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Alzheimer’s disease (AD) is the most common cause of dementia with cognitive decline.
The neuropathology of AD is characterized by intracellular aggregation of neurofibrillary
tangles consisting of hyperphosphorylated tau and extracellular deposition of senile
plaques composed of beta-amyloid peptides derived from amyloid precursor protein
(APP). The peptidyl-prolyl cis/trans isomerase Pin1 binds to phosphorylated serine
or threonine residues preceding proline and regulates the biological functions of its
substrates. Although Pin1 is tightly regulated under physiological conditions, Pin1
deregulation in the brain contributes to the development of neurodegenerative diseases,
including AD. In this review, we discuss the expression and regulatory mechanisms
of Pin1 in AD. We also focus on the molecular mechanisms by which Pin1 controls
two major proteins, tau and APP, after phosphorylation and their signaling cascades.
Moreover, the major impact of Pin1 deregulation on the progression of AD in animal
models is discussed. This information will lead to a better understanding of Pin1
signaling pathways in the brain and may provide therapeutic options for the treatment
of AD.

Keywords: Alzheimer’s disease, amyloid precursor protein (APP), Pin1, phosphorylation, tau

INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia, accounting for 50–75% of all
cases, and presents as a series of cognitive or behavioral symptoms including decline in memory
(Mckhann et al., 2011; Lane et al., 2018; Alzheimer’s Association, 2019). The progression of AD
may drive or be exacerbated by various systemic abnormalities, such as abnormalities in systemic
immunity, metabolic disorders, cardiovascular disease, and sleep disorders (Wang et al., 2017).
Approximately 50 million people worldwide currently suffer from dementia, and this number is
expected to triple in the next three decades due to the increasing number of aging people (Lane et al.,
2018). The neuropathological hallmarks of AD are the intracellular aggregation of neurofibrillary
tangles (NFTs) containing paired helical filaments (PHFs) consisting of hyperphosphorylated
tau protein and the extracellular deposition of senile plaques (SPs) composed of beta-
amyloid (Aβ) peptides derived from amyloid precursor protein (APP) (Hardy and Selkoe, 2002;
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Binder et al., 2005; Goedert and Spillantini, 2006;
Roberson and Mucke, 2006; Ballatore et al., 2007;
Ittner and Gotz, 2011). However, the molecular link and
mechanisms underlying the pathogenesis of AD are not
fully understood. Therefore, understanding the early disease
mechanisms responsible for neurodegeneration in AD is critical
for identifying proper diagnostic approaches and new effective
therapeutic targets.

Protein phosphorylation is one of the major post-translational
modifications and is involved in diverse cellular processes
regulating numerous physiological and pathological processes
(Cohen, 1982; Nestler and Greengard, 1983; Oliveira et al.,
2017; Butterfield, 2019). In particular, serine or threonine
residues preceding proline (S/T-P) are the most frequently
phosphorylated motifs in AD (Lu et al., 2002, 2003; Lu, 2004;
Lu and Zhou, 2007; Iqbal et al., 2016). Interestingly, due to its
unique five-carbonyl ring structure, proline is able to present as
two strikingly distinct conformations, cis and trans (Lu et al.,
1996; Ranganathan et al., 1997; Yaffe et al., 1997; Wulf et al.,
2005; Lu et al., 2007; Lu and Zhou, 2007). The peptide bond
dihedral angle ω of proline residue adopts either about 0◦

(cis conformation) or about 180◦ (trans conformation), which
plays critical roles in the rate-determining steps of protein
folding, thus controlling the biological activity of proteins and
their cellular progression (Wedemeyer et al., 2002; Andreotti,
2003; Fischer and Aumuller, 2003; Cortes-Hernandez and
Dominguez-Ramirez, 2017). The spontaneous interconversion of
cis/trans isomerization occurs slowly but can be catalyzed by a
number of peptidyl-prolyl cis/trans isomerases (PPIases), such
as cyclophilins, FK506-binding proteins (FKBPs), and parvulin-
type PPIases (Fischer and Aumuller, 2003; Lu and Zhou, 2007).
Cyclophilins and FKBPs not only belong to immunophilins
which are cellular targets for the immunosuppressive drugs, but
also have relationships with tau-related and Aβ pathology (Blair
et al., 2015). Cyclophilin D is one of the most unique and well-
studied cyclophilins, and cyclophilin D deficiency can protect
neurons from Aβ- and oxidative stress-induced toxicity (Du et al.,
2008, 2014; Guo et al., 2013). FKBP with a molecular mass
of ∼52 kDa (FKBP52) is one of the most well-studied FKBPs,
and FKBP52 has been shown to be highly expressed in neurons
and abnormally low in AD brains (Giustiniani et al., 2012,
2014, 2015). Nevertheless, the phosphorylation of an S/T-P motif
further slows the spontaneous isomerization rate and renders the
peptide bond against the catalytic action of known PPIases (Wulf
et al., 2005; Lu and Zhou, 2007). Thus, the important discovery
of Pin1 has shed light on the significance of this intrinsic
conformational switch in human physiology and pathology.

