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Neurodegenerative diseases are progressive degenerative conditions characterized
by the functional deterioration and ultimate loss of neurons. These incurable and
debilitating diseases affect millions of people worldwide, and therefore represent a
major global health challenge with severe implications for individuals and society.
Recently, several neuroprotective drugs have failed in human clinical trials despite
promising pre-clinical data, suggesting that conventional cell cultures and animal models
cannot precisely replicate human pathophysiology. To bridge the gap between animal
and human studies, three-dimensional cell culture models have been developed from
human or animal cells, allowing the effects of new therapies to be predicted more
accurately by closely replicating some aspects of the brain environment, mimicking
neuronal and glial cell interactions, and incorporating the effects of blood flow. In this
review, we discuss the relative merits of different cerebral models, from traditional cell
cultures to the latest high-throughput three-dimensional systems. We discuss their
advantages and disadvantages as well as their potential to investigate the complex
mechanisms of human neurodegenerative diseases. We focus on in vitro models of the
most frequent age-related neurodegenerative disorders, such as Parkinson’s disease,
Alzheimer’s disease and prion disease, and on multiple sclerosis, a chronic inflammatory
neurodegenerative disease affecting young adults.

Keywords: neurodegenerative diseases, in vitro models, three-dimensional culture, induced pluripotent stem
cells, organoids

INTRODUCTION

Neurodegenerative diseases are age-related conditions characterized by uncontrolled neuronal
death leading to a progressive decline in brain functions. These incurable and debilitating diseases
are associated with a wide spectrum of clinical symptoms, including cognitive decline and/or the
loss of locomotor functions. The number of affected individuals is growing due to the aging of
human populations, and the severe effects of such diseases on the quality of life have increased the
burden on healthcare systems worldwide (Heemels, 2016). Dementias in particular are responsible
for the greatest burden of age-related neurodegenerative diseases. This is a broad term used
to describe a number of conditions characterized by cognitive deficits, including Alzheimer’s
disease (AD), vascular dementia, frontotemporal dementia, mixed dementia, and dementia with
Lewy bodies. Other neurodegenerative diseases principally affect the locomotor system, including
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amyotrophic lateral sclerosis, Huntington’s disease, Parkinson’s
disease (PD), multiple sclerosis (MS), and spinocerebellar ataxias.

The limited efficacy of drugs for the treatment of
neurodegenerative diseases reflects their complex etiology
and pathogenesis. In addition to aging, multiple risk factors
contribute to susceptibility including environmental triggers
and genetic factors. Therefore, more work is required to identify
the underlying molecular mechanisms and corresponding
pharmacological targets. In addition to the ethical concerns of
animal experiments for medical research, the recent failure of
several clinical trials targeting neurodegenerative diseases has
raised doubts about the translatability of animal disease models
to human patients, creating a demand for better research tools in
this field (Olanow et al., 2008; Cummings et al., 2014; Schneider
et al., 2014; Pfeuffer et al., 2016; Anderson et al., 2017). The
development of novel in vitro models with greater physiological
relevance may bridge the gap between current pre-clinical animal
models and humans, allowing the discovery of promising drug
targets that can be tested in future clinical trials. In addition,
in vitro testing can reduce the duration and costs of translation
by helping to identify the mechanism of action together with any
associated risks.

Several in vitro approaches have been developed to
understand the etiology and pathogenesis of a broad range
of neurodegenerative diseases (Table 1) and we focus on those
applied to PD, AD, prion diseases and MS in this review. In
1962 the first CNS organotypic culture was prepared from rat
hypophysis tissue (Bousquet and Meunier, 1962). Cells derived
from embryonic rat spinal cord and ganglia were subsequently
cultured on collagen-coated glass, revealing their potential for
organotypic differentiation and bioelectric properties suitable
for electrophysiological studies (Crain, 1966). Since then,
organotypic cultures have been prepared from brain slices
encompassing several cerebral areas, including the hippocampus,
substantia nigra, locus coeruleus, striatum, and basal forebrain
(Lavail and Wolf, 1973; Whetsell and Schwarcz, 1983; Knopfel
et al., 1989; Ostergaard et al., 1995; Robertson et al., 1997).
Although tissue explants and organotypic slice cultures faithfully
represent the cerebral architecture, they are difficult to prepare
and maintain in a viable state, and their inherent variability
leads to a lack of reproducibility in experiments (Walsh et al.,
2005). The development of immortalized cell lines (Table 1)
removed the need to use tissue as a source, but such cell lines
often present genetic and metabolic abnormalities compared
to normal human cells (Gordon et al., 2014). The advent of
human embryonic stem cells (ESCs) and then human induced
pluripotent stem cells (iPSCs) (Thomson et al., 1998; Takahashi
et al., 2007) provided researchers with the tools to generate
multiple differentiated cell types with the same genotype.
Methods for the conversion of human somatic cells into iPSCs
using retroviral transduction and transcription factors such as
OCT4, SOX2, KLF4, and c-MYC have opened new frontiers in
the development of in vitro disease models because iPSCs can be
derived from patients, providing a source of neurons carrying the
same genetic variants associated with pathogenesis in a defined
microenvironment (Table 1). In the earliest experiments, iPSCs
were cultured in undiversified 2D layers which were of limited

value as disease models because they did not recreate authentic
interactions between cells. To overcome this drawback, more
sophisticated 3D culture models were developed, including
spheroids, hydrogels, scaffolds derived from the extracellular
matrix (ECM), and organ-like cultures (Fitzgerald et al., 2015).
For instance, organoids preserve the cellular interactions that
capture key structural and functional aspects of real organs
at the micrometer to millimeter scale (Renner et al., 2017).
Human brain organoids have recently emerged as invaluable
tools to model the pathophysiology of diverse neurodegenerative
diseases, facilitating a range of research applications including
the analysis of disease mechanisms and progression, drug
discovery, drug testing, and cell replacement therapy (Wang,
2018; Costamagna et al., 2019; Logan et al., 2019). The 2D and
3D models developed for the investigation of neurodegenerative
diseases are summarized in Table 1.

Neurons and glial cells (astrocytes, oligodendrocytes, and
microglia) cultivated in vitro in static devices such as trans-
well systems are useful tools for basic linear kinetic studies
during drug discovery. However, the central nervous system
(CNS) features structures such as the blood–brain barrier (BBB),
which maintains homeostasis between the cerebral vasculature
and the brain, and facilitates active interactions between the
peripheral circulation and CNS. The BBB comprises specialized
microvascular endothelial cells, pericytes, astrocytes and neurons
that couple local neuronal functions to local cerebral blood flow
and regulate the transport of blood components into and out of
the CNS. Impairment of the BBB and the subsequent infiltration
of peripheral immune cells through this barrier play important
roles in the pathogenesis of several diseases (Liebner et al.,
2018). In particular, immune cells exacerbate the pathology in
AD patients and in related mouse models (Town et al., 2005;
Baik et al., 2014; Zenaro et al., 2015; Pietronigro et al., 2019;
Heneka, 2020; McManus and Heneka, 2020), and inflammation
can modify or accelerate the progress of PD (Hirsch and
Hunot, 2009; Sulzer et al., 2017). Thus, in vitro models should
integrate brain organoids with BBB mimics in order to model
neurodegenerative diseases more accurately. Furthermore, drug
delivery to the CNS under physiological conditions is restricted
by the BBB, so the integration of a functional vascular system into
the organoid structure would facilitate the discovery of systemic
drugs that target neurodegenerative disorders more effectively. In
this review, we focus on recent advances in 3D culture systems
for the investigation of neurodegenerative diseases, highlighting
their strengths, weaknesses and potential future developments.
Advances in these recent in vitro techniques will help us to
understand the pathophysiology and underlying mechanisms of
human neurodegenerative diseases, leading to the development
of efficacious new therapies.

