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Autophagy is a self-eating process of using lysosomes to degrade macromolecular
substances (e.g., proteins and organelles) that are damaged, degenerated, or aging.
Lipid metabolism is the synthesis and degradation of lipids (e.g., triglycerides,
steroids, and phospholipids) to generate energy or produce the structural components
of cell membranes. There is a complex interplay between lipid metabolism (e.g.,
digestion, absorption, catabolism, biosynthesis, and peroxidation) and autophagy
machinery, leading to the modulation of cell homeostasis, including cell survival
and death. In particular, lipid metabolism is involved in the formation of autophagic
membrane structures (e.g., phagophores and autophagosomes) during stress.
Moreover, autophagy, especially selective autophagy (e.g., lipophagy, ferritinophagy,
clockophagy, and mitophagy), promotes lipid catabolism or lipid peroxidation-induced
ferroptosis through the degradation of various substances within the cell. A better
understanding of the mechanisms of autophagy and possible links to lipid metabolism
will undoubtedly promote potential treatments for a variety of diseases.
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INTRODUCTION

The morphological changes of macroautophagy were first observed using electron micrographs
of rat liver after perfusion with glucagon for 4 h by Thomas Ashford and Keith Porter in
1962 (Ashford and Porter, 1962). Later, Christian de Duve coined the term “autophagy” from
the ancient Greek language to describe the process of “self-eating” (Klionsky, 2008). It is now
known that macroautophagy is one of the lysosome-mediated degradation pathways that plays
a critical role in maintaining homeostasis (Yang and Klionsky, 2010). In general, increased
macroautophagy can promote cell survival in response to various stresses, such as starvation,
radiation, hypoxia, and oxidative stress. Macroautophagy can remove injured organelles, unused
proteins, or invading microorganisms for normal cell activity and metabolism during aging,
differentiation, or infection (Mizushima, 2007; Kaur and Debnath, 2015). However, deficient,
excessive, or dysfunctional macroautophagy is implicated in various human diseases and pathologic
conditions (Levine and Kroemer, 2019).

Lipids are one of the important nutrients of the body, providing it with energy and essential
fatty acids (FAs) or their derivatives. There are three types of lipids, namely triglycerides (TGs),
steroids, and phospholipids (Fahy et al., 2005, 2009). TGs have a chemical name of triacylglycerols
(TAGs), built from one glycerol molecule and three FAs. Steroids include hormones and cholesterol.
Notably, cholesterol, the most abundant steroid lipid in the body, also plays a role in the production
of hormones. Phospholipids form double-layered membranes with water-soluble molecules on
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the outside of the cell membrane and water-insoluble molecules
in the inside (DeBose-Boyd, 2018). The levels of lipids are
controlled by lipid metabolism, which is a complex process
involved in the biosynthesis and degradation of lipids. The first
step of lipid metabolism is hydrolysis. As hydrophobic molecules,
lipids need to be solubilized to produce free FAs (FFAs) and
monoacylglycerol (MAG) (Mu and Porsgaard, 2005) through
enzymatic hydrolysis in the digestive system. The second step
involves the absorption, packaging, and transporting of the
FAs from the digestive system into the rest of the body (Ko
et al., 2020). TGs, also known as fats, are mainly obtained
from daily food. Lipogenesis is the process of synthesizing TGs,
mostly completed in the liver. Dysfunction in the storage or
breakdown of lipids can cause cell dysfunction, even cell death
(Zechner et al., 2012).

Recent years have seen a rapid growth in the study of
the interplay between macroautophagy and lipid metabolism
(Liu and Czaja, 2013; Caron et al., 2015; Jaishy and Abel,
2016; Thelen and Zoncu, 2017). In this review, we introduce
the basic process of macroautophagy and summarize recent
progress in understanding the impact of lipid metabolism
on macroautophagy.

OVERVIEW OF AUTOPHAGY

Autophagy can be divided into three main types, namely
chaperone-mediated autophagy (CMA), microautophagy, and
macroautophagy, according to the transporting manners of
cell materials into lysosomes (Dikic and Elazar, 2018). CMA
is mediated by heat shock proteins that bind the target
substrates to deliver them to lysosomes for degradation (Majeski
and Dice, 2004). During microautophagy, long-lived proteins
can be directly engulfed by lysosomal membrane to degrade
in lysosomes (Li et al., 2012). Macroautophagy (hereafter
autophagy) is a well-studied dynamic process, which is involved
in the formation of several specific membrane structures, such
as phagophores, autophagosomes, and autolysosomes (Dikic and
Elazar, 2018) (Figure 1). The phagophores, also known as the
isolation membranes, can engulf and isolate the cytoplasmic
components to produce subsequent autophagosomes, a double
membrane structure. The autophagosome further fuses with the
lysosome to yield autolysosomes, leading to the degradation of
the sequestered cytosolic material via the lysosome hydrolases.