Pin1 (protein interacting with NIMA (never in mitosis A)-
1) was originally identified in a yeast genetic and biochemical
screen for proteins involved in mitotic regulation (Lu et al., 1996,
2002). The yeast Pin1 homolog Ess1 has been found to be the
only enzyme being essential for survival among 13 PPIases since
its discovery (Hanes et al., 1989; Lu, 2004). The human Pin1 has
163 amino acids with a molecular mass of 18 kDa, containing
an N-terminal WW domain (residues 1–39) characterized by
two invariant tryptophans and a C-terminal PPIase domain
(residues 50–163) which shares little similarity with cyclophilins

and FKBPs (Lu et al., 1996; Ranganathan et al., 1997). Pin1
is a unique and conserved PPIase that binds to specific
phosphorylated proline-directed serine or threonine (pS/T-P)
motifs and catalyzes the cis/trans isomerization of peptidyl-
prolyl peptide bonds (Lu et al., 1996, 1999b; Ranganathan
et al., 1997; Yaffe et al., 1997; Schutkowski et al., 1998;
Shen et al., 1998). The unique substrate specificity of Pin1 results
from the organization of active site residues (Ranganathan
et al., 1997; Lu et al., 2002). Specifically, the residues L122,
M130, and F134 form a hydrophobic binding pocket for the
substrate proline, and the cluster sequestering K63, R68, and
R69 forms a positive charged phosphate binding loop which
either interacts with a bound sulfate ion or facilitates binding
to the pS/T-P motif (Ranganathan et al., 1997; Behrsin et al.,
2007; Lee and Liou, 2018). Further studies revealed that mutation
of R68 and R69 could abolish the striking phosphorylation-
specificity completely but barely affect the basic enzymatic
activity (Yaffe et al., 1997; Zhou et al., 2000; Lu et al., 2002).
In addition, the WW domain has been shown to target Pin1 to
the substrates since it has a higher affinity to phosphorylated
peptides as compared to the PPIase domain (Lu et al., 1999b;
Smet et al., 2005). This Pin1-mediated conformational change
of its substrates regulates numerous cellular processes, such as
cell-cycle progression, cellular stress responses, development,
neuronal function, immune responses, and cell death (Zhou
et al., 1999; Lu and Zhou, 2007). Notably, Pin1 deregulation is
implicated in age-dependent human diseases, including cancer
and AD (Lu and Zhou, 2007; Lee et al., 2011b; Zhou and Lu,
2016). Pin1 activity and expression are significantly inhibited
in human AD brains and highly increased in diverse types of
cancers, indicating that Pin1 might have important roles in both
proliferation and degeneration (Lu et al., 1999a; Liou et al., 2003;
Butterfield et al., 2006; Lu and Zhou, 2007; Lee et al., 2011b;
Driver et al., 2012; Zhou and Lu, 2016; Chen et al., 2020).

This review focuses on the deregulation of Pin1 in
AD brains, the currently understood mechanisms of tau
hyperphosphorylation and APP processing associated with Pin1,
and the major impact of Pin1 deregulation on AD development.
This advanced understanding of the involvement of the Pin1
signaling pathway in phosphorylation will support Pin1 as a novel
potential diagnostic and therapeutic target.

REGULATION OF PIN1 IN AD

Pin1 Expression in AD
The significantly different levels of soluble and functional Pin1
between the brain samples of patients with AD and the control
brain samples from age-matched normal subjects suggest a
possible protective role of Pin1 against AD. A large amount of
soluble Pin1 is dramatically depleted and sequestrated in NFTs
in the human AD brain but not in age-matched normal brains
(Lu et al., 1999a). Pin1 expression has been further examined
in the human hippocampus, a brain region that is particularly
vulnerable to AD damage at early stages (Liou et al., 2003; Mu
and Gage, 2011). In the hippocampus of normally aged brain
samples, the expression of Pin1 in the CA1 region and subiculum
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is relatively lower than that in the CA4, CA3, and CA2 regions
and presubiculum (Liou et al., 2003; Lu et al., 2003). Notably,
in AD brains, NFTs predominantly occur in the CA1 region and
subiculum, consistent with the finding that these subregions are
prone to pyramidal neuron loss in AD (Davies et al., 1992; Liou
et al., 2003). Indeed, among a randomly selected pool of 1,000
pyramidal neurons in AD, 96% of pyramidal neurons with higher
expression of Pin1 seem to avoid tau-related pathology, while
71% of neurons with lower expression of Pin1 are vulnerable to
NFT formation (Liou et al., 2003). On the contrary, some groups
also reported that Pin1 was localized to granular vesicles but
not to tau aggregates in AD (Holzer et al., 2002; Ramakrishnan
et al., 2003; Dakson et al., 2011; Ando et al., 2013). Recently,
according to the hippocampal gene expression profiles of patients
from three distinct age groups, the expression of Pin1 is decreased
slightly in the aging group but is dramatically decreased in the AD
group compared with the young group (Lanke et al., 2018). These
results suggest that reduced expression of Pin1 may contribute to
the development of AD, including neurofibrillary degeneration.