PARKINSON’S DISEASE

Parkinson’s disease is a movement disorder with a variable
etiology. It is defined by deep gray matter volume loss caused
by the destruction of neurons in the substantia nigra, leading
to dopamine deficiency in the basal ganglia. PD affects 1–2%
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TABLE 1 | Cell culture systems that can be used to study neurodegenerative diseases (iPSC, induced pluripotent stem cell).

Neurodegenerative
diseases

Immortalized cell lines iPSC-derived cell lines iPSCs (patient derived) Organ-like model

Parkinson’s disease Lotharius et al., 2005; Van
Vliet et al., 2008; Zhang
et al., 2014; Smirnova
et al., 2016; Harischandra
et al., 2019; Taylor-Whiteley
et al., 2019

Devine et al., 2011; Nguyen et al.,
2011; Ryan et al., 2013

Park et al., 2008; Soldner et al., 2009 Cavaliere et al., 2010; Daviaud et al.,
2014; Son et al., 2017; Kim et al.,
2019; Smits et al., 2019;
Chlebanowska et al., 2020.

Alzheimer’s disease Choi et al., 2014;
Zollo et al., 2017

Kondo et al., 2013; Muratore et al.,
2014; Sproul et al., 2014.

Yagi et al., 2011; Israel et al., 2012; Jang et al.,
2012; Shi et al., 2012.

Lancaster et al., 2013; Kelava and
Lancaster, 2016; Lee et al., 2016; Raja
et al., 2016; Gonzalez et al., 2018; Jorfi
et al., 2018.

Creutzfeldt-Jakob
disease

Not available Krejciova et al., 2017 Matamoros-Angles et al., 2018 Falsig and Aguzzi, 2008; Groveman
et al., 2019.

Multiple sclerosis Buntinx et al., 2003 Chen et al., 2013 Song et al., 2012; Douvaras et al., 2014; Di
Ruscio et al., 2015.

Tan et al., 2018

Amyotrophic lateral
sclerosis

Pansarasa et al., 2018 Chen et al., 2014; Fujimori et al., 2018 Dimos et al., 2008; Burkhardt et al., 2013;
Sareen et al., 2013

Smith et al., 2015; Krencik et al., 2017;
Osaki et al., 2018.

Huntington’s disease Bidollari et al., 2018 Szlachcic et al., 2017 An et al., 2012; Camnasio et al., 2012;
Juopperi et al., 2012; Nekrasov et al., 2016;
Vigont et al., 2018; Mehta et al., 2018

Virlogeux et al., 2018

Spinal muscular atrophy Not available Not available Ebert et al., 2009; Fuller et al., 2015; Zhang
et al., 2017a; Valetdinova et al., 2019.

Hor et al., 2018

Spinocerebellar ataxia Kumar D. et al., 2018;
Maguire et al., 2019

Wang et al., 2015 Xia et al., 2013; Marthaler et al., 2016; Nayler
et al., 2017; Sun et al., 2018; Chuang et al.,
2019; Yang et al., 2019.

Not available

Frontotemporal
dementia

Almeida et al., 2012 Not available Zhang et al., 2013, 2017c; Ehrlich et al., 2015;
Silva et al., 2016; Nakamura et al., 2019.

Seo et al., 2017
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of individuals above the age of 65, and is the second most
common age-related neurodegenerative disorder after AD (Van
Den Eeden et al., 2003; Poewe et al., 2017). The hallmark of
the disease is a progressive loss of nigrostriatal dopaminergic
neurons, which normally present unmyelinated axons and form
a large number of synapses (Bolam and Pissadaki, 2012; Kalia
and Lang, 2015). This leads to several motor symptoms such as
bradykinesia, rigidity, resting tremor, and postural instability. PD
is also accompanied by a wide range of non-motor symptoms
including sleep disturbance, constipation, dementia, cognitive
decline, and olfactory deficits, which severely reduce the quality
of life for PD patients (Obeso et al., 2010; Savica et al., 2010;
Kalia and Lang, 2015). At the neuropathological level, PD is
characterized by the accumulation of protein inclusions within
the neuronal cell body and processes, known as Lewy bodies
(LBs) and Lewy neurites, respectively (Spillantini et al., 1997). LBs
are primarily composed of misfolded and insoluble aggregates of
the presynaptic neuronal protein α-synuclein, but this protein
also accumulates in other tissues (Kalia and Lang, 2015; Lazaro
et al., 2017). Genetic forms of PD can provide information about
the neuropathological mechanisms of the disease although they
account for only 5–10% of all cases (Kalia and Lang, 2015).
However, the molecular basis of neuronal degeneration in PD
remains unclear, and current therapeutic strategies are limited
to attenuating the motor symptoms (Charvin et al., 2018). Drug
candidates that were moderately successful in pre-clinical studies
have thus far failed to demonstrate efficacy in phase II or III
trials, which is unsurprising given our incomplete knowledge of
the pathophysiology and etiology of neurodegenerative diseases.
Although patient stratification and the timing and duration of
treatment are important factors, another key element required
for successful drug development is the availability of robust pre-
clinical screening tools for drug validation. Experimental tools
such as in vitro 3D cell culture models are therefore needed to
facilitate the selection of more promising lead compounds in
order to eliminate failures at an earlier stage.

