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Neural progenitor cells (NPCs) play a central role during the development and evolution
of the mammalian neocortex. Precise temporal and spatial control of NPC proliferation
by a concert of cell-intrinsic and cell-extrinsic factors is essential for the correct formation
and proper function of the neocortex. In this review, we focus on the regulation of
NPC proliferation by neurotransmitters, which act as a group of cell-extrinsic factors
during mammalian neocortex development. We first summarize, from both in vivo
and in vitro studies, our current knowledge on how γ-aminobutyric acid (GABA),
glutamate and serotonin modulate NPC proliferation in the developing neocortex and
the potential involvements of different receptors in the underlying mechanisms. Another
focus of this review is to discuss future perspectives using conditionally gene-modified
mice and human brain organoids as model systems to further our understanding
on the contribution of neurotransmitters to the development of a normal neocortex,
as well as how dysregulated neurotransmitter signaling leads to developmental and
psychiatric disorders.
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INTRODUCTION

During mammalian brain development, the formation of the central nervous system (CNS)
results from a series of events, which begins with the neural induction and the proliferation of
the NPCs (Goodman and Shatz, 1993). In the early developing neocortex, neuroepithelial cells
(NECs) function as the primary NPCs and undergo symmetric proliferative divisions to expand
the neocortical NPC pool (Götz and Huttner, 2005; Lui et al., 2011; Florio and Huttner, 2014).
At the onset of neurogenesis, NECs transform into apical (or ventricular) radial glia (aRG), which
undergo mitosis at the ventricular surface and reside in the ventricular zone (VZ) of the developing
neocortex (Götz and Huttner, 2005; Rakic, 2009; Lui et al., 2011; Florio and Huttner, 2014; Wilsch-
Bräuninger et al., 2016). In virtually all mammals, aRG are thought to possess high proliferative
capacity to both amplify themselves and give rise to basal progenitors (BPs), including basal
intermediate progenitors (bIPs) and basal (or outer) radial glia (bRG) (Götz and Huttner, 2005;
Rakic, 2009; Fietz et al., 2010; Hansen et al., 2010; Lui et al., 2011; Reillo et al., 2011; Florio and
Huttner, 2014; Wilsch-Bräuninger et al., 2016). BPs delaminate from the ventricular surface and
migrate to the subventricular zone (SVZ), where they typically reside and undergo mitosis to give
rise to cortical neurons, which are destined for six different cortical layers (Götz and Huttner, 2005;
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Rakic, 2009; Lui et al., 2011; Florio and Huttner, 2014; Wilsch-
Bräuninger et al., 2016). At later stages of development, either
following neurogenesis or concomitant with still ongoing neuron
production, NPCs switch their fate to generate glial cells, such
as astrocytes and oligodendrocytes (Lee et al., 2000). In order to
guarantee the proper construction of the complex neocortex, each
step in this developmental sequence must be under precise spatial
and temporal regulation. While significant progress has been
made in understanding how NPC–intrinsic factors contribute to
a balanced NPC proliferation, there are still open questions about
the regulation of NPC proliferation by environmental cues, such
as neurotransmitters.

