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Purpose: We used ultraperformance liquid chromatography coupled with
quadrupole/time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS/MS) to analyze
the metabolic profile of reflex tears obtained from patients with dry eye disorders.

Methods: We performed a cross-sectional study involving 113 subjects: 85 patients
diagnosed with dry eye syndrome (dry eye group) and 28 healthy volunteers (control
group). Reflex tears (20–30 µl) were collected from the tear meniscus of both
eyes of each subject using a Schirmer I test strip. MS data were acquired with a
standard workflow by UPLC-Q/TOF-MS/MS. Metabolites were quantitatively analyzed
and matched with entries in the Metlin, Massbank, and HMDB databases. Least
absolute shrinkage and selection operator (LASSO) regression was conducted to
detect important metabolites. Multiple logistic regression was used to identify the
significant metabolic biomarker candidates for dry eye syndrome. Open database
sources, including the Kyoto Encyclopedia of Genes and Genomes and MetaboAnalyst,
were used to identify metabolic pathways.

Results: After the LASSO regression and multiple logistic regression analysis, 4 of
20 metabolic biomarker candidates were significantly correlated with Ocular Surface
Disease Index score, 42 of 57 with fluorescein breakup time, and 26 of 57 with
fluorescein staining. By focusing on the overlap of these three sets, 48 of 51 metabolites
contributed to the incidence of dry eye and there were obvious changes in different
age groups. Metabolic pathway analysis revealed that the main pathways were glucose
metabolism, amino acid metabolism, and glutathione metabolism.

Conclusion: Dry eye syndrome induces changes in the metabolic profile of tears, and
the trend differs with age. This evidence reveals the relationship between changes in
metabolites, symptoms of dry eye syndrome, and age.

Keywords: metabolomic, dry eye disease, least absolute shrinkage and selection operator (LASSO) regression,
tear profile, glucose metabolism, Glutathione metabolism, amino acid metabolism
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INTRODUCTION

Dry eye disease (DED) is one of the most common ocular
surface diseases, with a prevalence of 20–50%, and is becoming
a significant global health problem (Najafi et al., 2013; Stapleton
et al., 2017). The Tear Film and Ocular Surface Dry Eye
Workshop II (TFOS DEWS II) in 2017 provided a new definition:
“Dry eye is a multifactorial disease of the ocular surface
characterized by a loss of homeostasis of the tear film, and
accompanied by ocular symptoms, in which tear film instability
and hyperosmolarity, ocular surface inflammation and damage,
and neurosensory abnormalities play etiological roles (Wolffsohn
et al., 2017).” DED has a marked negative impact on the physical
(Stapleton et al., 2017) and psychosomatic (Asiedu et al., 2018;
Jonas et al., 2018) well-being of patients and exerts a substantial
economic impact (Yu et al., 2011).

Despite its prevalence and impact, there is no “gold standard”
diagnostic test for DED (Williamson et al., 2014; Valim et al.,
2015). According to a report from the 2017 TFOS DEWS II,
a diagnostic test battery for DED, including the screening 5-
Item Dry Eye Questionnaire (DEQ-5) and Ocular Surface Disease
Index (OSDI), confirms that a patient may have DED and
triggers the diagnostic testing of non-invasive breakup time,
osmolarity, and ocular surface staining with fluorescein and
lissamine green (Wolffsohn et al., 2017). The DEQ-5 and OSDI
questionnaires are used by patients to self-assess the symptoms,
frequency, and severity of dry eye. Although the questionnaire
score can roughly distinguish between dry eyes and non-dry
eyes, a study conducted by Liu et al. (2019) showed that the
perception of dry eye symptoms is not obvious due to lower
corneal sensitivity. It is also affected by subjectivity, level of
education, living environment, etc. Usually, the measurement
of the tear film breakup time is the most frequent test of tear
film stability in clinical practice. The measurement of non-
invasive breakup time depends on the inspection equipment.
Hence, the easy-to-operate fluorescein breakup time (FBUT)
is most commonly used; however, it is affected by fluorescein,
temperature, humidity, air circulation, etc. While osmolarity is
considered the most relevant factor to the severity of dry eye, it
is rarely used in outpatient clinics due to the high requirement
for consumables and their instability. Ocular surface staining
is a late feature of dry eye syndrome and a marker for the
clinical diagnosis of severe dry eye syndrome, which has no
significant value for the diagnosis of early dry eye. In summary,
the above diagnostic methods are characterized by limitations
for the diagnosis of dry eye. Therefore, the development of a
diagnostic method with precise, stable, sensitive, specific, and
convenient operation is urgently warranted.

Metabolomics is defined as the simultaneous qualitative
and quantitative analysis of the metabolic response of living
systems to pathophysiological stimuli or genetic modification.
The main analytical techniques adopted in a global metabolomic
analysis are nuclear magnetic resonance spectroscopy and
mass spectrometry (MS) (Zhang et al., 2015). MS is usually
combined with different separation techniques, such as
liquid chromatography (LC) (Khamis et al., 2019), gas
chromatography (Beale et al., 2018), and capillary electrophoresis

(Ramautar et al., 2019), to enhance sensitivity. In the last 10 years,
many studies have investigated the metabolite composition of
the cornea, lens, and vitreous humor (Young and Wallace, 2009).
Metabolomics has been used in clinical and animal studies of
several eye diseases, including diabetic retinopathy (Chen et al.,
2016), age-related macular degeneration (Brantley et al., 2012),
glaucoma (Aribindi et al., 2013), keratoconus (Karamichos et al.,
2015), and dry eye (Galbis-Estrada et al., 2014). With advances
in technology, untargeted LC-MS metabolomic analysis of
tear fluid in ocular diseases could be further conducted. Thus,
investigations for the discovery of biomarker candidates for
ocular diseases from tear fluid may also be useful for an accurate
clinical diagnosis.

In the present study, we investigated alterations in the
metabolic profile of tear fluid obtained from a clinical cohort
of 113 subjects to detect metabolite aberrations in tears.
Subsequently, all metabolites were separated by association with
the clinical signs [OSDI, FBUT, corneal fluorescein staining (FL)]
to identify the metabolites in tears that are pathologically relevant
to DED. In addition, we constructed a more accurate metabolite
model to assist us in the effective diagnosis of DED.

SUBJECTS AND METHODS

Subjects and Groups
According to the diagnostic criteria and exclusion criteria for dry
eye proposed in TFOS DEWS II, and considering the operability
of the outpatient clinic, we used the following inclusion criterion:
OSDI ≥ 13 or DEQ-5 ≥ 6. More strictly, FBUT < 10 s and
ocular surface staining (+) were met. However, any of the
following conditions were excluded: history of eye medication
within 1 month; active inflammation of the eye or use of contact
lens within 3 months; eye trauma or surgical history within
6 months; combined with hyperthyroidism, rheumatism, dry
syndrome, and other diseases affecting tear secretion; presence
of life-threatening primary diseases; or participation in other
clinical trials. A total of 113 subjects were included in the
final population. Tear samples (the tears of both eyes were
treated as one sample) were divided into two groups: 28 and
85 samples were included in the control group (CG) and dry
eye group (DEG), respectively. All subjects provided written
informed consent. The study complied with the tenets of the
Declaration of Helsinki for the protection of human subjects in
medical research. Supplementary Table S1 lists the inclusion and
exclusion criteria.