Pin1 Genetics in AD
The apolipoprotein E (APOE) ε4 allele was the first definitive
gene to be implicated in late-onset AD (LOAD) and is located
on chromosome 19q13.2 (Corder et al., 1993; Huq et al., 2019;
Yamazaki et al., 2019). Although the human Pin1 gene is located
on the same chromosome, this locus has been identified as
a novel LOAD locus and is independent of APOE (Wijsman
et al., 2004). Currently, three single nucleotide polymorphisms
(SNPs) in the promoter region of the Pin1 gene have been
identified to investigate their correlations with AD, including
rs2287839 (-5185 G/C), rs2233678 (-842 G/C), and rs2233679
(-667 T/C). All of Pin1 polymorphism studies were conducted
using genomic DNA from blood cells between AD patients
and age-matched normal subjects. The polymorphism rs2233678
results in decreased Pin1 levels and is associated with a
significantly raised risk of developing AD (Segat et al., 2007).
The polymorphism rs2287839 leads to increased Pin1 expression
and is correlated with 3-year delayed onset of LOAD (Ma et al.,
2012b). However, other groups showed that polymorphisms
in the promoter of Pin1, rs2233678 and rs2233679, were not
associated with increased LOAD risk (Lambert et al., 2006;
Nowotny et al., 2007; Cao et al., 2013). Interestingly, rs2233678
and rs2233679 have also been shown to decrease Pin1 expression
and are implicated in the decreased risk of breast cancer, lung
cancer, and nasopharyngeal carcinoma (Han et al., 2010; Lu et al.,
2011, 2013). Therefore, since the controversial results remain
to be elucidated, further validation of large prospective studies
is needed to verify the roles of Pin1 polymorphisms in AD.
Recently, a highly pathogenic and novel somatic single nucleotide
variation (SNV) in Pin1 has been found in the hippocampal
formation (HIF) of an AD patient (Park et al., 2019). Since the
T152M mutation is located in the C-terminal PPIase domain
of Pin1, the mutation might attenuate the enzymatic activity
of Pin1 and increase tau hyperphosphorylation (Park et al.,
2019). However, the molecular mechanism by which the somatic
mutation regulates Pin1 activity and whether T152M knockin
mice show tau-related and Aβ pathology remain to be elucidated.

Pin1 Post-translational Modification in
AD
Pin1 activity is regulated by post-translational modifications,
including oxidation and phosphorylation, in AD. Neurons in the
human brain are vulnerable to oxidative stress, and increased
oxidative damage has been shown to be an early event in AD
(Markesbery, 1997; Nunomura et al., 2001; Halliwell, 2006).
Notably, Pin1 is modified by oxidation, leading to the loss of
its activity in the hippocampus in AD (Butterfield et al., 2006;
Sultana et al., 2006). Besides, oxidized Pin1 may be recognized by
the ubiquitinylation system, giving rise to the polyubiquitination
(Tramutola et al., 2018). By employing antibodies specifically
recognizing oxidized C113 of Pin1, Pin1 oxidation on C113 has
been identified to inactivate the catalytic activity of Pin1, and
C113-oxidized Pin1 is elevated in human AD brains compared
with age-matched controls (Chen et al., 2015). It is possible that
an increased percentage of C113-oxidized Pin1 in response to
oxidative stress may result in the inhibition of enzymatic activity
and reduction of Pin1 levels. The loss of Pin1 activity induced by
oxidative stress may also result in the loss of synaptic plasticity,
which is the structural basis for memory impairment in AD (Xu
et al., 2017). These results suggest that the protective roles of Pin1
may be attenuated by a variety of reactive oxygen species, which
are common in human AD brains.

Recently, death-associated protein kinase 1 (DAPK1) has
been found to play essential roles in neuronal cell death
and various neurodegenerative diseases, including AD (Chen
et al., 2019; Kim et al., 2019). Importantly, DAPK1 is capable
of phosphorylating Pin1 at S71 in the PPIase domain, thus
inhibiting its nuclear localization, prolyl isomerase activity, and
cellular function (Lee et al., 2011a,b). DAPK1 dramatically
increases tau protein stability and hyperphosphorylation at
multiple AD-related sites, which is mediated by the inhibition
of Pin1 activity by phosphorylation (Kim et al., 2014). DAPK1
phosphorylates and activates N-myc downstream-regulated gene
2 (NDRG2), resulting in increased tau phosphorylation via a
reduction in Pin1 expression (Rong et al., 2017; You et al.,
2017). In summary, the existence of Pin1 in the normal brain
may have certain protective functions against AD, as decreased
expression or declined activity of Pin1 make neurons vulnerable
to pathologies related to AD.