Among several categories of cell-extrinsic signals,
neurotransmitters have gained attention as important factors
to influence CNS development (Cameron et al., 1998; Nguyen
et al., 2001; Ojeda and Avila, 2019), although the classic role
of neurotransmitters is in neuronal communication by acting
as synaptic chemical messengers in the mature CNS. Indeed,
neurotransmitters mediate developmental processes such as
cell proliferation (Haydar et al., 2000), neuronal differentiation
(Salazar et al., 2008), neuronal migration (Komuro and Rakic,
1993; Murthy et al., 2014), synaptic maturation (Fu et al.,
2012), neurite growth (Anelli et al., 2013) and cell death
(Ikonomidou et al., 2001). For example, serotonin controls the
migration of caudal ganglionic eminence-derived interneurons
into the neocortex (Murthy et al., 2014). The GABA receptors
along developing inhibitory axons sense GABA release and
promote presynaptic maturation to shape the pattern of
synapse formation and distribution (Fu et al., 2012). Glutamate
induces neuronal apoptosis, which is mediated via activation
of calpain and caspase-3 proteases as well as the translocation
of apoptosis inducing factor (Zhang and Bhavnani, 2006).
Several recent studies strongly suggest that neurotransmitters
could act as growth regulators or morphogen-like signaling
molecules to regulate NPC proliferation during cortical
development (Represa and Ben-Ari, 2005; Côté et al., 2007).
In this review, we summarize our current knowledge on
the regulation of neocortical NPC proliferation by different
neurotransmitters during mammalian brain development
and discuss future research perspectives in studying the
involvement of neurotransmitters in neocortical development
under both physiological and pathological conditions. We
do not discuss in detail the synthesis and metabolism of
any individual neurotransmitter, nor their role in other
developmental processes beside progenitor proliferation, as these
aspects have been intensively reviewed previously (Cameron
et al., 1998; Nguyen et al., 2001; Represa and Ben-Ari, 2005;
Ojeda and Avila, 2019).

NPC PROLIFERATION REGULATED BY
NEUROTRANSMITTERS

GABA
During mammalian brain development, GABA, the main
inhibitory neurotransmitter in the mature brain, excites cortical
cells due to the high expression level of the Na+-K+-2Cl−

cotransporter (NKCC1) (Hübner et al., 2001) and low expression
level of K+-Cl− transporter member five (KCC2) (Owens and
Kriegstein, 2002; Lee et al., 2005). As one of the most abundant
neurotransmitters detected in the developing brain, GABA
appears in the germinal zones, intermediate zone and layer I of
the cortical plate during early stages of development (Haydar
et al., 2000). Starting as early as E9.5 in mice, the GABAergic
neurons generated from subcortical structures are gradually
migrating into the developing neocortex, and these neurons
could serve as the source of releasable GABA in the neocortical
wall (Tanaka and Nakajima, 2012).

Although GABA is the most studied neurotransmitter in
the context of regulating the proliferation of NPCs, there is
apparent controversy about the trophic effect of GABA during
neocortical development. Upon binding of GABA to GABAA
receptors, which in cultured E16–E19 rat neocortical tissue
explants have been shown to be expressed in the VZ NPCs
(presumably in aRG), Cl− ions diffuse through these ion
channels along their concentration gradient (LoTurco et al.,
1995). The NPCs in the VZ of developing rat neocortex thus
lose intracellular Cl−, which leads to membrane depolarization
and the increase of intracellular Ca2+ concentration through
the activation of voltage-gated calcium channels (VGCCs)
(LoTurco et al., 1995).This increase of intracellular Ca2+

concentration, induced by GABA, is potentially involved in
the inhibition of DNA synthesis of VZ NPCs and decreases
their proliferation rate in the cultured tissue explants of
developing rat neocortex (LoTurco et al., 1995). The same
study also reported that the effects of GABA in inhibiting
DNA synthesis in VZ NPCs can be blocked by modulating
the Cl− concentration using a GABAA receptor antagonist
(LoTurco et al., 1995). In line with this, another study (Andang
et al., 2008) suggested that GABA inhibits cell cycle progression
and therefore decreases proliferation of mouse embryonic
stem cells and neural crest stem cells, which express glutamic
acid decarboxylase (GAD) and functional GABAA receptors.
The underlying mechanisms include phosphorylation of the
critical factor in the S/G2 DNA-damage checkpoint complex,
histone H2AX, by phosphatidylinositol-3-OH-kinase-related
kinase (PIKK) upon membrane hyperpolarization following
GABAA receptor activation (Andang et al., 2008). It has recently
been shown that mouse VZ NPCs become more hyperpolarized
at later developmental stages and that experimental membrane
hyperpolarization shifts the transcriptional program and division
mode of VZ NPCs to a later developmental stage, in which VZ
NPCs generate two daughter IPs instead of amplifying themselves
(Vitali et al., 2018).