Sample Collection
Firstly, each subject completed a form that included informed
consent, basic information, past history, surgical history,
medication history, family history, the OSDI questionnaire, and
the DEQ-5 questionnaire. The OSDI questionnaire was used
to assess the effects of ocular symptoms, visual function, and
environmental factors in dry eye syndrome; a score ≥13 was
considered meaningful. DEQ-5 was used to assess the duration
of dry eye symptoms; a score ≥6 was considered meaningful.
After completion of the questionnaire, each subject underwent
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systematic ophthalmologic examinations, including the Schirmer
I test (SIT), tear meniscus height, FBUT, FL, corneal sensitivity,
and meibomian gland function. After the SIT, both strips were
placed in a single cryotube as one sample and stored in a
−80◦C refrigerator.

Preparation of Tear Samples and
Metabolomic Study
The SIT strip containing tears was removed from the −80◦C
refrigerator and immediately dissolved in 1 ml of 80% methanol.
After ultrasonication, the supernatant was centrifuged (at
4,000 rpm), dried in a vacuum concentrator, and reconstituted
with 10 µl of high-performance LC double-distilled water.
One microliter of the sample was used for ultraperformance
liquid chromatography coupled with quadrupole/time-of-flight
mass spectrometry analysis. Liquid-chromatographic separation
of processed tears was performed on a 100 × 2.1-mm Zorbax
Eclipse Plus 1.8-µm C18 column using a 1290 infinity system,
while MS was performed on a 6545 Quadrupole-Time of Flight
system (all devices from Agilent Technologies, Santa Clara, CA,
United States). Samples were randomly assigned to analyses.
During analysis of each sample sequence, one quality control
sample was run after every 20 injections. The gradient program
of elution was: 1% B at 0–1 min, 15% B at 3 min, 70% B at 5 min,
85% at 9 min, 100% at 10–12 min, and subsequently return to
the initial conditions with 2 min for equilibration. The sample
volume injected was 2 µl, and the flow rate was 0.4 ml/min. The
MS parameters were set as follows: fragmental voltage 135 V,
nebulizer gas 35 psig, capillary voltage 4,000 V, drying gas 300◦C
flow 6 l/min, sheath gas 340◦C flow 11 l/min. The data were
collected with both centroid and profile stored in autoMSMS scan
mode between a mass range MS of 100–3,200 m/z and MS/MS
30–3,200 m/z using the high-resolution mode (4 GHz). Reference
masses at m/z 112.05087 and 922.009798 were introduced for
online accurate mass calibration.

Data Processing and Identification of
Metabolites
The acquired MS data (.d) were exported to mzdata format
using the MassHunter Workstation software (version B.07.00;
Agilent Technologies). The program XCMS was applied for data
pretreatment procedures, such as peak discrimination, filtering,
and alignment. After peak alignment of the data in the time
domain and automatic integration and extraction of the peak
intensities, a list of the intensities of all the peaks detected
was generated using the retention time and the mass-to-ratio
data pairs as the parameters for each ion. MS/MS spectra of
the selected putative identifications were retrieved and matched
with entries in the Metlin, Massbank, and HMDB databases.
Open database sources, including the Kyoto Encyclopedia of
Genes and Genomes and MetaboAnalyst, were used to identify
metabolic pathways.

Statistical Analyses
Results are expressed as the mean ± standard deviation
for continuous variables and as the number (percent) for

categorical variables. Prior to the analysis, all metabolites
were normalized to follow a normal distribution. Statistical
analyses were performed using R 3.2.4. Firstly, unconditional
logistic regression was performed to detect the association
among metabolites and the four dry eye indexes (DEQ-
5, OSDI, FBUT, and FL). Secondly, least absolute shrinkage
and selection operator (LASSO) regression was conducted to
detect important metabolites. Thirdly, the significant metabolic
biomarker candidates were further confirmed by multiple logistic
regression, with adjustment for covariates [i.e., age, sex, and
hemoglobin A1c (HbA1c) levels]. Fourthly, the union set of
metabolites associated with dry eye indexes was moved to the
detection process of influence to dry eye. Two-sided P < 0.05
denoted statistically significant differences, and the P-values
for each metabolite in all comparisons were corrected by false
discovery rate correction. Finally, the expression of metabolites
were converted into Log2(x+ 1) values to normalize non-normal
distributions. The normalized data were compared by unpaired
Student’s T-test analysis.

RESULTS

Demographic Data and Ocular Surface
Parameters
A total of 113 subjects were enrolled in this study, with
85 patients in the DEG and 28 volunteers in the CG. The

TABLE 1 | Demographic and characteristics of study subjects in the control group
and dry eye group.

Feature Normal
(n = 28)

Dry eye
(n = 85)

P value

Gender (Female,
n(%))

13 46.4% 35 41.2% 0.78

Age (years) 60.8 ± 11.2 55.4 ± 8.8 <2.2 × 10−16

HbAlc (%) 4.86 ± 0.66 5.446 ± 0.16 0.02

FBUT (S) 12.46 ± 2.03 3.78 ± 1.66 <2.2 × 10−16

OSDI Scores 15.36 ± 15.34 24.99 ± 15.28 <2.2 × 10−16

DEQ-5 2.68 ± 2.37 4.95 ± 3.34 <2.2 × 10−16

FL (<5 sites) 28 100.0% 8 9.4% <2.2 × 10−16

SIT (mm) 21.7 ± 1.46 7.754 ± 0.53 <0.0001

Corneal
sensitivity

Normal 27 96.4% 15 17.6%

Moderate 1 3.6% 65 76.5%

Disappear 0 5 5.9%

Meibomian
gland
dysfunction

6 21.4% 63 74.1%

Mild 6 100% 44 69.8%

Moderate 0 13 20.6%

Severe 0 6 9.6%

Non-parametric t tests; HbA1c, hemoglobin A1c; OSDI, Ocular Surface Disease
Index; FBUT, fluorescein breakup time; DEQ-5, 5-Item Dry Eye Questionnaire; SIT,
Schirmer I Test; FL, corneal fluorescein staining.
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FIGURE 1 | Model for least absolute shrinkage and selection operator (LASSO). Color lines represent the metabolites potentially associated with dry eye. The x-axis
represents the alpha (cutoff), and the y-axis represents the shrink effect value.

TABLE 2 | The 4 most significant metabolites associated with OSDI among 20 significant metabolites adjusted for age, sex, and HbA1c levels.

Metabolite OR CL CU t value P FDR

Thiodiacetic acid* 1.55247681 1.26158984 1.9104341 4.15516541 3.25E-05 0.0006501

Uridine* 1.40832563 1.14309313 1.73510018 3.21621402 0.00129894 0.01298939

Octadecanamide* 1.3405631 1.09814985 1.63648834 2.8800132 0.00397659 0.02651057

Phthalic anhydride* 0.81766755 0.67425718 0.99158043 −2.0459358 0.04076269 0.20381346

3-Acrylamidopropyl trimethylammonium 1.19362223 0.98364445 1.44842379 1.79294729 0.07298135 0.28723142

Triglyme 1.65924095 0.9305183 2.95865276 1.71595966 0.08616943 0.28723142

N-Heptane 1.19858444 0.95035917 1.51164392 1.5299583 0.12602705 0.36007729

1-Piperidinecarboxaldehyde 1.14944952 0.94898168 1.39226524 1.42445336 0.15431528 0.37131023

2-Methylbutyroylcarnitine 1.14444901 0.94508279 1.38587174 1.38161611 0.1670896 0.37131023