At the molecular level, the formation of membrane structures
of autophagy is controlled by autophagy-related (ATG) genes,
which are conserved genes from yeast to humans (Levine
and Kroemer, 2019). The ATG-coded proteins can form
different complexes that are regulated by their posttranslational
modifications (Xie et al., 2015). The ATG proteins associated with
other regulators play a complex role in the autophagic process
of induction, nucleation, elongation, fusion, and degradation
(Dikic and Elazar, 2018).

Induction
Autophagy is initiated by the formation of a phagophore that
originates in the membranes of Golgi apparatus, endoplasmic

reticulum (ER), endosome, mitochondria, or the plasma
membrane. The induction of autophagy is controlled by the
unc-51–like autophagy-activating kinase 1 (ULK1, a homolog of
Atg1 in yeast) kinase complex, including the core component
of ULK1, ATG13, and RB1 inducible coiled-coil 1 (RB1CC1,
also known as FIP200). In addition to ULK1, ULK2 may have
similar function in autophagy induction. Notably, two upstream
kinases, namely mammalian target of rapamycin complex 1
(mTORC1) and AMP-activated protein kinase (AMPK), can
inhibit or promote, respectively, the ULK1 kinase complex in
response to environmental stresses (Holczer et al., 2019).

Nucleation
The class III phosphatidylinositol 3-kinase (PtdIns3K) complex,
mainly containing phosphatidylinositol 3-kinase, catalytic
subunit type 3 (PIK3C3)/VPS34, BECN1 (also known as Atg6
in yeast), and ATG14 (also known as beclin-1-associated
autophagy-related key regulator [Barkor] or ATG14L), plays
a key role in the nucleation of phagophores (McKnight and
Zhenyu, 2013). One of the key functions of the PtdIns3K
complex is the generation of phosphatidylinositol-3-phosphate
(PtdIns3P), a phosphoinositide that serves as a landmark on
the membrane to recruit other factors involved in the process
of autophagosome formation (Bernard and Klionsky, 2014).
BECN1 is a multifunctional protein that not only promotes
autophagy, but also controls cellular sensitivity to regulated cell
death, such as apoptosis and necroptosis, through its binding
partners (Kang et al., 2011). ATG14 plays an important role
in the formation of autophagosomes (Zhong et al., 2009).
ATG14 acts as a specific targeting factor for PI3KC3 to
autophagosome membranes to maintain membrane curvature
(Fan et al., 2011). In addition, ATG14 blocks connexins-mediated
inhibitory effect on autophagy during autophagasome formation
(Bejarano et al., 2014).

Elongation
Subsequent to nucleation, the phagophore expands by membrane
addition, which is accomplished by 2 ubiquitin-like (Ubl)
conjugation systems, the ATG12-ATG5 conjugation system
and the microtubule-associated protein 1 light chain 3
(MAP1LC3/LC3) conjugation system (Ohsumi, 2001). The
ATG12-ATG5 conjugate can further bind ATG16L1 (also
known as Atg16 in yeast) to form a ATG12-ATG5-ATG16L1
complex at phagophores. MAP1LC3 exhibits two forms, namely
MAP1LC3-I and MAP1LC3-II. At baseline, most MAP1LC3
is MAP1LC3-I. In contrast, the production of MAP1LC3-II is
increased in response to autophagic stimulus that is essential
for the formation of the autophagosome and subsequent
degradation of cargos through the binding to autophagy
receptors, such as sequestosome 1 (SQSTM1, also known as p62)
and calcium-binding and coiled-coil domain 2 (CALCOCO2,
also known as NDP52). In addition to Ubl conjugation systems,
ATG9-mediated cycling systems contribute to the elongation
of the phagophore. ATG9 is thought to move from the trans-
Golgi network or late endosomes to the phagophore and is
regulated by the activity of ULK1, PtdIns3K, and mitogen-
activated protein kinase 14 (MAPK14, also known as p38)
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FIGURE 1 | The core molecular machinery of autophagy. Autophagy is a dynamic process involving the formation of several specific membrane structures, such as
phagophores, autophagosomes, and autolysosomes. The ATG proteins associated with other regulators play a complex role in the autophagic process of induction,
nucleation, elongation, fusion, and degradation.

(Young et al., 2006; Webber and Tooze, 2010). In addition to
MAP1LC3, other orthologs of yeast Atg8, such as GABA type
A receptor-associated protein (GABARAP) and GABA type A
receptor-associated protein-like 2 (GABARAPL2, also known as
GATE-16), also contribute to autophagosome formation in some
cases (Schaaf et al., 2016).