However, it has also been reported that GABAA receptor
activation stimulates cell proliferation and renewal in a culture
system of isolated NPCs from developing mouse brain. The
increased proliferation rate was found to be due to an up-
regulation of ciliary neurotrophic factor (CNTF) receptor
expression, which in turn enhanced the trophic effect of CNTF
(Fukui et al., 2008b). A follow-up study from the same research
group further showed that GABAB receptor activation led to a
significant increase in the capacity of isolated mouse cortical
NPCs in forming neurospheres, which has been supported by
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the analyses of GABABR1-null mice (Fukui et al., 2008a). Thus,
in the isolated mouse NPC culture system, GABA seems to be
able to increase the proliferation of these progenitors through two
separate mechanisms involving the recruitment of different types
of GABA receptors and different growth-stimulating factors. The
synthesis and release of growth factors and neuropeptides from
NPCs in the developing neocortex can indeed be stimulated
by neurotransmitters and may play a role in regulating NPC
proliferation together with neurotransmitters (Fukui et al., 2008b;
Yuzwa et al., 2016).

Regarding the contradicting findings between these studies,
obvious explanations beside species differences would be the
micro-environmental difference between tissue explant culture
and isolated NPC culture, where different NPC populations are
being studied, as well as the difference in developmental stage.
Nevertheless, all these in vitro studies suggest that there is a
direct effect of GABA in regulating NPC proliferation, with the
direction of the effect being species-, region- and environment-
dependent. However, surprisingly, gene-modified mice which
have only 0.02% of GABA circulating in the embryonic brain due
to the knockdown of the GABA-synthesizing enzymes GAD65
and GAD67 did not show altered brain histogenesis, including
cortical layering (Ji et al., 1999). A possible explanation of the
lack of adverse phenotypes could be that other neurotransmitter
systems compensate for the malfunction induced by the loss of
GABA, including modulation of cortical NPC proliferation and
migration, possibly by glutamate and glycine, both of which are
able to depolarize NPCs in the germinal zones of developing
rodent neocortex (LoTurco et al., 1995; Flint et al., 1998). In
addition, a more rigorous evaluation of cellular morphology and
ultrastructure, cell density as well as the cellular composition
of the developing neocortex is needed to further uncover
developmental defects of these GAD-knockdown mice.

The alterations in proliferation of neocortical NPCs induced
by the external application of GABA in vitro demonstrated that
GABA has the potential to directly regulate NPC proliferation,
a conclusion consistent with the finding that the opposite
effects are observed upon blocking GABA receptors (LoTurco
et al., 1995). This suggests that endogenously synthesized GABA
in the developing neocortex regulates neurogenesis in rodent
germinal zones, including both VZ and SVZ. Interestingly,
the effects of GABA on NPC proliferation are completely
opposite in the VZ NPCs (aRG) versus SVZ NPCs (BPs) of
developing mouse neocortex, potentially due to activation of
different receptor subtypes (Figure 1) and triggering different
signaling mechanisms (Haydar et al., 2000). For example, the
most highly expressed GABA receptor subunits in the mouse
NPC populations are GABRA2 and GABRG2, both of which
showed a relatively higher expression level in BPs (bRG and
bIP) compared to APs (aRG). Thus, depending on the in vitro
experimental conditions or the in vivo environment that the
NPCs reside in, GABA signaling may exhibit different impacts
on the proliferation of NPCs in developing neocortex.