Several culture systems have been developed to study the
pathogenesis of PD or to identify promising drug leads,
each with advantages and limitations (Table 2). Traditional
in vitro cell culture techniques usually involve 2D monolayers
in standard tissue-culture plates, Petri dishes or cover slips.
These are often based on immortalized cell lines such as human
embryonic kidney 293 (HEK293) cells, human neuroglioma
(H4) cells, or pheochromocytoma (PC12) cells derived from
the rat adrenal medulla. The human neuroblastoma cell line
SH-SY5Y is widely used in PD research because it reproduces
the dopaminergic phenotype typical of PD pathology (Xicoy
et al., 2017). A recent report demonstrated the formation of
LB-like inclusions in SH-SY5Y cells cultured on a 3D matrix
in serum-free Dulbecco’s modified Eagle’s medium (DMEM)
for 7 days to allow differentiation, followed by exposure to
recombinant human α-synuclein (Taylor-Whiteley et al., 2019).
Although SH-SY5Y cells are widely used in PD research,
their limitations include the lack of a standardized protocol
to maintain them in culture, which leads to variable cell
growth and inconsistent experimental outcomes (Buttiglione
et al., 2007; Xicoy et al., 2017). Moreover, the survival of

SH-SY5Y cells and their differentiation into neuron-like cells
requires ECM proteins, neurotrophic factors and serum, and
the use of different serum sources or concentrations can have
a particularly significant effect on the experimental results
(Encinas et al., 2000; Agholme et al., 2010). Depending on the
protocol, SH-SY5Y cells can differentiate into various neuronal
cell types in addition to dopaminergic cells, so it is necessary to
verify the dopaminergic neuronal phenotype after differentiation
by confirming the expression of dopamine and noradrenalin
neurotransmitter transporters (Korecka et al., 2013; Xicoy et al.,
2017). Given the lack of standardized cultivation methods, it
is challenging to use SH-SY5Y-derived dopaminergic neurons
for high-throughput cell-based screening assays even though the
cells are easy to cultivate.

In contrast to SH-SY5Y cells, the Lund human mesencephalic
(LUHMES) immortalized cell line provides a physiologically
relevant system that is compatible with large-scale culture and
achieves good batch-to-batch consistency (Zhang et al., 2014;
Harischandra et al., 2019). LUHMES cells are derived from
healthy 8-week-old human embryonic mesencephalic tissue and
are immortalized by inserting the v-myc transgene under the
control of a tetracycline-responsive promoter. These cells can
be differentiated into mature dopaminergic neurons by adding
cAMP, tetracycline and glial cell line-derived neurotrophic factor
to the culture medium (Lotharius et al., 2005). LUHMES cells
were used to develop a 3D model for neurotoxicity studies
by applying the gyratory shaking technique, in which cells are
shaken continually to encourage the formation of spherical
aggregates containing astrocytes, neurons, oligodendrocytes and
microglia (Van Vliet et al., 2008; Smirnova et al., 2016). The
advantages of this system include (1) the ability of LUHMES cells
to acquire a phenotype that is biochemically and morphologically
similar to primary neurons, (2) the formation of a natural ECM
that promotes cell–cell interactions, (3) the rapid maturation
of the system, with astrocytes, neurons and oligodendrocytes
undergoing both myelination and synaptogenesis within 25 days,
and (4) the ability of LUHMES cell cultures to be maintained
for 2 months while the cell populations continue to mature
(Honegger, 2001; Van Vliet et al., 2008).

Primary cultures have the potential to overcome many
of the difficulties inherent to cell lines, but isolating and
culturing primary dopaminergic neurons from the post-mortem
brains of adult/elderly patients is difficult. Therefore, primary
dopaminergic neurons are usually obtained from embryonic
murine brain tissue, particularly from the central midbrain
area, because these cells differentiate rapidly in culture and
form neurites and synapses (Gaven et al., 2014; Weinert et al.,
2015). The primary neurons in this type of system are often
contaminated with glial cells, but this can be regarded as
an advantage. For example, this method has been exploited
to study the therapeutic effect of microglial modulation in a
mixed culture of primary neurons and microglia, thus showing
how the microglia and the factors they release into the shared
environment may affect neuronal function and survival (Che
et al., 2018). Primary cortical neuron cultures have also been
used to characterize the transport of synthetic α-synuclein fibrils
(Freundt et al., 2012). The authors used a microfluidic device
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TABLE 2 | Advantages and disadvantages of the different cell lines used to study Parkinson’s disease (iPSC, induced pluripotent stem cell).

Cell line Type Advantages Disadvantages

H4 Human neuroglioma cells Easy to culture and transfect. Lacks dopaminergic phenotype.

HEK 293 Immortalized human embryonic
kidney cells

Homogenous populations, suitable for large-scale experiments (Falkenburger
and Schulz, 2006).
Useful to study α-synuclein aggregation and mutations
(Lazaro et al., 2014, 2016).

High passage numbers can lead to genetic and epigenetic alterations.
Non-neuronal cell type (Falkenburger and Schulz, 2006).

SH-SY5Y Human neuroblastoma cells Differentiate into neuronal-like cells exhibiting cholinergic, dopaminergic, or
noradrenergic phenotypes (Lopes et al., 2017)

Neuroblastoma origin may influence differentiation, viability, growth
performance, metabolic properties and genomic stability.
Multiple differentiation protocols lead to different outcomes (Xicoy et al.,
2017).

PC12 Pheochromocytoma-derived cell
line from the rat adrenal medulla

Synthesizes, releases and stores catecholamines. Easy to handle and
homogeneous (Smirnova et al., 2016).

Not human. Derived from a neural tumor, which may alter signaling
pathways.

LUHMES Immortalized human embryonic
mesencephalic cells

Already used in co-cultures with astrocytes (Efremova et al., 2017) and in a 3D
culture system, prolonged survival after differentiation (Smirnova et al., 2016).
More sensitive to toxins than other dopaminergic cell lines once differentiated
(Tong et al., 2017).

Low transfection efficiency.

Primary
neurons

Prepared from embryonic rodent
brain tissue

Similar to human neurons in terms of morphology and physiology.
Similar proliferation rate to human neurons.
Suitable for the generation of genetic models (Lopes et al., 2017).

Ethical problems.
Mixed culture.
Variations among different culture preparations and difficult to maintain.
Dissection procedure can introduce experimental variability
(Xicoy et al., 2017).
Species-dependent differences (Lopes et al., 2017).

iPSCs Derived from patients Capacity for self-renewal.
Potential to differentiate into any cell type.
Allow the generation of autologous pluripotent cells from any individual for
disease modeling (Chlebanowska et al., 2020).
Suitable for large-scale studies and personalized medicine (Kumar S. et al.,
2018).

Challenging to identify disease-specific cell phenotypes that better
represent pathogenesis.
Do not mimic aging.
Requirement of standardized protocols and quality controls to reduce
technical variation.
High costs (Kumar S. et al., 2018).

Organoids Derived from patients Provide a 3D environment of multiple cell types.
Organized structure.
Enhanced cellular maturity.
Promising for screening compounds targeting the central nervous system.
Possibility to study PD-related genes.

Highly variable.
Need for improved vascularization and optimization of differentiation
protocols.
Time-consuming and expensive.
Ethical problems (Marotta et al., 2020).
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to separate neuronal cell bodies from their axons and from
second-order neurons, and demonstrated that α-synuclein is
internalized by neurons, can undergo both anterograde and
retrograde transport, and can be released from primary neurons
to be taken up by second-order neurons.