Palmitic amide 0.88257065 0.72651124 1.07215266 −1.2582488 0.20830179 0.41660359

Diglyme 0.92001999 0.75985836 1.11394022 −0.8542429 0.39297044 0.68896788

N-(3-Indolylac etyl)-L-isol eucine 1.08241214 0.89532492 1.30859312 0.81795877 0.41338073 0.68896788

N,N′-Dicyclohexylurea 0.94679681 0.77986533 1.14946027 −0.5524484 0.58064115 0.82684503

(S)-Desoxy-D2PM 1.05012842 0.86620605 1.27310321 0.49790162 0.61855338 0.82684503

Tuckolide 0.95474254 0.78708046 1.1581196 −0.4700638 0.63830943 0.82684503

Alanyl-Alanine 0.95900176 0.79513398 1.15664076 −0.4378762 0.66147602 0.82684503

Dihydroterrein 0.96411129 0.79540346 1.16860262 −0.3724069 0.70958995 0.83481171

Indoline 1.02916604 0.84773779 1.24942257 0.2905526 0.77139351 0.8571039

N-methyl corydaldine 1.00723376 0.82432556 1.23072714 0.07049554 0.94379925 0.98564298

(-)-Corey Lactone Diol 0.99823666 0.82365976 1.20981561 −0.0179948 0.98564298 0.98564298

OSDI, Ocular Surface Disease Index; HbA1c, hemoglobin A1c; OR, odds ratio; CL, lower of confidence interval; CU, upper of confidence interval. *P < 0.05.

demographic data and results of ocular surface parameters
are shown in Table 1. Briefly, there were 46.4% females in
the CG and 41.2% in the DEG. The mean ages of subjects
in the CG and DEG, with an unbalanced distribution, were
60.8 ± 11.2 and 55.4 ± 8.8 years, respectively (P < 0.0001).
The mean levels of HbA1c in the CG and DEG were
4.86% ± 0.66% and 5.446% ± 0.16%, respectively. The results
of the comparison showed that the OSDI and DEQ-5 scores
of patients in the DEG were higher than those recorded in
the CG (P < 0.0001 and P < 0.0001, respectively). The
patients in the DEG showed lower FBUT values and SIT
scores compared with those in the normal group (P < 0.0001

and P < 0.0001, respectively), strongly suggesting that tear
film stability was altered in DEG patients. Additionally,
the patients in the DEG showed lower corneal sensitivity
and severe corneal injury compared with the subjects in
the CG (P < 0.0001).

Association Among Metabolites and Dry
Eye Indexes
The relationship among metabolites and dry eye indexes
is demonstrated in Supplementary Table S2. The results
showed that 37, 991, and 598 metabolic features exerted
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TABLE 3 | The 42 most significant metabolites associated with FBUT out of 57 significant metabolites adjusted of age, sex, and HbA1c level.

Metabolite OR CL CU t value P FDR

Gamma-Aminobutyric acid* 2.31000409 1.72405625 3.09509559 5.60895326 2.04E-08 1.16E-06

L-Tyrosine* 2.85341036 1.92114399 4.23807415 5.19494456 2.05E-07 5.84E-06

Oxidized glutathione* 1.7939313 1.42065818 2.26528066 4.90996828 9.11E-07 1.73E-05

Cholesterol* 1.73958267 1.38364581 2.18708274 4.74020998 2.13E-06 3.04E-05

Glutamate* 1.61563596 1.31307235 1.98791755 4.53449486 5.77E-06 6.58E-05

fumarate* 0.64862127 0.52991355 0.79392111 −4.1976691 2.70E-05 0.00025619

Butyrylcarnitine* 1.70194948 1.32064315 2.19334955 4.10902868 3.97E-05 0.00032354

Lactate* 0.65144643 0.52930406 0.80177441 −4.04551 5.22E-05 0.00037199

Formate* 0.66830153 0.54536283 0.81895375 −3.8856717 0.00010205 0.00062014

acetylcholine* 0.65827145 0.53212825 0.81431741 −3.8524858 0.00011692 0.00062014

L-Isoleucine* 1.47248491 1.2089998 1.79339303 3.84678675 0.00011968 0.00062014

Oleamide* 0.66041693 0.53217629 0.81956023 −3.7664914 0.00016556 0.0007516

1-Stearoyl-2-Arachidonoyl PC* 1.4633179 1.19916256 1.78566222 3.74810872 0.00017817 0.0007516

Inosine* 2.65048162 1.59011429 4.41795465 3.73920617 0.0001846 0.0007516

Uracil* 1.46024988 1.19506913 1.7842731 3.70288298 0.00021316 0.00081002

Uridine* 1.47168572 1.19767109 1.80839204 3.67598012 0.00023694 0.00084409

Guanine* 1.50029386 1.20718859 1.86456506 3.65785151 0.00025434 0.00085278

L-Valine* 1.4420049 1.18277435 1.75805143 3.62023335 0.00029434 0.00090405

Dibutyl phthalate* 0.67430255 0.54455312 0.83496708 −3.6141379 0.00030135 0.00090405

L-Methionine* 1.47026597 1.18226511 1.8284241 3.46527672 0.00052969 0.00150961

Uracil* 1.42469938 1.15975359 1.75017206 3.37182114 0.00074673 0.00202684

Cytosine* 0.69994564 0.56654428 0.86475836 −3.306898 0.00094335 0.00244414

Uridine* 1.40832563 1.14309313 1.73510018 3.21621402 0.00129894 0.00321911

Squalene* 1.37339911 1.12939739 1.67011642 3.17930202 0.0014763 0.00350622

L-Kynurenine* 0.72719546 0.59496403 0.88881547 −3.111087 0.001864 0.00417575

malate* 0.72901762 0.59715129 0.89000341 −3.1046987 0.00190473 0.00417575

Spermine* 1.35525764 1.11347072 1.64954788 3.03203154 0.00242914 0.00512818

Citric acid* 0.73919799 0.60698117 0.90021518 −3.0055174 0.00265129 0.00539728

L-Serine* 1.42722391 1.12895219 1.80429969 2.97402045 0.00293925 0.00577716

Glucose* 0.73965682 0.60485591 0.90450007 −2.9378068 0.00330543 0.00628032

Pyroglutamic acid* 1.32121764 1.08651926 1.60661307 2.79159771 0.00524485 0.00964376

pyruvic acid* 0.75616671 0.61730273 0.92626852 −2.6998564 0.00693694 0.01231244

Adenine* 1.3194087 1.07818635 1.61459967 2.69079233 0.00712826 0.01231244

Glycocholic acid* 0.76903499 0.63133985 0.93676141 −2.6089881 0.00908104 0.0152241

L-Phenylalanine* 0.77952238 0.64158301 0.9471185 −2.506818 0.01218234 0.01983981

Alpha-dimorphecolic acid* 0.76942166 0.62336711 0.94969671 −2.4405653 0.0146643 0.02321847

Arginine* 0.78958675 0.64748007 0.96288251 −2.3336225 0.0196155 0.03021847

creatine* 0.79935316 0.6602648 0.96774124 −2.2962044 0.0216642 0.03249629

glycine* 1.24311063 1.02397819 1.50913765 2.19949186 0.02784297 0.04069357

Choline* 0.80593633 0.66141539 0.98203547 −2.13979 0.03237174 0.0455426

Niacinamide* 0.80940226 0.66658792 0.9828141 −2.1350282 0.03275871 0.0455426

4-Hydroxycitrulline* 1.24092841 1.01274466 1.52052476 2.08215659 0.03732817 0.05065966