Fusion and Degradation
Once autophagosome formation is complete, the outer
membrane of the autophagosome fuses to lysosomes to produce
autolysosome, and the cellular materials (e.g., mitochondria
and ER) and invading pathogens are destroyed by enzymes in
lysosomes (Pankiv et al., 2007). Although many factors affect
the fusion between autophagosome and lysosome, the soluble
N-ethylmaleimide–sensitive factor attachment protein receptor
(SNARE) family seems to play a key role in the formation of
autolysosomes (Nakamura and Yoshimori, 2017). In addition,
ATG14 binds and stabilizes the SNARE complex, thereby
promoting autophagosome-lysosomal fusion (Diao et al., 2015).
The autophagosome marker MAP1LC3-II protein can be
finally degraded with cargos or autophagy receptors through
lysosomes (Mizushima and Yoshimori, 2007; Pankiv et al., 2007).
Thus, autophagic flux is an important factor in monitoring the
formation and degradation of autophagosomes (Klionsky et al.,
2016; Yoshii and Mizushima, 2017). The cell membrane, one

of resources of the phagophore, can be eventually digested by
lysosomes or self-decomposed through autolysosome formation.

LIPID DIGESTION AND AUTOPHAGY

The digestion of lipids takes place mainly in the small intestine.
As pre-digested (orally- and stomach-digested) food enters the
small intestine, the lipids in the food are emulsified, thereby
promoting the release of FAs from TAGs, and other lipids
(e.g., phospholipids and cholesterol) are also dispersed in the
small colloidal particles containing water and oil that are
called mixed micelles. Emulsification increases the surface area
between enzymes and lipids, thereby increasing the lipolytic
effect of lipase. These enzymes include pancreatic lipase,
colipase, cholesterol esterase, and phospholipase A2 (PLA2). The
emulsified FAs are further catalyzed by the pancreatic lipase,
the phospholipids by the PLA2, and the cholesterol ester by
the cholesterol ester enzyme. As a result, the lipids in the food
produce glycerides, FAs, cholesterol, and phospholipids, which
significantly increases the solubilization of the mixed micelles
(Ko et al., 2020).

Although the autophagy-lysosomal system is not directly
involved in the digestion of intestinal lipids, it plays a central
role in cellular food degradation (also known as intracellular
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digestion) (McVeigh et al., 2006). Digestion produces the
biosynthetic precursors needed to regenerate partially disrupted
structures, thereby generating the energy necessary for anabolic
processes. Some core components of autophagy machinery
have lipid kinase modulation activity, such as PIK3C3/VPS34
and BECN1, which are required to initiate autophagy during
fasting (Pozuelo-Rubio, 2012; McKnight and Zhenyu, 2013).
Consequently, this would affect the rate of energy maintenance
upon acute starvation.

LIPID ABSORPTION AND AUTOPHAGY

In the small intestine, mixed micelles containing FAs, glycerol,
cholesterol, and phospholipids are transported to intestinal
epithelial cells for absorption. The uptake and absorption of
glycerol and FAs are affected by chain length. Short-chain FAs
(≤12 C) can be directly absorbed into the blood by binding
to albumin. Long-chain FAs (>12 C) and other lipids need
to be transported across cell membranes through the action
of transporters. Inside the cell, they will be resynthesized
into TAGs in the ER and then transported into the Golgi
apparatus, where they combine with cholesterol, phospholipids,
and apolipoproteins to form a lipoprotein called chylomicrons
protein. Lipoproteins are transporters that are responsible for
transport from the origin to the destination through the blood
and lymph. The solubility of lipoproteins in the bloodstream is
due to the coating of apolipoprotein (Ko et al., 2020).

As mentioned above, intestinal epithelial cells are absorption
cells of the small intestine and mediate the absorption of fats
in the diet by secreting TAGs into the circulation. Generally,
TAGs are stored in cytoplasmic lipid droplets (LDs) and are
sequentially hydrolyzed for secretion according to changes in
fat levels. The transfer and hydrolysis of TAG-containing LDs
degraded by lysosomes are mediated by autophagy, a process
called lipophagy (Singh et al., 2009). Therefore, LDs act as lipid
reservoirs in the anabolic pathway, while lysosomes are dedicated
to the degradation of intracellular components (Dugail, 2014).
Diacylglycerol O-acyltransferase-1 (DGAT1) synthesizes TAG
and is necessary for dietary fat absorption and storage. Recent
studies have found a unique intestinal phenotype, abnormal
TAG accumulation, and intestinal epithelial LD mobilization in
DGAT1-deficient mice, resulting in delayed fat absorption and
resistance to diet-induced obesity (Hung and Buhman, 2019).
A high-fat diet results in increased lipid intake and intestinal fat
deposition in yellow catfish, which adversely affects their lipid
absorption. The underlying mechanism is that a high-fat diet
upregulates lipogenesis, lipolysis, and FA transport, and it induces
ER stress and activates autophagy. These effects on fat-induced
changes in intestinal lipid uptake play an important regulatory
role in the model of yellow catfish (Ling et al., 2019).