Although in vitro primary cultures have provided important
clues about the mechanisms of PD and potential drug targets,
they do not replicate the organization of cells and ECM within
the CNS. More advanced systems, which are closer to in vivo
animal disease models of PD, include organotypic cultures,
3D cultures and organoids (Chambers et al., 2009; Zhang
et al., 2009; Shoji et al., 2016; Chlebanowska et al., 2020).
An early example of a murine organotypic culture for PD
research modeled nigrostriatal degeneration by cutting brains
along the dorsoventral axis and culturing the slices containing
cortex, corpus callosum, subventricular zone, striatum and
substantia nigra, in order to ensure both the dopaminergic
and glutamatergic pathways were represented in each slice
(Cavaliere et al., 2010). Nigrostriatal pathway degeneration was
induced by mechanical damage, in contrast to other models
that used toxins such as 1-methyl-4-phenylpyridinium or 6-
hydroxydopamine (Kearns et al., 2006). A more recent ex vivo
culture system that models both the early and late stages
of PD was prepared by the sagittal dissection of rat brains,
allowing the simultaneous observation of cholinergic, GABAergic
and dopaminergic neurons and the brain vasculature (Daviaud
et al., 2014). Mechanical damage during slice preparation
led to progressive degeneration of the nigrostriatal pathway,
beginning with dopaminergic degeneration in the striatum and
continuing, over the following weeks, with the degeneration
of cholinergic and GABAergic neurons (Daviaud et al., 2014).
Despite several advantages such as the replication of physiological
processes and the well-controlled genetic background, these
organotypic models are difficult to reproduce because the
dissection procedures require high precision (Stahl et al., 2009).
Moreover, the culture conditions required to maintain the
brain tissue slices are difficult to standardize, and these models
originate from animals with significant differences in neural
anatomy, physiology, regulation, gene expression patterns, and
drug metabolism compared to humans. The preparation of such
primary cultures is expensive and time-consuming, requires
significant expertise, and is not suitable for large-scale studies
(Lopes et al., 2017).

To establish reproducible models more closely related to
human pathophysiology, iPSC lines have recently emerged as
one of the hottest and fastest moving topics in the life sciences.
Many researchers have established PD-specific iPSC models by
reprogramming somatic cells from PD patients. The first PD-
specific iPSC line was derived from a patient affected by a
sporadic form of the disease (Park et al., 2008). Since then,
iPSC models of PD have been established from patients with
susceptibility alleles in genes such as LRRK2, PARKIN, SNCA,
GBA, and PINK1.

Mutations in the gene encoding leucine-rich-repeat kinase
2 (LRRK2) correlate with enteric inflammation and reinforce
the role of peripheral inflammation in the initiation and/or
progression of PD (Devos et al., 2013). Patient-derived iPSCs

carrying the autosomal dominant G2019S mutation in the
LRRK2 gene have therefore been cultivated as 3D human neuro-
ectodermal spheres (hNESs) and human intestinal organoids
(hIOs) to study gene expression profiles linked to LRRK2 in
the neural and intestinal environments (Son et al., 2017). This
revealed a broader alteration in gene expression profiles in
the hIOs compared to hNESs, suggesting that LRRK2-G2019S
may preferentially trigger the correlated intestinal symptoms of
PD. An innovative protocol to generate neural tube lineages
(including motor neurons and midbrain dopaminergic neurons)
and neural crest lineages has been established using only small
molecule neural precursor cells, which are robust, undergo
immortal expansion, and do not require cumbersome manual
culture and selection steps (Reinhardt et al., 2013). This protocol
was recently combined with a microfluidics system to generate
a 3D cell culture model based on neurons derived from
human neuro-epithelial stem cells (hNESCs) from PD patients
carrying the LRRK2-G2019S mutation (Bolognin et al., 2019).
These authors generated a mixed population of neural cells
that precisely captured the hallmarks of LRRK2 pathogenesis,
including degeneration, cell loss, and mitochondrial impairment.
The results obtained using this in vitro system showed
that the genetic background of PD patients can influence
the degeneration of dopaminergic neurons, contributing to
phenotypes other than that of the G2019S mutation itself.
These data support the use of advanced in vitro models for
future patient stratification and personalized drug development
(Bolognin et al., 2019). The pioneering model consist in the
differentiation of iPSCs into dopaminergic neurons inside a
microfluidic bioreactor with a microtiter plate format. Within
each bioreactor, cells embedded in Matrigel are loaded in
the culture lane and perfused by medium flow. However,
this system requires some improvements, including the use of
alternatives to Matrigel in order to increase cell viability (Moreno
et al., 2015). Recently, a microfluidic bioreactor was used to
develop a high-throughput model that integrates laboratory
automation technology, resulting in a robotic microfluidic cell
culture system named Pelican. Specifically, this new system
automates the cell culture protocols for hNESCs, allowing their
experimentally reproducible differentiation into dopaminergic
neurons. This platform may help to harmonize protocols between
laboratories according to the standards of the SiLA consortium1

but it can also be adapted to different experimental conditions
(Kane et al., 2019).

A 3D human midbrain organoid (hMO) populated with
midbrain dopaminergic neurons (mDANs) derived from iPSCs
has recently been described (Smits et al., 2019). The comparison
of hMOs from healthy subjects and PD patients with the
LRRK2-G2019S mutation revealed a reduction in the number
and complexity of mDANs in the disease model, suggesting
a neurodevelopmental defect in mDANs expressing LRRK2-
G2019S. In addition to organoids derived from the genetic
form of PD, the first organoid model of idiopathic PD was
recently reported (Chlebanowska et al., 2020). The iPSCs
were derived from the peripheral blood mononuclear cells of

1https://sila-standard.com/
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patients with idiopathic PD and were differentiated into large
multicellular organoid-like structures. The authors observed
statistical differences in the expression of early and late neuronal
markers when comparing organoids prepared from PD patients
and healthy volunteers, suggesting that hMOs have a remarkable
potential for the investigation of PD pathogenesis in vitro.
Overall, neurons derived from iPSCs and organoids from
familial and idiopathic PD patients replicate the key pathological
phenotypes of PD and are useful tools to study molecular
pathways involved in the disease. They are also suitable for target
validation, filling the gap between animal models and humans.
Such 3D systems are necessary because they form complex
structures that cannot be replicated in 2D models (Marotta et al.,
2020). However, the application of such 3D models for large-scale
studies and the generation of patient-specific organoids remains
limited by the laborious procedures and high costs of preparation,
and the need for written informed consent and approval from
the ethics commission governing the institution conducting the
experiments. This will restrict the practical application of patient-
derived models for the foreseeable future.