PS(20:2(11Z,14Z)/16:0) 1.21081356 0.99481789 1.47370639 1.90817319 0.05636884 0.0745487

S-Glutathionyl-L-cysteine 0.82193434 0.67134384 1.0063041 −1.8991378 0.05754637 0.0745487

PS(22:4(7Z,10Z,13Z,16Z)/17:0) 1.2217118 0.96398133 1.5483492 1.65654564 0.09761137 0.12364107

Oleoyl Oxazolopyridine 0.85018063 0.69683413 1.03727281 −1.5993885 0.10973431 0.13597512

Triisobutyl phosphate 0.85487102 0.70210055 1.04088291 −1.5610858 0.11850352 0.14371703

2′-Hydroxy-a-naphthoflavone 0.84884908 0.68885126 1.04600922 −1.5378668 0.12408118 0.14529034

1-Oleoyl-2-acetyl-sn-glycerol 0.86144308 0.7120229 1.04221953 −1.5345325 0.12489871 0.14529034

1,2-Dierucoyl-SN-Glycero-3-Phosphoethanolamine 0.86269924 0.71131474 1.04630193 −1.5002282 0.13355529 0.15225303

S-Acetyldihydrolipoamide-E 0.86465346 0.71188448 1.05020635 −1.4661349 0.14261154 0.15938937

Tetrahydropteroyltri-L-glutamate 1.14762768 0.94841889 1.3886789 1.41556554 0.15690275 0.17047874

Streptidine 6-phosphate 0.87080284 0.71847067 1.05543292 −1.4100825 0.15851532 0.17047874

Succinoadenosine 1.1382523 0.93749381 1.38200198 1.30802614 0.19086444 0.20146802

PE(16:0/0:0) 0.88503301 0.71933451 1.08890011 −1.1547383 0.2481976 0.25722297

MG(8:2(9Z,12Z)/0:0/0:0) 0.92122998 0.75599324 1.12258236 −0.8134942 0.41593479 0.4233622

Tributyl phosphate 0.95282779 0.77633407 1.16944605 −0.4623322 0.64384309 0.64384309

OR, odds ratio; CL, lower of confidence interval; CU, upper of confidence interval; *p<0.05.
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TABLE 4 | The 26 most significant metabolites associated with FL among 57 significant metabolites adjusted for age, sex, and HbA1c levels.

Metabolite OR CL CU t value P FDR

Betaine* 2.12966068 1.66438833 2.72499784 6.01077856 1.85E-09 1.05E-07

L-Tyrosine* 2.85341036 1.92114399 4.23807415 5.19494456 2.05E-07 5.84E-06

Oxidized glutathione* 1.7939313 1.42065818 2.26528066 4.90996828 9.11E-07 1.73E-05

N-Acetylglucosamine* 1.6785802 1.35712434 2.07617784 4.77550669 1.79E-06 2.55E-05

Lithocholic acid* 1.53009111 1.24630259 1.8784995 4.06364889 4.83E-05 0.00049599

Lactate* 0.65144643 0.52930406 0.80177441 −4.04551 5.22E-05 0.00049599

Pyrrolidonecarboxylic acid* 1.4633179 1.19916256 1.78566222 3.74810872 0.00017817 0.00145084

L-Methionine* 1.47026597 1.18226511 1.8284241 3.46527672 0.00052969 0.00377401

L-Tryptophan* 1.4145468 1.15893701 1.7265327 3.41056514 0.00064828 0.00378973

Urocanic acid* 1.40312876 1.15449382 1.70531039 3.40367209 0.00066487 0.00378973

Uracil* 1.42469938 1.15975359 1.75017206 3.37182114 0.00074673 0.00386942

[8]-Shogaol* 1.40526916 1.14462591 1.72526359 3.25052568 0.00115192 0.00547161

L-Proline* 0.72332176 0.59365193 0.88131504 −3.2134187 0.00131165 0.00575108

Purine* 1.39189424 1.12750237 1.71828426 3.07653288 0.00209423 0.00852652

Glucose* 0.73965682 0.60485591 0.90450007 −2.9378068 0.00330543 0.01256063

Pyruvic acid* 0.75616671 0.61730273 0.92626852 −2.6998564 0.00693694 0.02390062

Adenine* 1.3194087 1.07818635 1.61459967 2.69079233 0.00712826 0.02390062

Alpha-dimorphecolic acid* 0.76942166 0.62336711 0.94969671 −2.4405653 0.0146643 0.04643693

Phenylalanyl-Arginine* 1.26891943 1.04241067 1.54464699 2.37402965 0.01759514 0.050412

Dideoxymycobactin* 0.78981126 0.64990349 0.95983763 −2.3720766 0.01768842 0.050412

Glycerol tripropanoate* 1.25491863 1.03820859 1.51686354 2.34767749 0.01889087 0.05127522

Phenylpyruvic acid* 0.77780104 0.62924378 0.96143097 −2.3237225 0.02014037 0.05218187

Creatine* 0.79935316 0.6602648 0.96774124 −2.2962044 0.0216642 0.05368953

3-Formylsalicylic acid* 1.25266662 1.02631689 1.52893679 2.21546694 0.02672803 0.06347907

4-oxo-docosanoic acid* 1.23158951 1.01314323 1.49713553 2.09107893 0.03652099 0.08183483

3-Pyrimidin-2-yl-Propionic Acid* 1.24092841 1.01274466 1.52052476 2.08215659 0.03732817 0.08183483

Palmitoyl glucuronide 1.19088225 0.98170979 1.44462299 1.77268467 0.07628097 0.16103761

N-Acetylvanilalanine 0.84455515 0.6903238 1.0332447 −1.6421217 0.10056478 0.20472115

Myristoylcarnitine 0.85018063 0.69683413 1.03727281 −1.5993885 0.10973431 0.21568467

PG(P-18:0/0:0) 0.84884908 0.68885126 1.04600922 −1.5378668 0.12408118 0.23575425

3′-Keto-3′-deoxy-AMP 0.87080284 0.71847067 1.05543292 −1.4100825 0.15851532 0.29095774

2-glyceryl-PGF2α 1.14719977 0.94493723 1.39275634 1.38767768 0.16523521 0.29095774

Palmitoyl Ethanolamide 0.87101039 0.71559309 1.06018226 −1.3772039 0.16844922 0.29095774

Niacinamide 0.87638866 0.72270821 1.06274853 −1.3413271 0.17981427 0.30145333

N-palmitoyl leucine 0.878715 0.72528806 1.06459778 −1.3206278 0.1866255 0.30393295

1-Octen-3-yl glucoside 1.13228205 0.92938045 1.37948095 1.23308906 0.21754254 0.34444235

Inosine 2′-phosphate 0.89619591 0.73830719 1.08784949 −1.1084092 0.26768515 0.41237983

Prosopinine 0.91231546 0.74867246 1.11172715 −0.9098758 0.362888 0.52960861

Tetrandrine 0.90727914 0.73483704 1.12018775 −0.9047284 0.36560931 0.52960861

N-arachidonoyl tyrosine 1.09225223 0.90000599 1.32556332 0.89337729 0.37165516 0.52960861

3,7-Dimethyloctanal 0.92523277 0.76583693 1.11780413 −0.8055564 0.42049868 0.58459572

3-Amino-L-Tyrosine 0.92597687 0.76343194 1.1231298 −0.7809123 0.43485409 0.59015912