Glutamate
Glutamate is the main excitatory neurotransmitter in the mature
CNS. Through binding to different types of receptors, glutamate

is essential for maintaining various cognitive functions including
learning and memory (Riedel et al., 2003; Mattson, 2008).
Glutamate receptors can be categorized into two main classes:
(1) ionotropic glutamate receptors (iGluR), which include three
types of receptors: N-methyl-D-aspartate (NMDA) receptors, α-
amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)
receptors, and kainic acid (KA) receptors; and (2) metabotropic
glutamate receptors 1–8 (mGluR1–8) (Riedel et al., 2003).

During development, glutamate is detectable in the germinal
zones of developing mouse neocortex as early as E12, potentially
released by the Cajal-Retzius cells in the marginal zone (del Rio
et al., 1995; Haydar et al., 2000). Among iGluRs, AMPA/KA
receptors are the first ones to appear and are highly expressed
by NPCs in the germinal zones of the embryonic rodent and
fetal human neocortex (Figure 1) (LoTurco et al., 1995; Haydar
et al., 2000; Maric et al., 2000). Through activating AMPA/KA
receptors, glutamate decreases DNA synthesis of the NPCs in the
germinal zones, and hence their proliferation, in rat organotypic
slice cultures (LoTurco et al., 1995; Haydar et al., 2000).

The NMDA receptor is also involved in regulating NPC
proliferation in developing mouse neocortex, albeit indirectly.
Calcium imaging in cultured mouse neocortical slices suggested
that MAP2–positive cortical neurons, but not nestin–positive
NPCs in the VZ, are responsive to an NMDA antagonist
(Hirasawa et al., 2003). Through regulating the expression levels
of components of the Notch pathway and increasing the synthesis
of brain-derived neurotrophic factor (BDNF), chronic exposure
to the NMDA antagonist caused sustained proliferation of NPCs
in the VZ (Hirasawa et al., 2003). In line with the finding that
NMDA receptor activation inhibits cortical NPC proliferation in
the developing mouse neocortex, NPCs isolated from developing
rat neocortex, which are believed to transiently express NMDA
receptor subunits, also showed a decreased proliferation when
exposed to an NMDA receptor agonist (Yoneyama et al., 2008).

In contrast, elongated GFAP–positive NPCs, presumably
radial glial cells, that express NMDA receptor subunits,
dissociated from fetal human neocortex, responded to glutamate
and an NMDA antagonist in a completely opposite manner
compared to mouse NPCs. Glutamate significantly enhanced
the proliferation rate of isolated human NPCs in vitro, and the
increased proliferation could be inhibited by a specific NMDA
receptor antagonist (Suzuki et al., 2006). The same study also
showed that AMPA receptors, KA receptors and mGluRs are
most likely not involved in the proliferation of radial glial cells
induced by glutamate (Suzuki et al., 2006).