ALZHEIMER’S DISEASE

Alzheimer’s disease is a severe neurodegenerative disease
characterized by the profound loss of cognitive functions and
behavioral abilities, causing progressive deterioration in the
patient’s quality of life. The pathogenesis of AD is incompletely
understood (Scheltens et al., 2016). Two main forms of AD
are recognized: early-onset familial Alzheimer’s disease (EOFAD)
and late-onset Alzheimer’s disease (LOAD). EOFAD is relatively
uncommon, accounting for less than 5% of all cases. It is
diagnosed before the age 65, with an autosomal dominant
pattern of inheritance reflecting the presence of one of 200
mutations discovered thus far in three key genes: amyloid
precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2
(PSEN2). LOAD is the most common form of AD, also known
as sporadic AD, and typically occurs in people of age 65 or
older without a family history of dementia (Bekris et al., 2010;
Giri et al., 2016). Since 1992, the etiology and pathogenesis of
AD has been explained by the amyloid cascade hypothesis, in
which the accumulation of pathogenetic amyloid β (Aβ) protein,
derived from APP, induces a vicious cycle that triggers the
accumulation of neurofibrillary tangles (NFTs), neuronal cell
death, and ultimately dementia (Reitz, 2012). The failure of anti-
Aβ therapy, which was largely successful in mouse models of AD,
helped to revise this hypothesis and define AD as a multifactorial
disorder, also highlighting the limitations of animal disease
models (Iqbal and Grundke-Iqbal, 2010). Animal models of AD
proved to be inaccurate representations of human AD pathology,
exclusively mimicking EOFAD (De Strooper, 2014; Henley et al.,
2014). Indeed, animal models of AD tend to manifest only
some pathological features, lacking important components such
as extensive neuronal loss and the development of NFTs. One
potential explanation is that rodent tau proteins may not be
prone to aggregate formation due to differences in sequence and
structure, together with the short life span of mice which does

not allow sufficient time for the accumulation of events that take
decades in humans (Laferla and Green, 2012). The development
of sophisticated 3D in vitro models therefore provides a powerful
complementary approach to overcome the limitations of current
AD transgenic mice.

Many groups have developed 2D models based on iPSCs (Yagi
et al., 2011; Israel et al., 2012; Mohamet et al., 2014; Hu et al.,
2015; Moore et al., 2015; Lee et al., 2016; Li et al., 2016). In
some cases, iPSCs were prepared from fibroblasts of EOFAD
patients with mutations in PSEN1 (A246E) or PSEN2 (N141I),
and neurons differentiated from the iPSCs were shown to secrete
more Aβ42 than healthy matched controls, elevating the Aβ42 to
Aβ40 ratio (Yagi et al., 2011). The reprogramming of fibroblasts
from patients with familial and sporadic forms of AD replicated
the significantly higher levels of Aβ40, active glycogen synthase
kinase-3β (aGSK-3β) and hyperphosphorylated tau protein
(Israel et al., 2012). The treatment of neurons derived from these
AD patients with β-secretase inhibitors significantly reduced
the levels of hyperphosphorylated tau and aGSK-3β, whereas a
γ-secretase inhibitor showed no effects compared to controls,
suggesting direct crosstalk between APP proteolytic processing
during the activation of GSK-3β and tau phosphorylation in
human neurons (Israel et al., 2012). CRISPR/Cas9 technology has
been combined with iPSCs to generate knock-in human neurons
carrying heterozygous or homozygous EOFAD mutations such
as APPswe and PSEN1M146V (Paquet et al., 2016). Although these
2D models have revealed some of the key pathophysiological
mechanisms of AD, they share with other 2D models the
inability to reproduce all disease hallmarks, like any other model
generated so far. For example, the levels of Aβ generated by these
models were insufficient for the formation of plaques and related
pathological features. Furthermore, the use of post-mitotic
neurons prevented long-term cultivation and the in vitro models
therefore could not replicate the age-dependent pathogenic
events in the human AD brain (D’Avanzo et al., 2015). Most
importantly, these 2D neuronal cultures lacked the supporting
functions of glial cells, which play a key role in the pathogenesis
of AD (Nagele et al., 2004; Gonzalez-Reyes et al., 2017).

The limitations of 2D cultures have encouraged the
development of 3D models of AD, the first of which was
based on an immortalized human neural stem cell line (ReN)
containing mutations in the APP (K670N/M671L and V717I)
and PSEN1 (1E9) genes (Choi et al., 2014). These cells were
found to accumulate both senile plaques and NFTs, two
hallmarks of the disease not previously observed in 2D cultures
or most animal models. Furthermore, ReN cells can differentiate
into either neurons or glia, and the presence of Matrigel in the
culture medium inhibits Aβ diffusion, promoting aggregation
and plaque formation.

Cerebral organoids are the latest avenue for in vitro AD
research, allowing the generation of organized structures similar
to the human cortex. Human ReN cells were initially used to
generate neurospheroids within arrays of microwells, and were
found to produce both Aβ plaques and hyperphosphorylated
tau protein after 8 weeks in culture (Jorfi et al., 2018). Another
recent development is the use of vascularized human cortical
organoids (vhCOs), which have the advantage to overcome
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the limitation of conventional organoids (these often feature
necrotic regions due to limited oxygen and nutrient diffusion) by
coupling cerebral organoids to a perfusion system that mimics
the cortical vasculature (Kelava and Lancaster, 2016). This
system is also superior to earlier brain organoids because vhCOs
possess classical BBB properties such as the expression of tight
junction proteins (ZO-1, occludin, and claudin-5) and nutrient
transporters (P-glycoprotein and GLUT1), as well as high trans-
endothelial electrical resistance. However, one disadvantage of
vhCOs is that they lack blood cells within their vascular
structures. In the near future, vhCOs may allow the screening of
drugs that regulate the permeability of the BBB, thus providing an
authentic model to study the regulation of interactions between
the CNS and the periphery (e.g., the trafficking of Aβ and
other molecules), as well as the mechanisms involved in the
recruitment of leukocytes through the BBB during inflammation
(Cakir et al., 2019).

To mimic blood flow, a triculture AD model including
neurons, astrocytes and microglia was recently developed using
a microfluidics platform (Park et al., 2018). These engineered
human neural progenitor cells contained in a two-chamber
microfluidic device replicated key features of AD, such as the
aggregation of Aβ, the accumulation of hyperphosphorylated
tau protein, and neuroinflammation. Interestingly, the authors
demonstrated physiologically relevant interactions among
neuronal cells, such as microglial recruitment, the release of
pro-inflammatory cytokines and chemokines (CCL2, TNFα, and
IFNγ) regulated by AD neurons and astrocytes, and microglial
neurotoxic activation contributing to neuron/astrocyte damage.
In addition to glia, the brain also contains many other non-
neuronal cell types that ensure the long-term survival and
function of neurons (Zhao et al., 2015). For example, the BBB
blocks the passage of many cells and molecules between the
CNS and peripheral blood circulation, and oligodendrocytes
insulate neuronal axons and promote rapid axonal transmission.
However, the contribution of each of these non-neuronal
cell types to AD-associated neurodegeneration is not fully
understood. A complex 3D model of neural cell culture in a
microfluidic system was recently developed by adding brain
endothelial cells with a BBB-like phenotype (Shin et al., 2019).
This AD platform simulates the cerebral–vascular interface,
successfully mimicking several of the vascular phenotypes
observed in AD patients, including the greater permeability
of the BBB coincident with the downregulation of certain
tight junction proteins (claudin-1 and claudin-5), adherens
junction proteins and VE-cadherin, as well as the upregulation
of matrix-metalloproteinase-2 (MMP-2), the accumulation of
reactive oxygen species (ROS), and the aggregation of Aβ on
the abluminal side of the BBB endothelium. This experimental
system may therefore reveal the physiological and pathological
mechanisms of BBB dysfunction in AD and could be used as a
standardized drug-screening platform.