PS(12:0/18:3(6Z,9Z,12Z)) 1.07789258 0.88891905 1.30703962 0.76269803 0.4456435 0.59073674

N-ethyl N-(2-hydroxy-ethyl) arachidonoyl amine 0.92694468 0.75277268 1.14141554 −0.7143992 0.47498035 0.61531545

Oleoyl Ethanolamide 0.94634878 0.78134734 1.14619448 −0.5641298 0.57266578 0.70474265

2-Methyl-1,3-oxathiane 0.94759109 0.78021615 1.15087193 −0.5428866 0.58720787 0.70474265

2,8-Dihydroxyadenine 1.05409689 0.87055921 1.27632932 0.53977667 0.58935106 0.70474265

3S-Aminodecanoic acid 1.05316396 0.86678598 1.27961728 0.52128152 0.60217067 0.70474265

DL-Glycerol 1-phosphate 1.05456176 0.86186592 1.29034051 0.51603294 0.6058314 0.70474265

Maprotiline glucuronide 0.96128301 0.79507038 1.16224306 −0.4076807 0.68350813 0.77919927

4-Methylene-L-glutamate 1.03562819 0.84849307 1.26403596 0.34428259 0.73063378 0.8165907

N,N-Dimethylaniline N-oxide 1.02864516 0.84885995 1.24650817 0.28815395 0.7732289 0.84757783

Cystamine 1.02490095 0.84205024 1.24745759 0.24531946 0.80620909 0.86705506

L-Homocysteic acid 1.02230671 0.83844272 1.24649065 0.21808909 0.8273597 0.8702951

PI(P-18:0/15:1(9Z)) 0.9801715 0.80721801 1.19018179 −0.2022025 0.83975843 0.8702951

Propylthiouracil glucuronide 1.0084228 0.82428505 1.23369524 0.08153469 0.93501674 0.95171346

Butyl butyryllactate 0.99823666 0.82365976 1.20981561 −0.0179948 0.98564298 0.98564298

FL, corneal fluorescein staining; HbA1c, hemoglobin A1c; OR, odds ratio; CL, lower of confidence interval; CU, upper of confidence interval. *P < 0.05.
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TABLE 5 | The 48 most significant metabolites among 51 metabolites which contributed to the incidence of dry eye.

Metabolite OR CL CU FDR P KEGG HMDB

Glutamate* 0.15892318 0.05881561 0.42941961 0.00474346 0.00028695 C00025 HMDB0000148

N-Acetylglucosamine* 0.33352376 0.18169142 0.61223639 0.00474346 0.00039529 C00140 HMDB0000215

Urocanic acid* 0.30038193 0.15246704 0.59179546 0.00474346 0.00050841 C00785 HMDB0000301

Dibutyl phthalate* 4.9575756 1.964163 12.512992 0.00474346 0.00070123 C14214 HMDB0033244

Cholesterol* 0.32553998 0.16974262 0.62433511 0.00474346 0.0007306 C00187 HMDB0000067

fumarate* 2.93700184 1.57053771 5.49237356 0.00474346 0.00074232 C00122 HMDB0000134

Lactate* 2.87485838 1.55392837 5.31865616 0.00474346 0.00076742 C00186 HMDB0000190

L-Tyrosine* 0.11616869 0.03287657 0.41047964 0.00474346 0.00082995 C00082 HMDB0000158

Betaine* 0.26844912 0.12382333 0.58199799 0.00474346 0.0008652 C00719 HMDB0000043

L-Valine* 0.34191908 0.18113828 0.6454111 0.00474346 0.00093009 C00183 HMDB0000883

Amino-n-butyrate* 0.23891563 0.09963151 0.57291791 0.00575326 0.00133553 NA NA

Gamma-Aminobutyric acid* 0.23879924 0.09944765 0.57341804 0.00575326 0.00135371 C00334 HMDB0000112

Oxidized glutathione* 0.38068595 0.20887416 0.69382345 0.00632659 0.00161266 C00127 HMDB0003337

Thiodiacetic acid* 0.37739123 0.20461086 0.69607324 0.00653555 0.00180862 C01857 HMDB0031188

L-Methionine* 0.39076767 0.21502082 0.71016085 0.00653555 0.00204947 C00073 HMDB0000696

Pyrrolidonecarboxylic acid* 0.36061539 0.18740786 0.69390611 0.00653555 0.00225616 C02237 HMDB0000805

Octadecanamide* 0.39764946 0.21949705 0.72039732 0.00653555 0.00235239 C13846 HMDB0034146

L-Proline* 2.71415154 1.42470751 5.17061821 0.00653555 0.00239396 C00148 HMDB0000162

Inosine* 0.11144874 0.02697315 0.46048842 0.00653555 0.00243481 C00294 HMDB0000195

L-Tryptophan* 0.42621286 0.24230821 0.7496956 0.00784822 0.00307773 C00078 HMDB0000929

Hypoxanthine* 0.29993152 0.13456396 0.6685216 0.00785034 0.00323249 C00262 HMDB0000157

L-Phenylalanine* 3.67273631 1.51638767 8.89547722 0.00890948 0.0039459 C00079 HMDB0000159

Purine* 0.21222101 0.07380947 0.6101894 0.00890948 0.004018 C15587 HMDB0001366

Uracil* 0.41871956 0.22873078 0.76651719 0.01014436 0.00477382 C00106 HMDB0000300

Glucose* 2.83823315 1.3674437 5.89096821 0.01018904 0.00511095 C00031 HMDB0000122

Uridine* 0.41091757 0.220228 0.76672017 0.01018904 0.00519441 C00299 HMDB0000296

Cytosine* 2.74780932 1.32931549 5.67995794 0.01202255 0.00636488 C00380 HMDB0000630

Oleamide* 2.44685903 1.27149955 4.7087072 0.01344234 0.00738011 C19670 HMDB0002117

Adenine* 0.4549752 0.25202611 0.82135314 0.01578398 0.0089752 C00147 HMDB0000034

L-Isoleucine* 0.46790707 0.26221692 0.83494622 0.01712454 0.0101541 C00407 HMDB0000172

Squalene* 0.2605037 0.09280449 0.73123806 0.01712454 0.01063655 C00751 HMDB0000256

[8]-Shogaol* 0.46518125 0.25836679 0.83754416 0.01712454 0.01074481 C10494 HMDB0031463

malate* 2.83554082 1.26616827 6.35009732 0.01714406 0.01128604 C00149 HMDB0000156

creatine* 2.17111139 1.19063873 3.95898818 0.01714406 0.01142937 C00300 HMDB0000064

Niacinamide* 5.44745851 1.4046755 21.1257363 0.02073519 0.01423003 C00153 HMDB0001406

acetylcholine* 2.1406061 1.12609791 4.06909065 0.02830387 0.02021258 C01996 HMDB0000895

pyruvic acid* 2.33590317 1.13945145 4.78865828 0.02830387 0.02053418 C00022 HMDB0000243

L-Serine* 0.42525807 0.20369022 0.88784051 0.03060053 0.02280039 C00065 HMDB0000187

Lithocholic acid* 0.45386319 0.22816228 0.90283021 0.0318622 0.02436521 C03990 HMDB0000761

Citric acid* 2.05194986 1.08127092 3.89402706 0.03553974 0.0278743 C00158 HMDB0000094

glycine* 0.44191416 0.20966057 0.931449 0.03866868 0.03181944 C00037 HMDB0000123

Spermine* 0.34996191 0.1341625 0.91287309 0.03866868 0.0318448 C00750 HMDB0001256