LIPID CATABOLISM AND AUTOPHAGY

Triglycerides and phospholipids are first broken down by lipase
or phospholipase, respectively, which results in the release of

FA chains from the glycerol carbon backbone. Glycerol can be
phosphorylated to glycerol-3-phosphate and then converted to
glyceraldehyde 3-phosphate by glycolysis. The released FAs are
catabolized in a process called β-oxidation, which in turn removes
two carbon acetyl groups from the end of the FA chain, thereby
reducing NAD++ and FAD to produce NADH and FADH2,
respectively. Electrons generated during β-oxidation can be used
to make ATP through oxidative phosphorylation (Adeva-Andany
et al., 2019). The acetyl groups produced during β-oxidation
are carried into the Krebs cycle by coenzyme A, which causes
them to degrade to CO2, generate ATP through substrate-level
phosphorylation, and generate additional NADH and FADH2
molecules (Adeva-Andany et al., 2019).

The catabolism of stored lipids in LDs is related to a
variety of metabolic pathways that provide molecules used
to generate energy, membrane building blocks, and lipid
signaling (Wang, 2015). Generally, autophagy is induced for
cell survival during LD degradation, which is controlled by
multiple molecules (Cabodevilla et al., 2013; Parray and Yun,
2017). In particular, lipophagy-mediated LD degradation via
patatin-like phospholipase domain-containing 2 (PNPLA2, also
known as ATGL) can release FFAs under starvation conditions.
FFA produced by LD catabolism is either transported to
mitochondria for β-oxidation, or converted back to LDs. The
biogenesis of LDs under starvation is mediated by autophagy
degradation of membrane organelles, and DGAT1 is required
as an adaptive cytoprotective mechanism against lipotoxicity
(Li et al., 2017). PNPLA2-mediated signaling through sirtuin
1 (SIRT1) is necessary and sufficient to induce lipophagy for
subsequent LD catabolism and FA oxidation in hepatocytes
(Sathyanarayan et al., 2017). The overexpression of perilipin
2 (PLIN2, also known as adipophilin), one of the most
abundantly expressed LD proteins, protects LD from autophagy-
dependent degradation, while its deficiency stimulates TG
catabolism through autophagy, protecting mice against fatty
liver diseases (Tsai et al., 2017). Sphingosine kinase 2 (SPHK2)
is also required for the autophagy-mediated catabolism of
intracellular LDs to prevent the development of atherosclerosis
by reducing sphingosine content in macrophages (Ishimaru
et al., 2019). Thyroid hormones induce FA β-oxidation through
autophagy, which is associated with an increased delivery of FAs
into mitochondria. Blockage of autophagy significantly reduces
thyroid hormone-mediated FA β-oxidation in vitro and in vivo
(Sinha et al., 2012).

Autophagy-mediated lipid catabolism can be regulated by
transcription factors. The upregulation of transcription factor
forkhead homeobox protein O1 (FOXO1) or lysosomal acid
lipase (LIPA) increase autophagy-dependent LD degradation and
subsequent FA release through AMPK-dependent β-oxidation
in adipocytes upon nutrient restriction (Lettieri Barbato et al.,
2013). Another transcriptional mechanism that links autophagy
to lipid catabolism is the activation of transcription factor
EB (TFEB) during starvation (Li et al., 2016; Napolitano and
Ballabio, 2016). TFEB-mediated transcriptional induction of
peroxisome proliferator-activated receptor gamma coactivator
1-alpha (PPARGC1A) and peroxisome proliferator-activated
receptor alpha (PPARA) serves as a prosurvival response to
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nutrition deprivation (Settembre et al., 2013). Moreover, PPARA-
induced TFEB activation or microRNA-33–mediated TFEB
inhibition may form a feedback loop to further regulate lipid
catabolism and FA β-oxidation (Ouimet et al., 2016, 2017; Kim
et al., 2017). This process is also implicated in the response to
ethanol-induced liver injury in mice (Thomes et al., 2019).

In addition to transcription factors, phosphoinositide-3-
kinase regulatory subunit 4 (PIK3R4, also known as VPS15 in
yeast) is critical for regulating PPARA activation. The loss of
PIK3R4 inhibits autophagy and lipid catabolism through the
accumulation of PPARA repressors, such as histone deacetylase 3
(HDAC3) and nuclear receptor corepressor 1 (NCOR1) (Iershov
et al., 2019). CCAAT enhancer-binding protein alpha (CEBPA)
also plays an essential role in promoting cell survival and
FA β-oxidation during liver injury (Lu et al., 2015), although
the mechanism remains unclear. Moreover, the activation
of the small guanosine triphosphatase (GTPase) family (e.g.,
Rab7 and Rab18), BCL2 family (e.g., BIF1), or methionine
metabolism plays a context-dependent role in the regulation of
FA β-oxidation during autophagy (Schroeder et al., 2015; Liu
et al., 2016; Zubiete-Franco et al., 2016; Bekbulat et al., 2019).

