al., 2004), but the evaluation of functional
characteristics of the cells cultivated in such media has to be
improved (Lee et al., 2017).

Cultivation in Bioreactors
Traditionally, anchorage-dependent MSCs are expanded in static
multiple planar T-flasks or multilayered flasks. Such “open
systems” provide only a limited surface area and little control
over cultivation parameters, are labor-intensive, and can lead to
a high contamination risk and impaired cell function (Bunpetch
et al., 2017; Mizukami and Swiech, 2018). In contrast, expansion
in bioreactors (“closed systems”) provides higher cell yield,
full control, and documentation of cultivation parameters, as
well as better spatial distribution of nutrients, pH, and oxygen
(Bunpetch et al., 2017). Several bioreactor types are used for
MSCs’ expansion: rotating-bed bioreactors (Neumann et al.,
2014), stirred tanks (Sart and Agathos, 2016; Mizukami et al.,
2019), bag reactors (Das et al., 2019), hollow fiber (Mennan et al.,
2019), and fixed bed reactors (Weber et al., 2010; Osiecki et al.,
2015). In the case of stirred tanks or bags, anchorage-dependent
MSCs are cultivated as aggregates or on microcarriers (Alimperti
et al., 2014; de Soure et al., 2016).

Cultivation in Three-Dimensional
Systems and Under Dynamic Conditions
A growing number of publications demonstrate that
cultivation/expansion of MSCs in three-dimensional (3D)

systems increases their functional activities in terms of angiogenic
(Cheng et al., 2013), anti-inflammatory (Bartosh et al., 2010),
and immunomodulatory (Noronha et al., 2019) properties.
The most common method for 3D MSC cultivation are cell
aggregates, generated by hanging drops, ultralow adhesion
plates, centrifugation, and structured microwells (Bartosh
et al., 2010; de Soure et al., 2016; Egger et al., 2018). To allow
better nutrient transport, aggregated cells are then cultivated
under dynamic conditions: agitation, stirring, or perfusion. It is
important to note that cultivation in 3D aggregates allows MSC
expansion in serum-free conditions (Alimperti et al., 2014).

Preconditioning With Hypoxia
Several preconditioning strategies (also called “priming”) were
developed for MSCs (Hu and Li, 2018; Noronha et al., 2019;
Castilla-Casadiego et al., 2020). These strategies include the use
of pharmacological or chemical substances, small molecules,
cytokines, physical factors, biomaterials, and hypoxia. Here, we
focus on priming with hypoxia as it represents a complex,
multilevel, and physiologically relevant strategy. Preconditioning
of MSCs in hypoxia triggers (via the stabilization of Hypoxia
Inducible Factor (HIF)-1α and other adaptation mechanisms)
an upregulation of various functions and does not only help
MSCs to survive after implantation, but also increases their
curative/stromal potential. Exact details of hypoxic treatment
protocols are still under discussion: oxygen concentration,
duration of preconditioning, MSCs’ isolation under hypoxia,
and reoxygenation. Oxygen concentration (1–5% O2) should be
low enough to trigger adaptation, but not too low as to cause
apoptosis (El-Badawy et al., 2016). Serum deprivation should
be avoided during hypoxic conditions, because it also leads
to apoptosis (Chen et al., 2018). MSCs isolated from different
sources demonstrated higher proliferation and migration rates,
metabolic activity, cytokine, and receptor expression, as well as
improved immunomodulatory properties and genetic stability
under hypoxia (Lavrentieva et al., 2010; Estrada et al., 2012;
Haque et al., 2013; Jiang et al., 2015; Choi et al., 2017; Fabian,
2019). Of note, hypoxic conditions should be preferred over
using hypoxia-mimicking reagents (e.g., HIF stabilizers), because
true hypoxic preconditioning can lead to the involvement of
unknown, additional mechanisms beyond the HIF pathways
(Pugh and Ratcliffe, 2017; Chakraborty et al., 2019).