Guanine* 0.59179132 0.36040424 0.97173375 0.04523848 0.03814225 C00242 HMDB0000132

Alpha-dimorphecolic acid* 2.04750337 1.03654999 4.0444456 0.04529542 0.0390784 C14767 HMDB0004670

Formate* 2.62276742 1.04426296 6.58733401 0.0455058 0.04015218 C00058 HMDB0000142

Butyrylcarnitine* 0.54961227 0.30885677 0.97803797 0.04589771 0.0417985 C02862 HMDB0002013

L-Kynurenine* 1.77187779 1.02008151 3.07774513 0.04589771 0.04229789 C00328 HMDB0000684

Pyroglutamic acid* 0.52951971 0.28364654 0.98852298 0.04877657 0.04590736 C01879 HMDB0000267

Arginine 3.00381699 0.99530218 9.06550465 0.05306126 0.05098043 C00062 HMDB0000517

Choline 1.73881637 0.90931083 3.32502625 0.09630046 0.09441221 C00114 HMDB0000097

Glycocholic acid 1.32778957 0.78435453 2.24774013 0.29114021 0.29114021 C01921 HMDB0000138

OR, odds ratio; CL, lower of confidence interval; CU, upper of confidence interval. *P < 0.05.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 June 2020 | Volume 8 | Article 344

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00344 June 8, 2020 Time: 12:29 # 8

Jiang et al. Metabolomic Biomarker for Dry Eye

FIGURE 2 | The 17 increasing metabolites presented by relative expression in the boxplot. *P < 0.05.

FIGURE 3 | The 31 decreasing metabolites presented by relative expression in the boxplot. *P < 0.05.

potential effects on the OSDI, FBUT, and FL, respectively.
However, none of the metabolites were significantly
associated with the DEQ-5 score, which was lower
than the meaningful value in both groups. The LASSO
regressions accurately identified the important metabolic
biomarker candidates. As shown in Figures 1A–C, 20,
57, and 57 metabolic features were retained for FBUT,
OSDI, and FL, respectively. After adjusting for age, sex,
and HbA1c levels, 4 of 20 metabolic features remained
significant for OSDI, 42 of 57 for FBUT, and 26 of 57
for FL (Tables 2–4). There is a potential mechanism by
which metabolic features are related to OSDI, FBUT, or

FL and may contribute to DED. Therefore, the biomarker
candidate union set was further modified to confirm the
relationship with DED. As shown in Table 5, 48 of 51
metabolic features contributed to the incidence of DED.
Figures 2, 3 show the 17 increasing and 31 decreasing
metabolites by fold change.

Trends of Metabolites Related to Dry Eye
in Different Age Groups
We analyzed the relationship between metabolites and age.
All subjects were grouped into two groups with the age
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TABLE 6 | The increasing and decreasing metabolites in groups A–F.

Group A 5 50 Control
(n = 10), Dry Eye (n = 15)

Group B > 50 Control
(n = 18), Dry Eye (n = 70)

Group C 5 5 Control
(n = 16), Dry Eye (n = 42)

Group D > 55 Control
(n = 12), Dry Eye (n = 43)

Group E 5 60 Control
(n = 121), Dry Eye (n = 40)

Group F > 60 Control (n = 7),
Dry Eye (n = 45)

Increased Decreased Increased Decreased Increased Decreased Increased Decreased Increased Decreased Increased Decreased

Acetylcholine Adenine Acetylcholine [8]-shogaol Citric acid [8]-shogaol Acetylcholine [8]-shogaol Acetylcholine [8]-shogaol Acetylcholine [8]-shogaol

Alpha-
dimorphecolic
acid

Amino-n-
butyrate

Alpha-
dimorphecolic
acid

Adenine Creatine Adenine Citric acid Adenine Alpha-
dimorphecolic
acid

Adenine Alpha-
dimorphecolic
acid

Adenine

Citric acid Cholesterol Citric acid Amino-n-
butyrate

Cystosine Amino-n-
butyrate

Creatine Amino-n-
butyrate

Citric acid Amino-n-
butyrate

Citric acid Amino-n-
butyrate

Cystosine Glutamate Creatine Betaine Dibutyl
Phthalate

Betaine Cystosine Betaine Creatine Betaine Cystosine Betaine

Dibutyl
Phthalate

Glycine Cystosine Butyrylcamitine Fumarate Butyrylcamitine Dibutyl
Phthalate

Butyrylcamitine Cystosine Butyrylcamitine Dibutyl
Phthalate

Butyrylcamitine

Formate Hypoxanthine Dibutyl
Phthalate

Cholesterol Glucose Gamma-
Aminobutyric
acid

Fumarate Cholesterol Dibutyl
Phthalate

Cholesterol Fumarate Cholesterol

Fumarate Inosine Formate Gamma-
Aminobutyric
acid

Lactate Glutamate Glucose Glutamate Formate Gamma-
Aminobutyric
acid

Glucose Gamma-
Aminobutyric
acid

Glucose Lithocholic
acid

Fumarate Glutamate L-
Kynurenine

Guanine Lactate Guanine Fumarate Glutamate Lactate Glutamate

Lactate L-Methionine Glucose Glycine L-Phenyl
alanine

Hypoxanthine L-
Kynurenine

Hypoxanthine Glucose Glycine L-Phenyl
alanine

Hypoxanthine

L-Phenyl
alanine

L-tyrosine Lactate Guanine L-Proline Inosine L-Phenyl
alanine

Inosine Lactate Guanine L-Proline Inosine

Malate Oxidized
glutathione

L-
Kynurenine

Hypoxanthine Malate L-Isoleucine L-Proline L-Isoleucine L-
Kynurenine

Hypoxanthine Malate L-Isoleucine

Oleamide Purine L-Phenyl
alanine

Inosine Oleamide Lithocholic
acid

L-Serine Lithocholic
acid

L-Phenyl
alanine

Inosine Niacinamide Lithocholic
acid

Pyruvic
acid

Pyroglutamic
acid

L-Proline L-Isoleucine L-Methionine Malate L-Tryptophan L-Proline L-Isoleucine Oleamide L-Tyrosine

Pyrrolidonc
carboxylic
acid

Malate Lithocholic
acid

L-Serine Niacinamide L-Tyrosine Malate Lithocholic
acid

Pyruvic
acid

L-Valine

Spermine Niacinamide L-Methionine L-Tryptophan Oleamide L-Valine Niacinamide L-Methionine N-Acetylglu
cosamine

(Continued)
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TABLE 6 | Continued

Group A 5 50 Control
(n = 10), Dry Eye (n = 15)

Group B > 50 Control
(n = 18), Dry Eye (n = 70)

Group C 5 5 Control
(n = 16), Dry Eye (n = 42)

Group D > 55 Control
(n = 12), Dry Eye (n = 43)

Group E 5 60 Control
(n = 121), Dry Eye (n = 40)

Group F > 60 Control (n = 7),
Dry Eye (n = 45)

Increased Decreased Increased Decreased Increased Decreased Increased Decreased Increased Decreased Increased Decreased