In yeast, LDs can also be turned over in vacuoles/lysosomes
by microlipophagy, a process morphologically similar to
microautophagy (van Zutphen et al., 2014). Microlipophagy
is different from lipophagy and does not involve core
autophagy proteins, but requires ESCRT components and
newly identified VPS proteins (Vevea et al., 2015; Oku et al.,
2017). Microlipophagy-dependent LDs depletion is triggered
by AMPK activation, but not glucose starvation, amino acid
deprivation or rapamycin treatment (Seo et al., 2017). In contrast,
mTOR (Rahman et al., 2018), amino acid (Hatakeyama et al.,
2019), and glucose (Iwama and Ohsumi, 2019) are important
regulators of microautophagy.

CMA deficiency can cause lipid accumulation (Qiao et al.,
2020), and vice versa, a high-fat diet and excessive cholesterol
intake can inhibit CMA (Rodriguez-Navarro et al., 2012).
Lysosome-associated membrane protein type 2A (LAMP2A) is a
key protein in the CMA pathway. The accelerated degradation of
LAMP2A determines the loss of lysosomal membrane stability.
Nutrient deprivation is also an activator of CMA, which
selectively degrades PLIN (e.g., PLIN2 and PLIN3) and promotes
the hydrolysis of LDs (Kaushik and Cuervo, 2015). These findings
support the role of CMA in lipid metabolism, but the precise
molecular pathway remains unclear.

The dysfunction of autophagy-dependent lipid catabolism is
implicated in several pathologic conditions. Thiodigalactoside
plays a role in browning and lipid catabolism by jointly
inhibiting GAL1 and ATG5, so it may have potential therapeutic
significance for regulating energy homeostasis through its role
in white adipose tissue (Parray and Yun, 2017). Autophagy-
mediated lipid catabolism is activated as a compensation for
glutaminolysis inhibition, which regulates tumor cell survival
(Halama et al., 2018). Enteric infection can initiate the metabolic
reprogramming of enterocytes toward lipid catabolism, which
is controlled by ULK1-dependent lipophagy and the subsequent
activation of dual oxidase 1 (DUOX1), a member of the NADPH
oxidase family (Lee et al., 2018). These findings indicate a
complex interplay between lipid catabolism and autophagy.

LIPID BIOSYNTHESIS AND AUTOPHAGY

Fatty Acid Biosynthesis
Fatty acids can be saturated (like palmitic acid and stearic acid)
or unsaturated (like oleic acid). FAs are synthesized by gradually
adding two-carbon units in the form of acetyl-CoA (Herman and
Zhang, 2016). Acetyl-CoA is an important intermediate produced
by the decarboxylation of pyruvate in the glucose breakdown
pathway. However, the two-carbon units are produced not only
by acetyl-CoA directly, but also by a carboxylated product of
acetyl-CoA or malonyl-CoA. This process is catalyzed by acetyl-
CoA carboxylase (Herman and Zhang, 2016). Moreover, the
synthesis of FAs from acetyl-CoA or malonyl-CoA is mediated
by fatty acid synthase (FASN) (Chirala and Wakil, 2004). Acyl
carrier protein (ACP), a component of the FASN complex, is the
core activator for FA biosynthesis (Herman and Zhang, 2016).
The acyl groups get anchored to the CoA group of ACP through
a thioester linkage. In many cases, inhibition of FA synthesis
promotes autophagy (Figure 2).

Autophagy has been shown to regulate food intake and energy
balance in hypothalamic agouti-related peptide (AgRP) neurons
partly through the modulation of FA biosynthesis (Kaushik
et al., 2011). The levels of AgRP, a neuropeptide produced
in the brain by the AgRP neuron, is regulated by starvation-
induced autophagy and subsequently the production of FFAs
(Kaushik et al., 2011). In contrast, an autophagy deficiency in the
hypothalamus may produce a lean body phenotype due to the
lack of FFA-dependent AgRP production (Kaushik et al., 2011).
The inhibition of autophagy by constitutive mTOR activity makes
hypoxic cells dependent on exogenous desaturated lipids because
that the level of unsaturated FA synthesized is reduced under
hypoxia (Young et al., 2013). An increase in de novo synthesis
of lipids is thought to be a metabolic adaptation of cancer
cells, which can promote survival and metastasis. Increased
FASN expression in colorectal cancer cells is associated with
the inactivation of autophagy, including increased expression
of SQSTM1 (Zaytseva et al., 2015). LD-deprived cells fail to
induce autophagy due to accelerated lipid synthesis (Regnacq
et al., 2016). In contrast, the administration of cerulenin (a
potent inhibitor of FASN) or palmitic acid can restore nitrogen
starvation-induced autophagy in the absence of LDs (Regnacq
et al., 2016). It is worth noting that arachidonic acid, a long-chain
polyunsaturated fatty acid (PUFA), is the main synthetic product
under nitrogen deprivation, whereas monounsaturated oleic acid
is the main product under phosphorous deprivation (Kokabi
et al., 2019). The inhibition of PI3K signaling is responsible
for lipogenesis rather than lipid hydrolysis by initiating de
novo FA biosynthesis (Ramanan et al., 2018). These findings
reveal a complex connection linking FA biosynthesis, nutrition
status, and autophagy.