Among the mGluRs, it has been reported that mGluR5 is
involved in the modulation of NPC proliferation in developing
rat and human neocortex, where this receptor is expressed
(Figure 1) (Boer et al., 2010; Zhao et al., 2011, 2012). In
human, mGluR5 activation stimulates both ERK and JNK
pathways, which leads to promotion of NPC proliferation. The
human NPCs with activated mGluR5 also showed an increased
level of cyclin D1, which results in cell cycle progression
underlying the increased proliferation of NPCs (Zhao et al.,
2011). In mouse, blocking mGluR5 function by a selective
mGluR5 antagonist reduced proliferation and increased cell
death of mouse forebrain NPCs during development, while the
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FIGURE 1 | Previously published sets of transcriptomic data (Florio et al., 2015; Albert et al., 2017) were analyzed here for the mRNA expression levels of
neurotransmitter receptors in embryonic mouse and fetal human neocortex. FPKM values of neurotransmitter receptors in the indicated isolated cell populations of
embryonic mouse (E9.5 for NEC, E14.5 for aRG, bRG, bIP and N) and fetal human (12–13 wpc) neocortex are indicated by the color scale shown at bottom right.
Note that N (neuronal fraction) in fetal human neocortex includes bRG in the G1 phase of the cell cycle. Key observations from the analyses can be summarized as
follows. (1) Four neurotransmitter receptors, GRIA3, GRIK2, CHRNA1, and P2RX4, were found to be expressed in mouse NECs, however, at low levels (FPKM = 3.9,
5.1, 6.6, 5.5, respectively). This suggests that the involvement of neurotransmitter signaling in NEC expansion during mouse cortical development is presumably
limited. (2) Of the neurotransmitter receptors that are expressed in both embryonic mouse and fetal human neocortex, the majority showed the highest expression
levels in the N fraction, such as GABRA2, GABRB3, GABRG2, GRIA2, GRIK3, and GLRA2. These receptors are most likely expressed on the cell surface of neurons
where they may receive the respective neurotransmitter signal. (3) All human neurotransmitter receptor-encoding genes presented in the figure have orthologs in
mouse. Thus, an expression observed in one species but not the other indicates a differential expression pattern of the neurotransmitter receptor between cortical
cells in mouse and those in human. For example, GABRA5, GABBR2, GRM2, GRM3, CHRNB1, and ADRA2A are potentially involved in neuronal functions only in
human, but not mouse, during neocortical development. In contrast, GRIN2B, CHRNB2, and DRD1 are potentially involved in neuronal functions only in mouse, but
not human, during neocortical development. (4) Of the neurotransmitter receptors only expressed in fetal human but not embryonic mouse neocortex, GABRP,
HTR2A, ADRA1A, P2RX7, and CNR2 showed a greater expression in aRG and/or bRG than in N, which raises the possibility that the activation of these receptors
could be of relevance for NPC proliferation during the development and even the evolutionary expansion of the human neocortex.

activation of mGluR5 increased the number of proliferating
NPCs (Di Giorgi-Gerevini et al., 2005). In line with this, NPCs
of mGluR5 knockout mice also exhibited decreased proliferation
compared to those of wildtype mice, both in vitro and in vivo
(Di Giorgi-Gerevini et al., 2005).

Serotonin
Serotonin has been postulated to exert a role in cortical
development, as cortical serotonin arises from placental sources

at the onset of neurogenesis and from embryonic serotonergic
afferents at later developmental stages in both mouse and
human (Bonnin et al., 2011). Even though both the endogenous
serotonin system in the embryonic hindbrain and placenta can
be sources to supply the embryonic forebrain with sufficient
serotonin starting from E10.5 and throughout the development
of the mouse brain (Bonnin et al., 2011), there are no serotonin
receptors, of any subtype, expressed at significant levels in the
germinal zones of the developing mouse neocortex (Figure 1)
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to receive and amplify the readily available serotonin signals
(Bonnin et al., 2011; Fietz et al., 2012; Florio et al., 2015). This
has also been suggested by data from early in vitro studies using
a rat organotypic slice culture system, which have shown no
effect of serotonin on cortical NPC proliferation as the number
of BrdU-labeled cells were similar between serotonin-treated and
untreated rat neocortex slices (Dooley et al., 1997).

However, in vivo studies aiming to understand the effects
of serotonin on cortical development using transgenic mouse
models with altered serotonin levels in the embryonic neocortex
have suggested that the proliferation rate of cortical progenitors
is decreased by serotonin (Côté et al., 2007; Cheng et al., 2010).
A double knockout mouse model for the serotonin-degrading
enzymes, monoamine oxidase A (MAOA) and monoamine
oxidase B (MAOB), exhibited significant reductions in Sox2–
positive cells and Tbr2–positive bIPs in the SVZ at E17.5 and
P2, but not at earlier developmental stages (Cheng et al., 2010).
Although MAO metabolizes both serotonin and dopamine, it was
suggested that the decrease in NPC abundance in MAO knockout
mice was indeed caused by the increased level of serotonin, not
dopamine (Cheng et al., 2010). In contrast, however, a knockout
mouse model for the serotonin-synthesizing enzyme tryptophan
hydroxylase 1 (TPH1) also showed a decreased number of BrdU-
positive cortical progenitors in the VZ (Côté et al., 2007), which
leaves the role of serotonin in NPC proliferation unclear.