Squalene Oleamide L-serine L-Tyrosine Pyruvic
acid

N-Acetylglu
cosamine

Oleamide L-Serine Octadecanamide

Urocanic
acid

Pyruvic
acid

L-Tryptophan L-Valine Octadecanamide Pyruvic
acid

L-Tryptophan Oxidized
glutathione

L-Tyrosine N-Acetylglu
cosamine

Oxidized
glutathione

L-Tyrosine Pyrrolidonc
carboxylic
acid

L-Valine Octadecanamide Purine L-Valine Spermine

N-Acetylglu
cosamine

Oxidized
glutathione

Pyroglutamic
acid

N-Acetylglu
cosamine

Squalene

octadecanamide Purine Spermine Octadecanamide Thiodiacetic
acid

Oxidized
glutathione

Pyroglutamic
acid

Squalene Oxidized
glutathione

Uracil

Purine Pyrrolidonc
carboxylic
acid

Thiodiacetic
acid

Purine Uridine

Pyroglutamic
acid

Spermine Uracil Pyroglutamic
acid

Urocanic
acid

Pyrrolidonc
carboxylic
acid

Squalene Uridine Pyrrolidonc
carboxylic
acid

Spermine Thiodiacetic
acid

Urocanic
acid

Spermine

Squalene Uracil Squalene

Thiodiacetic
acid

Uridine Thiodiacetic
acid

Uracil Urocanic
acid

Uracil

Uridine Uridine

Urocanic
acid

Urocanic
acid

Group A age: ≤50 years, group B age: >50 years, group C age: ≤55 years, group D age: >55 years, group E age: ≤60 years, group F age: >60 years.
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FIGURE 4 | The metabolic pathways involved in dry eye disease at different ages. Six metabolites were subjected to analysis with Metaboanalyst to generate a
topology map (A), enrichment analysis network and table for the pathway-associated metabolite sets (B,C).

nodes of 50 years (group A ≤ 50, group B > 50), 55 years
(group C ≤ 55, group D > 55), and 60 years (group
E ≤ 60, group F > 60). The increasing and decreasing
metabolites are shown in Table 6. In group A, 18 of 48
metabolites did not show significance, and the remaining 30
metabolites showed the same trend in groups A and B. The
18 metabolites were subjected to enrichment and pathway
analyses. Supplementary Figures S1A–C present the perturbed
pathways. The 18 metabolites were related to the aminoacyl-
tRNA biosynthesis, glycine, serine, and threonine metabolism,
arginine and proline metabolism, valine, leucine, and isoleucine
biosynthesis, pantothenate, and Coenzyme A biosynthesis.
Comparison of groups C and D revealed that three metabolites
(i.e., alpha-dimorphecolic acid, formate, and glycine), which
were significant between the CG and DEG, did not show
significance in each group. Of note, 39 metabolites showed
the same trend in each group. Interestingly, acetylcholine,
niacinamide, and pyruvic acid increased only in group D. The
only decreasing metabolite in group C was cholesterol, while
gamma-aminobutyric acid and L-methionine decreased in group
D. In addition, an opposite trend was observed between groups
C and D for L-serine. Enrichment and pathway analyses on
the six metabolites are shown in Figures 4A–C. The data
showed that the perturbed pathways and glutamate, glycine and
serine, pyruvaldehyde, degradation, glucose–alanine cycle, and
alanine metabolism were related. In the comparison of groups
E and F, 10 of 48 metabolites did not show significance in
group F, and the remaining 38 metabolites showed the same
trend in each group. Enrichment and pathway analyses of
the 10 metabolites showed that aminoacyl-tRNA biosynthesis,
glycine, serine and threonine metabolism, glyoxylate and
dicarboxylate metabolism, tryptophan metabolism, cysteine and
methionine metabolism, and glutathione metabolism were
involved (Supplementary Figures S2A–C).

Metabolic Pathways Involved in Dry Eye
Disease
For the interpretation of differences in metabolites that may
be involved in the pathophysiological mechanism of DED,
17 increasing and 31 decreasing metabolites were subjected
to enrichment and pathway analyses. Figures 5A–C, 6A–
C present the perturbed pathways. In the DEG versus the
CG, the increasing metabolites were related to the citrate
cycle, nicotinate and nicotinamide, butanoate, arginine-proline,
pyruvate, glycolysis or gluconeogenesis, glyoxylate-dicarboxylate,
and phenylalanine; the decreasing metabolites were related
to glutathione, glycine-serine-threonine, nitrogen, d-glutamine
and d-glutamate, and alanine-aspartate-glutamate. Furthermore,
we comprehensively analyzed the metabolites that have been
associated with DED. As shown in Figure 7, malate, fumarate,
niacinamide, L-lactic acid, pyruvic acid, D-glucose, L-proline,
citric acid, L-kynurenine, and L-phenylalanine were significantly
elevated along with their metabolic pathways. In contrast,
spermine, oxidized glutathione, pyroglutamic acid, urocanic
acid, L-valine, L-tyrosine, L-methionine, L-isoleucine, glycine,
guanine, adenine, inosine, and uridine were decreased as a result
of the inhibition of metabolic pathways. In addition, metabolic
enzymes that may be involved in the changes in metabolites are
shown in Figures 5D, 6D.

DISCUSSION

Dry eye disease is an ocular surface disorder in which the tear
film is unstable due to multiple factors (Craig et al., 2017).
Studying changes in the chemical composition of tears is the
most direct approach to exploring the mechanism of dry eye
development. In an early study conducted by Srinivasan et al.
(2012) using the protein quantification method, statistically
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FIGURE 5 | The increasing metabolic pathways involved in dry eye disease. The 17 increasing metabolites were subjected to analysis with Metaboanalyst
(http://www.metaboanalyst.ca) to generate a topology map (A), enrichment analysis network and table for the pathway-associated metabolite sets (B,C), and
enrichment analysis table for the predicted metabolite enzyme sets (D).

significant differences in the protein ratios were detected between
the normal and dry eye groups. Lam et al. (2014) underscored
the pathological relevance of structure-specific alterations in tear
lipid components, particularly wax esters, to the pathogenesis
of DED. In recent years, an increasing number of research
studies have been devoted to identifying differential biomarker
candidates. Perumal et al. (2016) compared tears between
aqueous-deficient, evaporative dry eye patients and healthy
subjects, showing that 13 major proteins were differentially
expressed. A similar study performed by Huang et al. (2018)
ascertained the differential expression profiles of 18 proteins
(P < 0.05) with a fast proteomic method based on LC-
quadrupole-orbitrap-MS analysis.

The global-omics platform has been widely used in the
study of the tear proteome and lipidome (Lam et al., 2014).
However, the analysis of tear metabolites is limited to the
analysis of targeted compound classes, and the number of
identified metabolites is also markedly lower than that of
other biomolecules identified in tears. This observation may
be attributed to challenges in instrument sensitivity, as the
typical sample volume of tears is only 5–10 µl. Galbis-Estrada
et al. (2014) suggested for the first time that the severity
of dry eye exerts a significant effect on tear metabolism,

suggesting that the tear metabolome may be utilized to identify
biomarker candidates and surrogate endpoints for DED. In this
study, we improved the utilization of tears by optimizing the
collection of samples and using high-resolution MS. Previous
research directly compared the statistically significant increase
or decrease of chemicals between tears of patients with DED
and healthy subjects (Galbis-Estrada et al., 2015). We used the
LASSO algorithm, which refers to the variable selection method
(minimizing the log partial to the sum of the absolute values
of the parameters being bounded by a constant) to identify the
significant metabolites associated with DED.