PIN1 AND TAU-RELATED PATHOLOGY

The intracellular aggregation of NFTs containing PHFs made
of hyperphosphorylated tau is one of the neuropathological
hallmarks of AD (Geschwind, 2003; Binder et al., 2005;
Goedert and Spillantini, 2006; Roberson and Mucke, 2006;
Ballatore et al., 2007). Compared with Aβ pathology, which
may play a critical role in AD pathogenesis, the prevalence of
NFTs has a strong correlation with the severity of cognitive
impairment, indicating that tau-related pathology may indicate
the status of cognitive deficits and dementia (Nelson et al.,
2012). Encoded by a single gene, MAPT, located on human
chromosome 17, tau is a type of microtubule-associated protein
and is expressed predominantly in the brain (Lee et al., 1989;
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Albayram et al., 2016; Iqbal et al., 2016). It is well-established that
the physiological function of tau is to maintain microtubule-
related functions, such as microtubule assembly and axonal
transportation, and the abnormal hyperphosphorylation of tau
inhibits normal microtubule functions and alters tau protein
stability (Drubin and Kirschner, 1986; Bramblett et al., 1993;
Alonso et al., 1994; Petrucelli et al., 2004; Shimura et al., 2004;
Stoothoff and Johnson, 2005; Poppek et al., 2006). Specifically,
abnormally phosphorylated tau is detached from microtubules
and disrupts microtubule integrity (Iqbal et al., 2009, 2016).
Hyperphosphorylated tau, but not normal tau, is a component
of PHF-forming insoluble aggregates and further becomes NFTs
(Lee et al., 1991; Goedert et al., 1992; Matsuo et al., 1994). These
results indicate that the phosphorylation of tau is essential for the
development of tau-related pathology.

The phosphorylation of T231 (pT231), among a number
of tau phosphorylation sites, appears to be the first detectable
event during AD pretangle formation (Luna-Munoz et al., 2007).
pT231 may play a critical role in regulating the conformation and
misfolding process of tau (Lee et al., 2011b; Iqbal et al., 2016).
Notably, Pin1 colocalizes with phosphorylated tau, directly binds
to pT231-tau, and can restore its biological activity by promoting
tau dephosphorylation to bind microtubules and increase
microtubule assembly (Lu et al., 1999a, 2003; Ramakrishnan
et al., 2003; Lu, 2004). Pin1 facilitates tau dephosphorylation
through the proline-directed phosphatase PP2A, which has
conformational specificity and dephosphorylates only the trans
pS/T-P motif (Zhou et al., 2000). Pin1 has been found to bind
PHFs and be trapped in tangles in the AD brain, resulting
in the depletion of soluble Pin1 (Lu et al., 1999a). A recent
in vitro study showed that reduced Pin1 expression led to the
increase of pT231-tau levels (Park et al., 2019). Pin1 has been
shown to accelerate the cis to trans isomerization of pT231-tau,
restore its function, and maintain tau levels via proteasome-
dependent proteolytic pathway (Poppek et al., 2006; Lim et al.,
2008). However, Pin1 has no effect on T231A mutant tau
(Lim et al., 2008; Nakamura et al., 2012). Interestingly, when
hippocampal cultured neurons are exposed to Aβ42 oligomers,
Pin1 can be activated to dephosphorylate pT231-tau mediated
by PP2A (Bulbarelli et al., 2009). Notably, studies have showed
that microtubule assembly can be significantly increased by
unphosphorylated wild-type tau, but not phosphorylated tau
which can be restored by PP2A, while the phosphorylated T231A
tau is still able to promote microtubule assembly and this ability
is not affected by Pin1, suggesting that T231 phosphorylation
is critical for Pin1 to maintain microtubule function of tau
(Nakamura et al., 2012). Therefore, tau hyperphosphorylation
might induce tau aggregation which further sequestrates Pin1,
thereby preventing pT231-tau dephosphorylation mediated
by PP2A (Figure 1). However, other studies have questioned
the specificity of Pin1 targeting site, as they revealed that
Pin1 recognized other pS/T-P sites such as pT212 and pS235
motifs in full-length tau, which were the preferred substrates
over pT231 motif (Smet et al., 2004, 2005; Landrieu et al.,
2006; Kimura et al., 2013; Eichner et al., 2016). Besides,
other studies also indicated that Pin1 did not regulate the
microtubule function of phosphorylated tau (Lippens et al., 2007;

FIGURE 1 | Pin1-regulated isomerization of pT231-tau against tau-related
pathology. There are two strikingly distinct cis and trans conformations of the
pT231 motif of tau after phosphorylation. Cis, but not trans, pT231-tau
promotes tau hyperphosphorylation, the disruption of microtubule assembly,
tau aggregation, tangle formation, neuronal apoptosis, and
neurodegeneration. Pin1 binds to the pT231-P motif and isomerizes the cis
form of pT231 to the trans form. Low levels of Pin1 due to genetic alteration or
the inhibition of Pin1 expression or activity by phosphorylation, oxidation, and
sequestration increase the levels of cis pT231-tau and may contribute to AD.