Compared to the contribution of serotonin and its receptors
to neuronal migration and maturation, for which there are
several studies, very little is known about the effects of serotonin
on the proliferation of cortical NPCs. Recent comparative
transcriptomic studies have revealed a differential expression
pattern of serotonin receptor 2A (HTR2A) in cortical NPCs
between mouse and human (Florio et al., 2015; Mayer et al.,
2019), which may point to a potential role of serotonin and
HTR2A in regulating proliferation of human NPCs. However,
no effects on progenitor proliferation have been observed when
treating cultured human neocortical slices with one particular
specific HTR2A agonist (Mayer et al., 2019). More thorough
studies using other agonists or serotonin are needed before
reaching a final conclusion, especially due to the fact that
multiple pathways are coupled to HTR2A receptor activation.
In line with this, a recent study (Farrelly et al., 2019) identified
a direct role of serotonin, which was independent from
its function in neurotransmission and cellular signaling, in
modifying histone proteins and, consequently, regulating gene
expression. Findings on histone serotonylation have revealed a
wide array of mechanisms for future investigations on cortical
NPC proliferation modulated by serotonin (Farrelly et al., 2019).

OUTLOOK AND FUTURE RESEARCH
DIRECTIONS

Over the past few years, our view of NPCs during neocortical
development has massively changed. The advancements
in neuroimaging and single-cell transcriptomic analyses
have enabled us to reveal more detailed profiling and
characterization of different NPC types in different
mammalian species (Fietz et al., 2012; Pollen et al., 2014;

Florio et al., 2015; Nowakowski et al., 2017). This has
provided foundations for further studies on the regulation
of proliferation of different NPC types by neurotransmitters,
and potentially in different model systems. This is true, in
particular, when there are differential expression patterns of
neurotransmitter receptors among different NPC populations
or among different species, such as between mouse and
human (Figure 1).

Conditionally Gene-Modified Mouse
Models
Various genetically engineered mouse models with disrupted
neurotransmitter signaling have been generated to study the
role of neurotransmitters in brain development (Ji et al., 1999;
Di Giorgi-Gerevini et al., 2005; Côté et al., 2007; Cheng et al.,
2010). However, systematically knocking out neurotransmitter-
synthesizing or -degrading enzymes and neurotransmitter
receptors in the whole organism is not ideal for studying
the developing neocortex, since depleting or elevating the
level of a particular neurotransmitter could potentially induce
secondary alterations that may also bear significant impact on
cortical development. Thus, it might be necessary to generate
conditionally gene-modified mouse models that allow disruption
of neurotransmitter signaling in a temporally and spatially
more controlled manner. For example, glutamate decreases NPC
proliferation through AMPA receptor activation, but increases
NPC proliferation through mGluR5 activation (LoTurco et al.,
1995; Di Giorgi-Gerevini et al., 2005). By conditionally knocking
out the respective AMPA receptor and overexpressing mGluR5
exclusively in one specific NPC type, the proliferation-inhibiting
AMPA receptor-coupled signaling could be abolished and the
mGluR5-induced proliferation-stimulating signaling could be
amplified, with the level of glutamate in the gene-modified
animal remaining the same. These conditionally gene-modified
mouse models could provide us with much more insight into the
molecular mechanism of glutamate-regulated NPC proliferation
and allow us to focus on studying the effects of glutamate in one
particular NPC type.