Triglyceride Biosynthesis
There are three main ways for TGs to biosynthesize, namely the
glycerol-3-phosphate (G3P) pathway [e.g., glycerol-3-phosphate
acyltransferase (GPAT)], the dihydroxyacetone phosphate
(DHAP) pathway, and the monoacylglycerol pathway [e.g.,
monoacylglycerol acyltransferase (MGAT)]. The G3P pathway,
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FIGURE 2 | The role of lipid biosynthesis in autophagy. Inhibiting TG, CE, and FA or increasing membrane lipid biosynthesis is responsible for the induction of
autophagy.

referred to as the Kennedy pathway, was identified by Eugene
Kennedy in 1960, which is responsible for 90% of TG synthesis
(Chai et al., 2017). Except in the intestine and adipocytes, TG
synthesis begins with G3P (Chai et al., 2017). Glycerol is first
phosphorylated by glycerin kinase, and then activated FA (e.g.,
fatty acyl-CoA) is used as a substrate for the addition of FA
to produce phosphatidic acid. The phosphate group is then
removed and the last FA is added.

Autophagy is implicated in the metabolic balance of liver TG.
A lack of protein in the diet reduces the expression of autophagy
receptor SQSTM1, increases the expression of autophagosome
marker (MAP1LC3-II) as well as ER stress marker (the spliced
isoform of XBP1), which helps accumulate TG in the liver
(Yokota et al., 2016). Other regulators also participate in TG
metabolism via modulating autophagy activity. For example,
the loss of PLIN2 inhibits lipogenesis, reduces TG synthesis,
and enhances autophagy (Irungbam et al., 2020). These findings
suggest that TG metabolism plays a vital role in the modulation
of autophagy (Figure 2).

Cholesterol Biosynthesis
The biosynthesis of cholesterol generally takes place in the
ER of hepatic cells and begins with acetyl-CoA, which is
mainly derived from an oxidation reaction in the mitochondria
(Alphonse and Jones, 2016). Acetyl-CoA is converted to 3-
hydroxy- 3-methylglutaryl-CoA (HMG-CoA) by HMG-CoA
synthase. HMG-CoA is then converted to mevalonate by

HMG-CoA reductase (HMGR). This reaction is completed with
the aid of NADPH, a co-factor for all reduction reactions
during cholesterol synthesis (Jiang et al., 2018). Mevalonate
can undergo a series of phosphorylations or decarboxylations
to produce isoprenoid and isopentenyl pyrophosphate (Liao
et al., 2016). A squalene synthase-mediated condensing reaction
leads to the production of squalene. The first of the sterols is
formed following the production of squalene and lanosterol.
The conversion of lanosterol to cholesterol requires additional
multiple biochemistry reaction steps (Cerqueira et al., 2016).
Notably, the conversion of HMG-CoA to mevalonate by
HMG-CoA reductase is the rate-limiting step of cholesterol
biosynthesis, which is under strict regulatory control (Cerqueira
et al., 2016). Consequently, HMGR has been long-recognized as
a drug target to reduce serum cholesterol levels.

It is becoming increasingly clear that the inhibition of
cholesterol synthesis is responsible for the induction of
prosurvival autophagy through blocking the AKT-mTOR
pathway in human blood cancer cells (Vilimanovich et al.,
2015) (Figure 2). This process can be selectively attenuated
by either mevalonate or squalene, but not by isopentenyl
pyrophosphate (Vilimanovich et al., 2015). The depletion of
transmembrane 7 superfamily member 2 (TM7SF2), a key
regulator of cholesterol biosynthesis, results in the increased
expression of FA catabolic enzymes accompanied by decreased
lipid accumulation, autophagy, and tissue injury in mice exposed
to endotoxin (Gatticchi et al., 2015). In addition, de novo
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sphingolipid biosynthesis is essential for autophagy induction
in macrophages, which plays a protective role by clearing excess
lipids from LDs through the turnover of ORMDL sphingolipid
biosynthesis regulator 1 (ORMDL1) protein, a negative regulator
of serine palmitoyl-CoA transferase activity (Wang et al., 2015b).
Thus, the modulation of autophagy may influence cholesterol
biosynthesis to reduce high-cholesterol–related diseases, such as
atherosclerosis, heart disease, and stroke.