Landrieu et al., 2010, 2011; Kutter et al., 2016; Lu et al., 2016;
Rogals et al., 2016). Therefore, the specificity of Pin1 targeting
sites of tau and the regulatory function of Pin1 toward
phosphorylated tau raise other possibilities which need
further investigation.

Recently, the Lu laboratory developed conformation-specific
cis and trans polyclonal and monoclonal pT231-tau antibodies
(Nakamura et al., 2012; Kondo et al., 2015). Specifically,
cis pT231-tau appears to be more responsible for resistance
to tau dephosphorylation and degradation, the disruption of
microtubule structure, and vulnerability toward aggregation, and
Pin1 catalyzes the isomerization of pT231-tau from cis to trans,
restoring its ability to bind microtubules (Lu et al., 1999a, 2016;
Nakamura et al., 2012; Albayram et al., 2016, 2018). Indeed, cis
pT231-tau, but not trans pT231-tau, is significantly increased
and localized to dystrophic neurites in human mild cognitive
impairment (MCI) and AD brains (Nakamura et al., 2012).
Furthermore, cis pT231-tau, but not trans pT231-tau, strongly
correlates with neurofibrillary degeneration, which is associated
with decreased Pin1 levels in the AD hippocampus, in accord
with the binding of Pin1 to PHFs leading to the depletion of
soluble Pin1 (Lu et al., 1999a; Nakamura et al., 2012). In addition,
cis pT231-tau is dramatically induced, facilitates the disruption
of axonal microtubules and organelle transport, and finally leads
to neuronal apoptosis under neuronal stress (Kondo et al.,
2015). Therefore, the neurotoxic cis pT231-tau may function as
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a critical driver of neurodegeneration, as it can spread among
neurons in a prion-like fashion (Kondo et al., 2015; Albayram
et al., 2018). In tau-overexpressing mice, while trans pT231-tau
is barely detected in sarkosyl-insoluble fractions, cis pT231-tau
levels are robustly increased in insoluble fractions in the brain
(Nakamura et al., 2012). Interestingly, cis pT231-tau has been
shown to be a major early driver of traumatic brain injury (Kondo
et al., 2015; Albayram et al., 2017). These results suggest that the
Pin1-regulated isomerization of the cis to trans conformations
of phosphorylated tau is a key mechanism to protect against
tau-related pathology. Nevertheless, the cis pT231-tau antibody
raised against a peptide containing a chemically modified proline
instead of a native cis-proline has also been questioned, and it is
suggested that the specific pT231-P232 bond in phosphorylated
tau be majorly in the trans conformation (Shih et al., 2012; Ahuja
et al., 2016; Lippens et al., 2016).

Thus, Pin1 may maintain normal tau functions through the
conformational change of pT231-tau, but its deregulation leads
to tau-related pathology during AD development. However,
Pin1 acts on different phosphorylation sites of tau and has
opposite results of tau function. This discrepancy may be due
to the different characteristics of the diverse physiological and
pathological conditions. Therefore, more evidence is needed to
clarify the role of Pin1 in phosphorylated tau and its function.

PIN1 AND APP PROCESSING

The extracellular deposition of SPs composed of Aβ peptide
derived from APP is another neuropathological hallmark of AD
(Hardy and Selkoe, 2002). The human APP gene is located on
chromosome 21 and encodes a type I transmembrane protein that
plays important roles in neuronal growth, survival, and repair
(Thinakaran and Koo, 2008). Upon synthesis in the endoplasmic
reticulum, APP undergoes trafficking through the Golgi/trans-
Golgi network (TGN) toward the plasma membrane, where it
accumulates and internalizes to the endosomes (Selkoe et al.,
1996; Thinakaran and Koo, 2008; Pastorino et al., 2012). APP
is processed by two different proteolytic processes, the non-
amyloidogenic pathway and amyloidogenic pathway (Koo and
Squazzo, 1994; Selkoe et al., 1996; Hardy and Selkoe, 2002;
Nunan and Small, 2002; Vetrivel and Thinakaran, 2006). In
the non-amyloidogenic processing pathway, APP is cleaved
by α-secretase at a site within the sequence of Aβ at the
plasma membrane, generating soluble extracellular sAPPα with
neurotrophic properties and a C-terminal fragment, C83; C83 is
further cleaved by γ-secretase to generate the APP intracellular
domain (ACID) and a small p3 fragment, thus avoiding Aβ

pathology (Esch et al., 1990; Sisodia et al., 1990; Selkoe et al.,
1996; Hardy and Selkoe, 2002; Thinakaran and Koo, 2008). In the
amyloidogenic processing pathway, APP is internalized to early
endosomes through Fe65 and is cleaved by β-secretase to generate
soluble sAPPβ and a C-terminal fragment, C99; C99 is further
cleaved by γ-secretase in late endosomes to generate the ACID
and intact Aβ, inducing Aβ pathology, which is elevated in AD
(Selkoe et al., 1996; Wolfe et al., 1999; Yan et al., 1999; Cai et al.,
2001; Hardy and Selkoe, 2002; Thinakaran and Koo, 2008).