As discussed above for PD models, patient-derived iPSCs
have also been used to model AD. The first was a 3D
neurospheroid model based on iPSCs derived from the peripheral
leukocytes of five patients with sporadic AD (Lee et al.,
2016). The authors demonstrated that the administration of

BACE1 or γ-secretase inhibited the formation of pathological
Aβ peptides. Interestingly, the use of 3D neurospheroids
highlighted individual variations in the efficacy of BACE1 that
were related to differences in individual genetic backgrounds
(APOE genotypes). This 3D model not only provided the
basis for more accurate drug-screening methods, but facilitated
subsequent studies of individual phenotype variations thus
allowing a personalized approach for the treatment of AD (Lee
et al., 2016). Recently, a physiological 3D model of AD was
described in which neural areas with a cortical-like organization
were generated from fibroblast-derived iPSCs donated by adult
EOFAD and Down syndrome patients (Gonzalez et al., 2018).
These highly reproducible cerebral organoids spontaneously
accumulated aggregates of Aβ and hyperphosphorylated tau
protein. The analysis of caspase-3 activation indicated a rate
of neuronal death proportional to the accumulation of protein
aggregates, suggesting that cerebral organoid cultures develop
certain neurodegenerative features in common with the AD
brain (Gonzalez et al., 2018). Nevertheless, these methods are
still limited by their inability to model more complex events
including cell-cell interactions and migration in the developing
brain, and future research should focus on improvements that
accommodate such features.

Oligodendrocyte dysfunction and the loss of white matter
during the progression of AD are key features of human
patients and rodent models, probably contributing to the
neuronal degeneration (Desai et al., 2010; Bartzokis, 2011). The
differentiation of iPSCs can be used to produce oligodendrocytes,
and recently this has been exploited to generate oligocortical
spheroids for the analysis of myelination in the CNS (Hu et al.,
2009; Ehrlich et al., 2017; Hubler et al., 2018; Madhavan et al.,
2018; Marton et al., 2019). Moreover, neurons do not establish
mature synaptic connections in 3D culture models (Huch et al.,
2017) and the proportion of cells differs from that in the human
brain, mainly comprising neurons with few glial cells and no
oligodendrocytes. These sophisticated in vitro culture methods
should therefore be improved to represent the cell population
found in vivo, which will in turn make it easier to identify the
pathological mechanisms underlying AD. The use of AD mini-
brains offers the possibility of validating disease mechanisms and
should lead to the identification of new pathways contributing to
the progression of AD.

PRION DISEASES

The hallmark of several age-related neurodegenerative diseases
is the formation and aggregation of misfolded proteins in
the CNS. PD and AD share key biophysical and biochemical
characteristics with prion diseases, a group of neurodegenerative
diseases triggered by the misfolding of the cellular prion-related
protein (PrPC). The molecular mechanism underlying these
diseases is the conformational misfolding of monomeric PrPC

to form protein aggregates known as scrapie prion proteins
(PrPSc) or proteinaceous infectious particles. The abnormally
folded protein is protease resistant and rich in β-strands, enabling
the formation of oligomer/fibril structures that are involved
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in three pathological forms of disease: the sporadic form, also
called Creutzfeldt-Jakob disease (CJD), the genetic form, and
the acquired form. The genetic forms of prion diseases are
caused by mutations in the prion protein gene (PRNP) that favor
the abnormal folding events discussed above and are classified
as genetic CJD, Gerstmann-Sträussler-Scheinker syndrome, and
fatal familial insomnia. The acquired forms of are known as
variant CJD (vCJD), iatrogenic CJD (iCJD), and kuru (Collins
et al., 2001; Geschwind, 2015; Scheckel and Aguzzi, 2018).
However, the most common form affecting humans is sporadic
CJD, which accounts for 80–95% of cases. The peculiarity of
these diseases is the seeding property of PrPSc, which is able
to convert a normal PrPC into another copy of PrPSc with the
same seeding capability, leading to the exponential formation
of prions (Geschwind, 2015). The pathological hallmarks of
prion diseases include neuronal loss, the activation of microglia
and astrocytes, spongiform changes, and the formation of PrPSc

aggregates and deposits. The pathogenesis of prion diseases is not
fully understood and diagnosis is possible only when the disease
has already reached an advanced stage (Knight, 2008).

The development of 3D cell culture models based on the
differentiation of human iPSCs into neuronal tissue has produced
a range of high-throughput platforms to test infection methods
and treatments, and to address fundamental questions in prion
biology. PrP-expressing human and animal cell lines in 2D
culture generally do not establish stable prion infections and
do not display cytopathic signs. The first suitable model was
based on murine cerebellar organotypic slices, which revealed
the amplification of PrPSc following exposure to prions (Falsig
and Aguzzi, 2008). Improved models have been developed
based on murine neural stem cells, early examples of which
included 3D neurospheroids composed of neurons and astrocytes
(Collins and Haigh, 2017). The neurospheroids reached maturity
after 10 days and could be maintained in culture for up to
1 month. Prions were able to spread and induce toxic changes
in the neurospheroids during growth and after differentiation,
allowing the investigation of underlying mechanisms (Collins
and Haigh, 2017). Despite the advantages of this model, the
lack of microglia may influence the experimental outcome.
Indeed, prion diseases are normally associated with astrogliosis,
which also involves the recruitment of microglia, and their
absence or depletion may influence the growth rate of astrocytes
(Marella and Chabry, 2004).

Recently, cerebral organoids derived from human iPSCs were
established for the first time as a 3D model to study genetic
prion diseases in individuals with a predisposition caused by
the mutation PRNP-Y218N (Matamoros-Angles et al., 2018).
Although the cultures were characterized by astrogliosis and
tau hyperphosphorylation, this model failed to replicate PrPSc

accumulation, and neurons generated from human iPSCs with or
without the Y218N mutation were unable to propagate infection
following inoculation with human PrPSc from either spontaneous
CJD or PRNP-Y218N individuals (Matamoros-Angles et al.,
2018). To replicate human prion infection and pathogenesis,
cerebral organoids were inoculated with brain homogenates from
post-mortem samples of patients affected by different forms of
spontaneous CJD, revealing that seeding activity was influenced

by the spontaneous CJD subtype (Groveman et al., 2019). This
new in vitro 3D model for the investigation of human prion
disease provides insight into the pathological events caused by
different human prion subtypes, and offers a promising platform
for drug discovery using a relevant human tissue background.
Although cerebral organoids can be maintained in culture for a
long time, their limitations include structural heterogeneity, the
lack of vascularization, and the absence of non-neuronal cells
such as endothelial cells and microglia.