Membrane Lipid Biosynthesis
Membrane lipids are necessary to form the structure
of biological membranes (such as cell membranes and
intracellular membranes) and are mainly composed of
phospholipids, glycolipids, and sterols (e.g., cholesterol).
They can be arranged in double layers together with intact and
peripheral membrane proteins. Biosynthesis of membrane lipids
involves the production of major membrane lipids and their
transport from the site of synthesis into the cell membrane
(van Meer et al., 2008).

It is thought that isolated membranes observed during
autophagy are mainly derived from pre-formed organelle
membranes (e.g., ER). Instead, the phagophore membrane
expands along with localized phospholipid synthesis (Schutter
et al., 2020). The original separation membrane is formed
on ER from locally synthesized lipids, then an increase
in the biosynthesis of the bilayer-forming phospholipids
[phosphatidylcholine (PC), phosphatidylethanolamine (PE),
and phosphatidylserine (PS)] occurs simultaneously with
the induction of autophagy (Figure 2). PE conjugates the
cytosolic MAP1LC3-I to form MAP1LC3-II, which is an
important event in isolated membrane. The effect of PI3K
on ER phosphatidylinositol coincides with the biogenesis
of phospholipids. The two processes work together to help
extend and assemble autophagosome particles (Girardi et al.,
2011). The first step in de novo phospholipid synthesis at the
ER is to make stable contact with nascent autophagosomes,
which is essential for autophagy induction. Recent studies
have shown that the conserved acyl-CoA synthetase FAA1
accumulates on nucleated phagophores, which is required for
FA-mediated phospholipid synthesis and for promoting the
assembly of phospholipids into autophagic membranes during
phagophore elongation (Schutter et al., 2020). Glycosphingolipid
is a key component of the eukaryotic cell membrane and
is necessary for cavernous-mediated endocytosis and the
function of glycosphingolipid-binding toxins (Sillence, 2007).
Glycosphingolipid biosynthesis is restricted by enhanced
autophagy, while its catabolism increases (Ghidoni et al., 1996).
De novo sphingolipid biosynthesis is essential for autophagy
induction (Wang et al., 2015a). Administering inhibitors to
the first step of sphingolipid synthesis reduces autophagic
activity by affecting autophagosome formation rather than the
pre-structure formation of autophagosomes (Yamagata et al.,
2011). Ceramide, a sphingolipid metabolite, serves as a strong
autophagy activator (Scarlatti et al., 2004). Inhibiting synthesis of
inositol phosphorylceramide reduces autophagy (Yamagata et al.,
2011). Mitophagy, the degradation of mitochondria via selective
autophagy, is linked to the phospholipid biosynthesis pathway

for the conversion of PE to PC by the two methyltransferases,
EBP cholestenol delta-isomerase (EBP, also known as CHO2)
and phosphatidylethanolamine N-methyltransferase (PEMT)
(Sakakibara et al., 2015). In addition, the autophagic digestion of
LDs through lipophagy in liver is an essential process to obtain
energy (Cai et al., 2016). Thus, the composition of membrane
lipid seems to be a hallmark of autophagy induction.

LIPID PEROXIDATION AND AUTOPHAGY

Cell death has multiple forms, each exhibiting different molecular
mechanisms and signal transductions (Tang et al., 2019).
Although autophagy generally promotes cell survival through
removing damaged organelles and oxidized molecules, it can
also cause cell death under certain circumstances. This type
of regulated cell death requires autophagy machinery and is
termed as autophagy-dependent cell death by the Nomenclature
Committee on Cell Death (Galluzzi et al., 2018).

Lipid peroxidation is a chain reaction of the oxidative
degradation of lipids. In the reaction, an initiator radical
first takes an allylic hydrogen of the unsaturated lipid and
generates a corresponding radical. The free radical then reacts
with an oxygen molecule to generate a corresponding peroxy
radical, which captures the allyl hydrogen of another molecule
and converts it into a hydroperoxide. Polyunsaturated fatty
acids (PUFAs) are susceptible to peroxidation to yield various
degradation products, such as malondialdehyde (MDA) and
4-hydroxy-2′-nonenal (4HNE) (Ye et al., 2016). These lipid
peroxidation products influence cell fate partly through the
activation of autophagy. For example, 4HNE can induce
autophagy through the activation of c-Jun amino-terminal
kinase (JNK) (Csala et al., 2015). The activation of JNK is
accompanied by BCL2 being dissociated from BECN1 or by
the induction of heme oxygenase 1 (HMOX1, also known as
HO1) expression and MAP1LC3-II formation (Velez et al.,
2011; Haberzettl and Hill, 2013). Other signaling associated
with 4HNE-induced autophagy are the MAPK, mTOR, and
protein kinase C pathways (Martinez-Useros and Garcia-
Foncillas, 2016). In addition to inducing autophagy at lower
concentrations, 4HNE can inhibit autophagic flux at higher
concentrations (Dodson et al., 2017), indicating a negative
feedback mechanism to limit excessive activation of autophagy
during lipid peroxidation.