APP processing and Aβ generation are regulated by
the phosphorylation of the intracellular C-terminal fragment
(Pastorino and Lu, 2005; Suzuki and Nakaya, 2008). Notably,
the phosphorylation of APP at the T668-P motif is increased
in the brains of AD patients compared with those of age-
matched controls, facilitating the amyloidogenic processing
pathway and Aβ generation (Lee et al., 2003). Importantly,
Pin1 binds to APP specifically on the phosphorylated T668-P
motif in vitro and in vivo (Pastorino et al., 2006). The binding
of Pin1 to phosphorylated T668-P accelerates its isomerization
from cis to trans by over 1,000-fold, as visualized by NMR
spectroscopy (Ramelot et al., 2000; Ramelot and Nicholson, 2001;
Pastorino et al., 2006). The overexpression of Pin1 significantly
decreases Aβ secretion in vitro, while Pin1 ablation dramatically
increases insoluble Aβ42 secretion in cell models and mouse
models in an age-dependent manner (Pastorino et al., 2006).
Pin1 is colocalized with APP at the plasma membrane and
in clathrin-coated vesicles rather than endosomes, and Pin1
inhibition leads to reduced APP levels at the plasma membrane
(Pastorino et al., 2006, 2012). Pin1 influences the levels of Fe65,
which can interact with APP and facilitate amyloidogenic APP
processing (Pastorino et al., 2012, 2013). Thus, Pin1 isomerizes
APP to the trans conformation, controls the intracellular
localization and internalization of APP, modulates AICD in a
Fe65-dependent manner, and thus exerts a protective function
against Aβ pathology, indicating that the Pin1-regulated prolyl
isomerization of APP plays a key role in regulating Aβ pathology.

A number of protein kinases responsible for phosphorylating
APP at the T668-P motif are abnormally elevated in the AD
brain, such as GSK3β, SAPK1b/JNK3, Cdc2, and Cdk5 (Zhou
et al., 2000; Lee et al., 2003, 2011b; Lu and Zhou, 2007; Ma
et al., 2012a). Among them, GSK3β is a widely expressed
proline-directed serine/threonine kinase that is implicated in
a number of physiological processes in the nervous system
(Jiang et al., 2005; Yoshimura et al., 2005; Castano et al.,
2010). The aberrant regulation of GSK3β contributes to major
neurological disorders, including both familial and sporadic AD
(Hooper et al., 2008; Peineau et al., 2008). The hyperactivity
of GSK3β increases Aβ production, while the inhibition of
GSK3β reduces plaques in vitro and in vivo (Lovestone et al.,
1994; Flaherty et al., 2000; Engel et al., 2006; Hurtado et al.,
2012). Ma and colleagues showed that Pin1 directly binds
to the phosphorylated T330-P motif in GSK3β and inhibits
its kinase activity in vitro and in vivo (Ma et al., 2012a).
The suppression of Pin1 causes GSK3β activation, leading to
increased levels of T668-phosphorylated APP and amyloidogenic
APP processing. In addition, Pin1 promotes APP protein
degradation by binding to the phosphorylated T330-P motif
of GSK3β (Ma et al., 2012a; Xiong et al., 2013). Thus, Pin1
promotes APP protein turnover by inhibiting GSK3β activity,
suggesting a novel neuroprotective role of Pin1 against Aβ

pathology. However, contrasting results showed that in the Pin1-
deficient mice Aβ was lower and Pin1 promoted Aβ production
in vitro (Akiyama et al., 2005). The discrepancy might due to
the usage of β-cleaved carboxy-terminal frangment C99 instead
of full-length APP and detection of the mouse brain at an
unspecified age. Thus, in healthy neurons, sufficient levels of
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Pin1 promote the non-amyloidogenic processing pathway of APP
and its turnover, reducing Aβ secretion. However, when Pin1
expression is reduced or its activity is inhibited, amyloidogenic
APP processing is increased, resulting in Aβ production and Aβ

plaques in the AD brain (Figure 2).

PIN1 MOUSE MODELS OF AD

Animal models recapitulating the characteristics of AD are of
vital importance not only for performing in vivo studies that
explore molecular mechanisms but also for providing preclinical
subjects for potential drug candidates. Due to research on familial
forms of AD, transgenic mouse models have been developed
and widely used (Games et al., 1995; Duff et al., 1996; Hsiao
et al., 1996; Lewis et al., 2001; Gotz and Ittner, 2008). However,
mutated tau and APP overexpression mice do not recapitulate
all features of AD (Drummond and Wisniewski, 2017). Pin1
knockout (KO) mice were initially created to explore the function
of Pin1 in mammalian cells, and they were viable and developed
normally to adulthood (Fujimori et al., 1999). Importantly, Pin1
KO mice are the first mouse models to show both tau-related and
Aβ pathology when a specific gene is deleted (Liou et al., 2003;
Pastorino et al., 2006; Lu and Zhou, 2007; Lee et al., 2011b).