MULTIPLE SCLEROSIS

Multiple sclerosis is the most common chronic inflammatory,
demyelinating and neurodegenerative disease of the CNS
in young adults, with an onset at 20–40 years of age
and a higher prevalence in women (Compston and Coles,
2008). MS neuropathology involves the appearance of focal
plaques containing demyelinated axons, proliferating astrocytes,
activated microglia, infiltrating lymphocytes and macrophages,
and a reduced population of oligodendrocytes, typically located
around post-capillary venules characterized by a breakdown of
the BBB (Mahad et al., 2015; Huang et al., 2017; Stys and Tsutsui,
2019). Clinical symptoms of MS include motor dysfunction,
fatigue, tremor, nystagmus, acute paralysis, loss of coordination
or balance, numbness, disturbed speech and vision, and cognitive
impairment (Ghasemi et al., 2017). The disease usually begins
with a primary relapsing-remitting phase (RRMS) during which
the symptoms are intermittent. Over the next 10–15 years,
this transitions to a secondary progressive phase (SPMS) with
continuous deterioration. But ∼15% of cases are classed as
primary progressive (PPMS), in which the disease progression is
relentless from the onset (Mahad et al., 2015; Huang et al., 2017).
MS is a heterogeneous, multifactorial, immune-mediated disease
that is influenced by both genetic and environmental factors.
Two main hypotheses have been proposed for the pathogenetic
mechanism: (1) the “outside-in” hypothesis, mostly based on
findings from experimental animal models of MS, states that the
CNS is invaded by auto-reactive T cells activated in the periphery,
contributing to inflammation, BBB leakage and tissue damage
(Lucchinetti et al., 2000; Frohman et al., 2006); and (2) the
“inside-out” hypothesis states that MS is a primary degenerative
disease but its severity increases following an amplification of the
immune response (Henderson et al., 2009). In the latter case, the
trigger may be a primary defect in the oligodendrocytes, such as a
mutation that causes them to die off, resulting in the activation
of microglial cells (Hemmer et al., 2015). Drugs that promote
the remyelination of damaged axons are required to overcome
the neurodegenerative phase of MS. However, the molecular
and cellular basis of the myelin repair deficiency during the
progression of MS are still unclear.

Given the complexity of the neurodegenerative mechanism
during the progression of MS, rodent 3D organotypic brain
slices have been widely used to study pathogenesis because they
contain different regions of the CNS, allowing experimental
manipulations that cannot be easily made in vivo. Organotypic
brain slices can be maintained ex vivo for several months
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and allow researchers to study the physiological process of
myelination in a system where complex cell–cell relationships are
preserved (Schnadelbach et al., 2001). The tissue slices are often
placed on porous membranes in cell culture dishes and cultured
at an air–liquid interface, with the medium in contact with the
permeable membrane (Gogolla et al., 2006). The slices can be
demyelinated in vitro by applying toxins or an immune challenge,
but undergo spontaneous remyelination (Birgbauer et al., 2004;
Zhang et al., 2017b). This in vitro system can also be used to
screen promising drugs that promote remyelination (Zhang et al.,
2011; Doussau et al., 2017; Tan et al., 2018).

Although rodent brain slices have been widely used in MS
research, several compounds that promote remyelination and
neuronal survival in rodent models of MS have failed when
tested in human clinical trials, highlighting the inability of animal
models to completely replicate the complexities of the human
disease phenotype (t Hart et al., 2011). As described above for
PD, AD and prion diseases, new in vitro tools based on 3D
cultures are therefore required to replicate the pathophysiology of
human MS and identify the most promising drug targets. Culture
systems based on human oligodendrocytes or oligodendrocyte
precursor cells (OPCs) have been developed to address the
deficiencies of animal MS models. These are preferred because
they have the ability to differentiate and generate myelin in vitro
in the absence of signals from axons (Bechler et al., 2015).
Protocols based on OPCs have been particularly successful
because they can generate mature myelinating oligodendrocytes
(Dugas and Emery, 2013; Barateiro and Fernandes, 2014; Chew
et al., 2014). Mouse, rat and human OPCs differ in terms of
their longevity in culture, with rat OPCs proving the easiest
to isolate and maintain whereas human OPCs take the longest
to develop the classical mature oligodendrocyte phenotype.
Moreover, human OPCs must be isolated from brain biopsies,
with the attendant issues surrounding ethical clearance. For these
reasons, human oligodendrocyte cultures are usually initiated
using OPCs generated de novo from the differentiation of human
embryonic stem cells, iPSCs (Hu et al., 2009), fetal cortical
neurospheroid-derived cells, or umbilical cord-derived stem cells
(Chen et al., 2013; Leite et al., 2014).

The use of stem cells raises the possibility that 3D cultures
could be generated from the cells of patients carrying specific
MS susceptibility alleles, allowing the analysis of genetic
mechanisms and the development of personalized therapies.
Dermal fibroblasts from a 35-year-old patient affected by
RRMS were reprogrammed; these were named MS iPSCs
and were successfully differentiated into mature astrocytes,
oligodendrocytes and neurons with normal karyotypes, although
MS iPSC-derived neurons showed atypical electrophysiological
characteristics (Song et al., 2012). In addition, iPSCs from PPMS
patients of both sexes in the age range 50–62 years have been
used to generate OPCs that achieved the efficient myelination
of neurons in vivo and could be suitable for the development
of autologous cell-replacement therapies for MS in the future
(Douvaras et al., 2014). The advent of iPSC-derived OPCs
allows researchers to study the impact of genetic variants on
specific cell populations to facilitate the identification of disease
subtypes and the functional evaluation of genetic variants and

their role in MS (Di Ruscio et al., 2015). MS is a complex,
multifactorial disease with multiple susceptibility phenotypes,
many of which are related to the adaptive immune system
(International Multiple Sclerosis Genetics Consortium [IMSGC]
et al., 2011; Stys and Tsutsui, 2019). A broad panel of patients and
controls is therefore required to generate a sufficient number of
cell lines for the detection and validation of biologically relevant
MS phenotypes (Song et al., 2012). The real limitation of MS
organotypic models, such as iPSC-derived OPC cultures, is that
they exclude the peripheral immune system, which is a key player
in both the progression of MS and regeneration. It is unclear
whether neuronal damage reflects the different phenotypes of
autoreactive T lymphocytes. Therefore, it may be possible in the
future to establish co-cultures of neurons and T cells derived
from individual MS patients. This would allow both the detection
of genetic variants in the T cells involved in neuronal damage
and the screening of neuroprotective compounds blocking the
detrimental effects of this T cell subpopulation, in order to
improve our understanding of their role in the progression of MS.