Human Brain Organoids as a Model
System
Compared to human, rodents such as mouse and rat, the
most commonly used experimental mammalian animals in
developmental neuroscience, have a relatively small and smooth
(lissencephalic) neocortex. In contrast, many primates, including
human, have a folded (gyrencephalic) neocortex that is expanded
in size (Florio and Huttner, 2014). Furthermore, the proportion
of bRG among the BPs and their proliferative capacity are
dramatically different between rodent and human (Fietz et al.,
2010; Hansen et al., 2010). Therefore, in order to understand
how human neocortex grows during development and expands
during evolution, it is necessary to study the influence
of neurotransmitters on NPC proliferation in fetal human
neocortex. The development of brain organoids (Kadoshima
et al., 2013; Lancaster et al., 2013) has opened up new avenues
to study human neocortex development and evolution as well
as neurodevelopmental disorders. Human brain organoids serve
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as a good, although not ideal, model which mimics certain
aspects of the cytoarchitecture and cell-type composition of the
developing human neocortex. Potential applications of wildtype
and gene-modified brain organoids are feasible for studying the
roles of neurotransmitters and their receptors in human NPC
proliferation ex vivo.

Neurotransmitters, Neocortex
Malformations and Psychiatric Disorders
Neocortex malformations, which are thought to be caused
by alterations of NPC proliferation and abundance, are
featured in several neurological or psychiatric disorders such
as epilepsy, Down syndrome and autism spectrum disorders
(ASD) (Pinson et al., 2019). Some of these disorders also show
altered levels of neurotransmitters in the CNS. For example,
autism patients show a deceased level of GABA in the left
perisylvian region of the auditory cortex (Rojas et al., 2014),
and GABA receptor subunit genes on chromosome 15q11-q13
are considered risk factors for autistic disorders (Ashley-Koch
et al., 2006). Moreover, altered levels of glutamate and serotonin
as well as the functional deficiency or dysregulation of their
receptors have also been suspected to be involved in ASD
(Jamain et al., 2002; Yang et al., 2014; Zheng et al., 2016).
It is plausible that the above mentioned neurotransmitter
imbalance in ASD is caused by neocortex malformations
with reduced abundance of neurotransmitter-secreting
neurons, especially in cases linking maternal drug intake or
exposure to developmental toxicants to neurodevelopmental
disorders. For example, prenatal exposure to ethanol causes
a spectrum of physical and mental dysfunctions in children,
including pre- and postnatal growth delay, microcephaly,
mental retardation and various behavioral abnormalities,
which are due to the loss of specific cortical neurons and
dysregulation of neuronal migration, such as GABAergic neurons
(Shenoda, 2017), inhibition of the neurotrophic properties
of glutamate, or the activation of specific GABA receptors
(Ikonomidou et al., 2000).

One interesting question that can be raised from connecting
neocortex malformations, induced by dysregulated NPC
proliferation, with altered levels of neurotransmitters in

developmental disorders is: Could disrupted neurotransmitter
signaling during cortical development be the causative factor
for disorders like autism? To further understand the influences
of neurotransmitters in neurodevelopmental disorders like
autism, we can now take advantage of the option to generate
cerebral organoids from patient-derived induced pluripotent
stem cells (iPSCs) to model the disorder and study the
neocortex malformation and neurotransmitter imbalance
involved in the disorder.

CONCLUDING REMARKS

Over the past few years, the dissection of NPC cell biology
during the development of the mammalian neocortex has given
us substantial insights into the spatial and temporal control
mechanisms of NPC proliferation by the concert of cell–intrinsic
and cell–extrinsic factors. Studies on the developmental actions of
neurotransmitters have also further advanced our understanding
on how the growth of the neocortex can be affected by these
extrinsic factors. Looking forward, with promising concepts and
platforms being established, more comprehensive and integrative
interpretations on how neurotransmitters maintain normal
CNS development and protect against cortical dysfunction
could be achieved. Learning more about the roles that
neurotransmitters play during human cortical development will
not only provide valuable knowledge for understanding our
own cognitive abilities, but also shed light on the development
of pharmacological interventions against a number of human
neurodevelopmental disorders.
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