Pin1 KO mice show tau hyperphosphorylation leading to age-
dependent tau filament formation and NFT-like pathologies
compared with their wild-type littermates (Liou et al., 2003).
Pin1-KO mice also show neuronal loss and progressive age-
dependent motor and behavioral deficits, such as abnormal
limb-clasping reflexes, hunched posture, reduced mobility, and
eye irritation (Liou et al., 2003). When neuron-specific Pin1
transgenic (Tg) mice are bred with wild-type tau Tg mice, Pin1
overexpression reduces tau hyperphosphorylation, NFT specific
conformations, and aggregation (Lim et al., 2008). Surprisingly,
in Tg mice overexpressing human P301L mutant tau, which
causes frontotemporal dementia with parkinsonism linked to
chromosome 17 (FTDP-17), Pin1 KO drastically decreases the
total tau levels and the hyperphosphorylation of tau, while
Pin1-Tg promotes tau hyperphosphorylation, tau aggregation,
and NFT conformation (Lim et al., 2008). This unexpected
discrepancy was explained that the mutation might somehow
render the pT231 motif in tau to be favored in the trans
conformations (Lim et al., 2008). Therefore, Pin1 overexpression
might accelerate the isomerization of the protective trans
conformation to the pathogenic cis conformation, whereas Pin1
inhibition contributes to maintaining the trans conformation,
facilitating P301L tau degradation (Lim et al., 2008). Since no tau
mutations have been found in AD, tau-related pathology induced

FIGURE 2 | Pin1-mediated APP processing. Pin1 binds to the pT668-P motif of APP, accelerates its isomerization from cis to trans, stabilizes APP at the plasma
membrane, and ultimately promotes the non-amyloidogenic processing pathway. Moreover, conformational changes in APP may affect the binding of Fe65, thus
preventing the amyloidogenic processing pathway. Furthermore, Pin1 promotes APP protein turnover by decreasing GSK3β activity. Under physiological conditions,
sufficient levels of Pin1 protect healthy neurons against Aβ pathology. When Pin1 expression/activity is inhibited, the amyloidogenic processing pathway is dominant,
resulting in Aβ production and plaques.
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by exogenous overexpression of mutant tau may be different from
human AD in terms of molecular regulatory mechanisms. In
addition, when Pin1 KO mice have been bred with tau-Tg mice,
these mice exhibit increased cis pT231-tau, but decreased trans
pT231-tau levels, supporting the Pin1-mediated suppression of
tau-related neurodegeneration in mice (Nakamura et al., 2012).

Pin1 ablation in mice also affects APP processing in APP-
overexpressing mouse brains (Pastorino et al., 2006). Compared
with the wild-type littermates, Pin1 KO mice exhibit increased
levels of insoluble Aβ42, the major toxic species, at 15 months
of age, but not at 6 months of age, suggesting that Pin1 KO
promotes amyloidogenic APP processing in an age-dependent
manner (Pastorino et al., 2006). Pin1 ablation in APP-Tg2576
mice significantly induces insoluble Aβ42 species and increases
soluble APPβ levels at 6 months of age. These Aβ42 species
are mainly localized to multivesicular bodies of neurons that
experience Aβ plaque pathology (Pastorino et al., 2006). Thus,
Pin1 is a unique protein, the deletion of which causes age-
dependent tau-related and Aβ pathologies, suggesting evidence
of a molecular link between tangles and plagues and a protective
role of Pin1 against AD.

PIN1 IN DIAGNOSTIC AND
THERAPEUTIC STRATEGIES FOR AD

Following a series of abnormal tau hyperphosphorylation that
induces the formation of NFTs, pT231 appears to be the first
detectable phosphorylation site of tau (Luna-Munoz et al., 2007).
Due to the elevated sequestration of pT231-tau into the tangles
and the decreased levels of pT231-tau that enter the cerebrospinal
fluid (CSF), pT231-tau provides an early and specific biomarker
of AD progression (Hampel et al., 2001; Spiegel et al., 2016). The
assessment of pT231-tau in the CSF has been regarded as a good
predictor of conversion from MCI to AD (Ewers et al., 2007).
However, the presence of individual variations using pT231-tau
might impede its application as a standardized test, whereas
whether the existence of distinct forms (cis or trans) of pT231-
tau helps to explain the variations remains to be investigated
(Nakamura et al., 2012). Notably, cis and trans pT231-tau forms,
which are regulated by Pin1, can be distinguished by recently
developed conformation-specific antibodies (Nakamura et al.,
2012; Kondo et al., 2015). Importantly, cis pT231-tau appears
early in MCI, is pathologically more relevant, and contributes to
AD (Nakamura et al., 2012). Current diagnostic approaches using
CSF or positron emission tomography (PET) are either invasive
or expensive, making it difficult to achieve early diagnosis using
these approaches (Wang et al., 2017; Long and Holtzman, 2019).
Commonly known markers used as diagnostic methods are
often detectable months or years after the initiation of AD
pathogenesis. Therefore, early detectable concentrations of cis
pT231-tau, changes in cis pT231-tau levels, and the ratio of cis
pT231-tau to trans pT231-tau in body fluids and blood from
normal and AD patients might be better and more standardized
biomarkers for early diagnosis.