POTENCY ASSAYS

While preclinical data on the efficacy of MSCs to treat
pathological conditions are promising, translating this into
clinical success is not straightforward. The cellular heterogeneity
that is, on the one hand, an intrinsic property of cell
communities—even in genetically identical cell populations
(Wilson et al., 2019)—and on the other hand in case of clinically
applied MSCs caused by the factors and parameters discussed
above, might be one of the major reasons for the observed
discrepancy in MSC efficacy (Galipeau and Sensebe, 2018).
Despite these heterogeneities, how can we ensure that preclinical
results hold true in clinical studies? The regulatory authorities
reply to this question with the demand for potency assays.
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The European Medicines Agency EMA defines potency as “the
measure of the biological activity using a suitably quantitative
biological assay (also called potency assay or bioassay), based
on the attribute of the product, which is linked to the relevant
biological properties” (European Medicines Agency [EMA],
1999). Furthermore, “A correlation between the expected clinical
response and the activity in the biological assay should be
established in pharmacodynamic or clinical studies” (European
Medicines Agency [EMA], 1999). In other words, potency assays
measure the biological activity of a cellular product to ensure its
intended function at a specific dose. Thus, the assay is meant to
guarantee the comparability of different cellular products and of
different lots of one product (Hematti, 2016).

The first prerequisite for defining a valid potency assay is
to know the pathophysiology of the disease to be treated with
MSCs and to know the MoA by which they exert their effects.
The MoA of MSCs is highly dependent on the disease and
microenvironmental tissue context in which they are applied. In
most cases, the MoA of MSCs is complex involving not only
direct but also indirect effects, e.g., via nearby cells. Roughly, the
presumed MoA of MSCs can be subdivided into effects related to
their following properties: (i) differentiation capacity, (ii) ability
to engraft, and (iii) release of paracrine signals (Salvadori et al.,
2019). Which capacity contributes to the potency of MSCs in
different diseases to which extent is yet to be determined. The
situation is further complicated by the phenomena of IBMIR
(Moll et al., 2019) and efferocytosis (Galipeau and Sensebe, 2018).

The MoA is the link that is needed for the causal correlation
of potency assays that measure a biological activity to the
intended clinical response. In some diseases, the MoA might be
traced back to one primary activity of MSCs. However, in most
cases, MSCs’ action is a complex network of direct and indirect
effects, and following only one effector pathway might lead
to misinterpretable results. Therefore, the International Society
for Cellular Therapy recommended developing matrix assay
approaches that can cover the multiplicity of pathways involved
in the MoA for a certain application (Galipeau et al., 2016). Wide
and/or targeted OMICs approaches, particularly transcriptomic
and metabolomic analyses, help identifying crucial factors in
these networks that can be used as targets in the development of
potency assays for MSCs in different diseases (Chinnadurai et al.,
2018). Single-cell RNAseq of MSCs (Freeman et al., 2015) even
opens the avenue for finding such targets in stemness-related
effects that are transmitted by the small fraction of stem cells in
the applied MSC populations.

In all cases, where the exact MoA is not fully solved, the
dilemma of defining valid potency assays can only be solved

by analyzing fundamentally and in detail which cells within the
applied MSC population exert which effects in which way.

CONCLUSION

In this mini review, we highlight some important points
in the hexagon of steps (Figure 1) that are necessary to
translate the promising results obtained with MSCs in vitro
into successful cellular therapies. This includes as a first
step ensuring the isolated cells’ identity, which is influenced
by selection of donors and tissue sources as well as MSC
population heterogeneity. In the next steps, optimized and
standardized expansion protocols as well as guaranteed quality
and identity of the produced cells are essential. At the
same time, often unknown MoAs and choosing valid potency
assays are currently major challenges in this regard. During
the last step—clinical application—the choice of recipients
is one decisive parameter. Making informed choices in
each of these steps will contribute to improved matching
of in vitro and in vivo data and ultimately an enhanced
translation of data from laboratory investigations into clinical
practice (Figure 2A).
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