CONCLUSION AND FUTURE
DIRECTIONS

Cellular models of neurodegenerative diseases range in
complexity from conventional monolayers derived from
immortalized cell lines to complex multicellular 3D tissue
mimetics based on patient-derived iPSCs, which can replicate
many disease hallmarks and in vivo physiological conditions,
such as protein aggregation. Indeed, 3D cell culture systems can
recapitulate the extracellular aggregation of Aβ and NFT typical
of AD (Choi et al., 2016) and can spread the PrPSc responsible
for prion diseases (Falsig and Aguzzi, 2008; Collins and Haigh,
2017). Furthermore, the aggregation of α-synuclein has been
demonstrated in neurons differentiated from iPSCs derived
from sporadic and familial PD patients, suggesting they can
reproduce this hallmark of PD without the use of exogenous
factors (Oh, 2019).

Traditional cell culture systems and animal models have
improved our understanding of human neurodegenerative
diseases, but models based on recent technological innovations
in 3D culture systems can achieve the better characterization
of pathological mechanisms, which also makes them more
suitable for high-throughput drug screening. Indeed, the advent
of new technologies involving the generation of organoids from
iPSCs and the use of microfluidic devices could accelerate drug
discovery compared to current approaches based on animal
models. Despite these recent advances, we still lack a 3D model
that recapitulates all the key aspects of neurodegenerative diseases
and thus allows the detailed analysis of their pathophysiology.

Most in vitro cultures are composed primarily of neuronal
cells, and their complexity (and therefore suitability as disease
models) should be increased by adding microglial cells,
astrocytes, oligodendrocytes, and pericytes to better mimic the
structural and molecular complexity of the CNS environment
in different diseases (Ormel et al., 2018; Song et al., 2019;
Speicher et al., 2019). The genetic background of the cells
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used to establish the model may also influence drug responses,
as recently shown for iPSCs isolated from PD patients and
cultured in a microfluidic 3D platform (Bolognin et al., 2019).
The unique genetic background of each individual can affect
their susceptibility to neurodegenerative diseases. Patient-derived
iPSCs could therefore reveal common pathways even in sporadic
disease cases, allowing the development and testing of new
therapeutic strategies. Interestingly, iPSC-derived neurons from
patients with sporadic AD featured mutations that have not
been identified by genome-wide association studies, and these
mutations generated neuronal phenotypes in a manner analogous
to familial AD, suggesting common pathogenetic mechanisms
(Israel et al., 2012). However, previous experience with the
handling of iPSCs has revealed the potential for in vitro
reprogramming, which is a significant drawback. Polymorphisms
affecting neuronal functions could overcome defects introduced
during reprogramming process or generated by genomic
instability due to the long in vitro culture durations. Furthermore,
donor age, sex, and ancestry could influence the physiology of
the iPSCs (Mackey et al., 2018). X-linked genes in cells generated
from female patients with neurological diseases (including MS)
tend to be inactivated, leading to a significant effect in the
neurodegeneration models (Mekhoubad et al., 2012). Moreover,
skin fibroblasts from older donors show very inefficient iPSC
reprogramming (Ohmine et al., 2012), so we must also take into
account the fact that neurodegenerative diseases are often aged
related, or (in the case of MS) diagnosed later in life. Fibroblasts
were recently shown to possess anatomic positional memory,
which is clearly important for reprogramming strategies (Sacco
et al., 2019). Moreover, in aged-associated diseases such as PD
and AD, neuronal cells suffer epigenetic drift, mitochondrial
dysfunction and the accumulation of damaged proteins, which

can disrupt gene regulation and homeostasis leading to abnormal
phenotypes. These features could be lost by cell rejuvenation
during the reprogramming of iPSCs, although this could be
addressed by the direct conversion of aging neurons (Mertens
et al., 2018). It therefore follows that the variability, together with
the inadequate purity of the reprogrammed cells and the lack of
standardized methodologies still hamper the reproducibility of
iPSCs-derived methodologies across different laboratories.

Brain function and homeostasis depend not only on neuronal
cells but also on the regulation of cerebral blood flow, which
supplies nutrients and oxygen while removing waste products.
The BBB is essential in this context because it connects the
CNS to both the peripheral circulation and the immune system
(Zhao et al., 2015). The disruption of the BBB followed by
the infiltration of peripheral immune cells is correlated with
the pathogenesis of neurodegenerative diseases such as AD
and PD (Schwartz and Shechter, 2010; Poewe et al., 2017;
Zenaro et al., 2017). Complex in vitro models that include
fluidic systems to mimic the BBB are therefore required to
fully replicate neurodegenerative diseases affecting the CNS
(Aucouturier et al., 2000; Zlokovic, 2008; Lopes Pinheiro et al.,
2016). Recent studies have included vascularization in 3D models,
highlighting the importance of this component (Lee et al., 2017;
Mansour et al., 2018; Pham et al., 2018; Cakir et al., 2019;
Worsdorfer et al., 2019). The most recent BBB model uses
a chip to mimic the physiological interactions between brain
endothelial cells, pericytes, and astrocytes, although the neuronal
component and immune cells are still missing (Ahn et al.,
2020). The role of immune dysfunction in neurodegeneration
can only be understood in detail by the incorporation of
immune cells into future 3D models (Figure 1). Indeed, an
unlimited source of circulating leukocytes can be obtained from

FIGURE 1 | Schematic representation of microfluidic brain model. The model features neurons and glial cells embedded in a matrix. The architecture includes a flow
of medium mimicking the BBB, enriched with soluble factors and peripheral immune cells, which are key players in neuroinflammation and neurodegeneration. The
migration of peripheral immune cells through the BBB has been implicated in the pathogenesis of several neurodegenerative diseases. The role of infiltrating
peripheral immune cells has been investigated in detail for MS, which involves the breakdown of the BBB and multifocal inflammation caused by the innate and
adaptive immune systems. However, BBB impairment and the infiltration of peripheral immune cells also correlate with the pathogenesis of other neurodegenerative
diseases, such as AD and PD. Adding a fluidic system to mimic the BBB is therefore necessary to investigate the pathological mechanisms of neurodegenerative
diseases and eventually to study the transport of drugs across the BBB.
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human blood, and these cells should therefore be considered
in future models of neurodegenerative diseases. A recent study
using a microfluidic system to mimic central–peripheral innate
immunity in AD (Park et al., 2019) suggested that targeting
the crosstalk between central and peripheral immune cells may
reduce the immunological burden in other neuroinflammatory
diseases of the CNS. Moreover, the BBB should be considered as a
key component of 3D brain models because it is one of the major
challenges in the development of drugs targeting the CNS (Pandit
et al., 2019). The BBB prevents up to 98% of small-molecule
drugs from reaching the brain (Pardridge, 2005; Neuwelt et al.,
2008). The delivery of drugs to the CNS therefore requires
new strategies that take advantage of BBB transporter systems,
highlighting the need for more research into the physiology
this barrier.

Although in vitro models of neurodegenerative diseases
are still incomplete, the 3D culture methods discussed herein
offer an important new strategy to characterize disease
mechanisms, leading to the discovery of new therapies.
Personalized treatments are not yet economically viable, but
3D models based on patient-derived cells will show how the

genetic landscape of the human population contributes to
the pathogenesis of neurodegenerative diseases, bringing the
prospect of personalized medicine another step closer.
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