To date, AD remains incurable, and a pool of issues remains
to be solved. First and foremost, whether Aβ pathology occurs

first and induces tau-related pathology, or vice versa, is still
controversial. The answer to this question may influence the
efficacy of targeted therapies specific for Aβ or tau. Moreover,
available therapeutic strategies primarily focus on slowing down
the progression of cognitive decline and neurodegeneration
rather than targeting essential pathways (Pastorino et al., 2013).
Furthermore, the administration of drugs at late stages due to
the lack of early diagnosis may dramatically attenuate the efficacy
since AD usually takes more than a decade to develop. Notably,
the discovery of the Pin1-catalyzed cis/trans isomerization of
phosphorylated S/T-P motifs in tau and APP and cis pT231-tau,
but not trans pT231-tau, as an early and potent driver in MCI
and AD, offers an attractive and promising therapeutic strategy
for AD. A generation of mouse monoclonal antibodies specific
for cis pT231-tau has been developed and shown to eliminate
pathologic cis pT231-tau and prevent tau-related pathology
development and spread (Kondo et al., 2015; Albayram et al.,
2017). Importantly, immunotherapy employing this strategy
specifically aims at the earliest possible pathogenic form of tau
rather than the physiological trans form of pT231-tau with
normal functions in AD (Kondo et al., 2015). Thus, further
humanization of the cis pT231-tau antibody is conducive to
developing novel therapeutic strategies for AD.

Because Pin1 plays an important role in preventing tau-related
and Aβ pathologies in AD, the upregulation and/or activation of
Pin1 could be a viable strategy for AD treatment. However, Pin1
overexpression contributes to a number of cancers, eliminating
the possibility of direct administration (Zhou and Lu, 2016).
Aberrant Pin1 elevation has been shown to be involved in many
signaling events such as cell cycle coordination, chromosome
instability, proliferation, migration, metastasis, and apoptosis
in cancer (Zhou and Lu, 2016). Indeed, Pin1 is known to
activate 56 oncogenes and inactivate 26 tumor suppressors
by regulating their activity, protein interaction, stability, and
cellular localization (Cheng and Tse, 2019; Yu et al., 2020).
Pin1 overexpression in mammary gland induces chromosome
instability and leads to breast cancer development and Pin1
ablation effectively prevents tumorigenesis by overexpressing
Neu in animal models (Wulf et al., 2004; Suizu et al., 2006).
Therefore, direct Pin1 activation in brain might cause malignant
brain tumor. If we could specifically deliver Pin1 activator to
neurons, it might be useful because neurons do not divide or
proliferate. In addition, therapeutic strategies targeting Pin1 also
focus on the upstream regulators of Pin1 such as DAPK1 or
targets such as cis or trans pT231-tau. Indeed, the inhibition of
DAPK1 has been shown to attenuate tau hyperphosphorylation
and Aβ production (Kim et al., 2014, 2016, 2019; You et al., 2017;
Chen et al., 2019). Thus, Pin1-related therapeutic strategies might
be valuable in the treatment of AD.

CONCLUSION

The peptidyl-prolyl cis/trans isomerase Pin1 is a crucial regulator
that is implicated in a wide variety of physiological and
pathological activities. The deregulation of Pin1 expression
and/or activity is associated with the development of cancer
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and neurodegeneration, including AD. Interestingly, Pin1
regulates the conformational change of both tau and APP and
has protective effects against tau-related and Aβ pathology,
suggesting that Pin1 might be a novel and promising candidate
for exploring the molecular mechanisms, diagnosis, and
treatment of AD.

The availability of drug candidates largely depends on animal
models. Currently, many types of single or biogenic Tg mice are
broadly used to study tau-related and Aβ pathologies; however,
these mice fail to recapitulate all aspects of human AD. Pin1
KO mice develop both tau-related and Aβ pathologies in an
age-dependent manner by employing endogenous tau and APP
proteins, providing an attractive in vivo model for AD research
and drug testing. Novel therapeutic strategies such as cis pT231-
tau antibodies that target conformation-specific phosphorylated
tau or small molecules such as DAPK1 inhibitors might provide
effective treatment for human AD. However, many questions,
including how to regulate Pin1 levels due to its dual roles in
cancer and AD, how to overcome the blood-brain barrier for
antibody treatment, and how to validate a suitable time for
drug administration in the early stage of AD, remain to be
answered before clinical validation. Moreover, Pin1 has been
shown to lead different direction of tau phosphorylation and
APP processing depending on cellular context. More research is

urgently needed to illuminate the underlying roles of Pin in the
molecular regulation, early diagnosis, potential treatment, and
possible prevention of AD.
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