By focusing on the union of the sets of metabolites that
were correlated with the OSDI, FBUT, and FL, we confirmed
48 significantly different metabolites between the DEG and CG.
As previously reported, the major metabolites were amino acids,
carbohydrates, and lipids (Butovich, 2008; Chen et al., 2011;
Nakatsukasa et al., 2011; Rantamaki et al., 2011; Zhou and
Beuerman, 2012). Firstly, increased levels of glucose (Taormina
et al., 2007), lactate (Rucker et al., 2003), and creatine (Zhou
and Beuerman, 2012) have been reported in patients with
dry eye, suggesting that these patients may be in a state of
high energy metabolism. However, glutathione, cholesterol, and
N-acetylglucosamine were noticeably decreased in the DEG
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FIGURE 6 | The decreasing metabolic pathways involved in dry eye disease. The 31 decreasing metabolites were subjected to analysis with Metaboanalyst to
generate a topology map (A), enrichment analysis network and table for the pathway-associated metabolite sets (B,C), and enrichment analysis table for the
predicted metabolite enzyme sets (D).

versus the CG. In addition, previous proteomics studies in
patients with dry eye reported that the lower expression of
lactoferrin, lipocalin, and lipophilin AC-1 (Baca et al., 2007) may
render these patients more susceptible to infections because of
the increased oxidative stress and reduced antimicrobial proteins
(Saijyothi et al., 2012). Moreover, the levels of kynurenine
increased as a result of the catabolism of tryptophan, which is
involved in the inflammatory mechanisms of Sjögren’s syndrome
with dry eye (de Oliveira et al., 2018).

Various adenine and uracil nucleotides have been shown
to improve corneal barrier function and increase both tear
fluid secretion and corneal epithelial resistance (Fujihara
et al., 2001). Kim and Kang (2013) reported that pyrimidine
nucleoside uridine exerts a protective effect on cultured human
corneal epithelial cells in an animal model of dry eye and
in patients. Our results showed that decreased levels of
adenine, uridine, pyrimidine, and uracil may contribute to lower
corneal sensitivity.

Ding and Sullivan (2012) clearly demonstrated that aging is a
risk factor for dry eye, and the mechanism of age-related increase
in the incidence of DED has also been elucidated. Interestingly,
when we grouped all patients according to different age nodes,
various changes were observed. The analysis revealed that the
basal secretion of human tears decreased with the increase of age;
we found that acetylcholine in tears was significantly increased in
group D and can activate the muscarinic receptor to cause reflex

secretion of tears (Mauduit et al., 1993), which may be a kind
of negative feedback regulation. Wang et al. (2018) found that
nicotinamide and pyruvate accumulated to higher levels in old
mice, and cholesterol was significantly lower in the aged cornea,
while 1-methylNAA may be a hallmark for the aging eye. Notably,
1-methylNAA is produced by N-methyltransferase, transferring
methyl groups from S-adenosylmethionine to nicotinamide
(Wang et al., 2018), which is consistent with the high expression
of nicotinamide and pyruvic acid, and the low expression of
cholesterol in group D. In addition, taurine is one of the most
abundant amino acids in the retina (Lei et al., 2011), cornea,
and lens. The levels of taurine in the rat cornea and lens
decrease with age (Yanshole et al., 2014), and the main pathway
of taurine biosynthesis is methionine and cysteine. Hence, we
infer that the reduction in L-methionine may be related to
taurine metabolism. Gao et al. (2018) revealed that serine is
involved in lipid metabolism and thus affects mitochondrial
metabolism. Dry eye is also closely related to lipid metabolism;
however, the mechanism of change in the levels of serine remains
unclear. It is well established that gamma-aminobutyric acid is
an important inhibitory neurotransmitter in the central nervous
system and plays an important role in tissue development and
biological signal communication; however, its mechanism of
action in the ocular surface remains unknown. Regarding the
three metabolites not exhibiting any trend, we found that their
P-values prior to grouping were close to 0.05. Therefore, we
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FIGURE 7 | Dry eye disease-related altered metabolic pathway network of the significantly regulated metabolites. Several metabolic pathways of amino acids were
activated: tryptophan, arginine-proline, and cysteine-methionine metabolism. Notably, phenylalanine-tyrosine-tryptophan biosynthesis, glycine-serine-threonine
metabolism, and valine-leucine-isoleucine biosynthesis were decreased. The increased levels of malate, citric acid, fumarate, and lactic acid indicated significant
elevation of the tricarboxylic acid (TCA) cycle and glycolysis or gluconeogenesis. Metabolites of adenine, guanine, and inosine were significantly inhibited, suggesting
decreased purine metabolism. Histidine and glutathione metabolism was inhibited, indicated by a decrease in urocanic acid, pyroglutamic acid, oxidized glutathione,
and spermine. Pyrimidine metabolism was inhibited as indicated by the levels of uridine and uracil.

hypothesized that the test effect may be influenced by the change
in sample size after grouping. In addition, 18 of 48 metabolites
in group A, seven of 48 in group C, five of 48 in group D, and
10 of 48 in group F did not show significance, indicating that
the expression of metabolites related to dry eye changed with
age. Based on the number of metabolites which did not show
significance in each group, we can infer that the metabolites
related to the dry eye significantly increase from the age of
50 years. This is consistent with the findings of the TFOS
DEWS II Epidemiology Report (Stapleton et al., 2017). Moreover,
the number of meaningful metabolites related to dry eye was
greater between the age of 50 and 60 years, which indirectly
reflected the relationship between the symptoms of dry eye and
age. At the age of 50–60 years, when the patients experience
the most obvious symptoms of dry eye, and with increasing
age, the sensitivity appears to be decreasing. This effect may be
related to weakened corneal perception. The metabolic pathways
associated with differential metabolites in different groups are
partly different, which may be related to different endocrine
levels at each age. However, the mechanism involved in this
process is unclear.

A number of reports have been published in recent years on
the components of tears. However, differences in the collection

method, the instrument for the detection of metabolites, and
the technique used for the metabolomic analysis contribute to
the discrepancies observed between the reports. Our study had
several limitations. Firstly, there was a significant difference in
age between the CG and the DEG; however, the appropriate
statistical procedure was performed to adjust for age. Secondly,
our study did not analyze the different metabolites in the dry eye
subgroups. Precise statistical analyses were essential to guarantee
the consistency of our data.

In summary, metabolomics can be used to extract molecular
information from human tears. This information can be useful
for the accurate diagnosis of DED, prediction of prognosis, and
development of personalized therapies. Our data demonstrated
the different metabolomic profiles between individuals with and
without dry eye and between different age groups. Furthermore,
they partly illustrate the relationship between changes in
metabolites, symptoms in dry eye, and age.
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FIGURE S1 | The metabolic pathways involved in dry eye disease at different
ages. Eighteen metabolites were subjected to analysis with Metaboanalyst to
generate a topology map (A), enrichment analysis network and table for the
pathway-associated metabolite sets (B,C).

FIGURE S2 | The metabolic pathways involved in dry eye disease at different
ages. Ten metabolites were subjected to analysis with Metaboanalyst to generate
a topology map (A), enrichment analysis network and table for the
pathway-associated metabolite sets (B,C).

TABLE S1 | Inclusion and exclusion criteria.

TABLE S2 | The relationship between metabolites and dry eye indexes. OSDI,
Ocular Surface Disease Index; FBUT, fluorescein breakup time; DEQ-5, 5-Item Dry
Eye Questionnaire; FL, corneal fluorescein staining; OR, odds ratio; CL, lower of
confidence interval; CU, upper of confidence interval.
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