Lipid peroxidation is implicated in various kinds of regulated
cell death (Kang et al., 2018; Su et al., 2019). In particular,
increased lipid peroxidation is an important signal for triggering
ferroptosis, an iron-dependent form of cell death that was first
identified in mutated RAS cancer cells (Dixon et al., 2012). The
molecular mechanism of ferroptosis is complicated, depending
on the context (Xie et al., 2016; Stockwell et al., 2017; Dai et al.,
2020a). There are many connections between lipid metabolism
and ferroptosis. Lipid biosynthesis that depends on acyl-CoA
synthetase long-chain family member 4 (ACSL4) (Yuan et al.,
2016; Kagan et al., 2017) and subsequent lipoxygenase-dependent
lipid (e.g., PUFAs) peroxidation (Yang et al., 2016) promotes
membrane rupture during ferroptosis. NADPH oxidases (NOXs)
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and other oxidases may also facilitate membrane oxidative injury
during ferroptosis (Gaschler and Stockwell, 2017; Xie et al., 2017).
In contrast, several antioxidant or membrane repair mechanisms
can prevent ferroptosis. The main anti-ferroptosis mechanisms
include system xc−-mediated glutathione peroxidase 4 (GPX4)
activation (Dixon et al., 2012; Yang et al., 2014), apoptosis-
inducing factor mitochondria-associated 2 (AIFM2)-mediated
coenzyme Q10 production (Bersuker et al., 2019; Doll et al.,
2019), endosomal sorting complexes required for transport
(ESCRT)-III–mediated membrane repair (Dai et al., 2020c,d),
and nuclear factor, erythroid 2-like 2 (NFE2L2, also known
as NRF2)-mediated antioxidant response (Sun et al., 2016a,b;
Dodson et al., 2019).

Early studies indicate that ferroptosis is different from other
forms of regulated cell death, such as apoptosis, necroptosis,
and autophagy (Dixon et al., 2012). However, increasing
studies suggest that ferroptosis exhibits a particular relationship
with autophagy during anticancer therapies, tumorigenesis,
inflammatory injury, and tissue fibrosis (Kang and Tang, 2017;
Zhou et al., 2019; Liu et al., 2020) (Figure 3). Several types
of selective autophagy, such as ferritinophagy, clockophagy,
lipophagy, and mitophagy, promote ferroptotic cell death
through degradation of the iron-storing protein ferritin, the
core circadian clock protein aryl hydrocarbon receptor nuclear
translocator-like (ARNTL, also known as BMAL1), LDs, and
mitochondria, respectively (Hou et al., 2016; Basit et al., 2017; Bai
et al., 2019; Liu et al., 2019; Yang et al., 2019). CMA also promotes
ferroptosis through HSP90-mediated GPX4 degradation (Wu
et al., 2019). Moreover, BECN1 facilitates ferroptosis through
directly inhibiting SLC7A11/system xc− activity (Song et al.,
2018) or inducing ferritinophagy (Zhang et al., 2018). The
stimulator of interferon response cGAMP interactor 1 (STING1,
also known as TMEM173), an ER-associated protein involved
in immunity, infection, and coagulation, connects mitochondrial
DNA stress to autophagy-dependent ferroptosis (Li et al., 2020).
Nanoparticle ferritin-bound erastin and rapamycin (NFER),
a nanodrug, exhibits a robust ability to induce ferroptosis
and autophagy to inhibit tumor growth (Li et al., 2019).
The release of damage-associated molecular patterns (DAMPs)
from ferroptotic cells serves as a mediator implicated in
immune cell activation (Wen et al., 2019) and tumorigenesis
(Dai et al., 2020b). In addition to cancer biology, autophagy-
mediated ferroptosis is also implicated in hepatic fibrosis and
neurodegenerative disease (Zhang et al., 2018; Kong et al.,
2019). These findings may provide a useful framework for
understanding the pathological characteristics of autophagy-
mediated ferroptosis in diseases.

LIPID METABOLISM DISORDERS AND
AUTOPHAGY

Autophagy is tightly regulated by ATG genes. When these genes
are mutated, a series of diseases, such as cancer, infectious disease,
and neurodegenerative disease, can be induced. In addition,
impaired autophagy is also closely related to the pathology of
several lipid metabolic disorders discussed below.

Lysosomal storage diseases (LSDs) are a class of genetic
disorders in which proteins responsible for digestion or
absorption of endocytosed material do not function or localize
properly. The resulting cellular “lipid indigestion” or “lipid
digestion defects” cause a buildup of intracellular storage that
contains unprocessed lipids (Kiselyov and Muallem, 2008). LSDs
consist of a group of rare inherited metabolic disorder diseases,
such as Niemann-Pick C1 (NPC1) disease, G(M1)-gangliosidosis,
Gaucher disease, Danon disease, Pompe disease, mucolipidosis
type IV disease, and neuronal ceroid lipofuscinoses (NCLs).
Impaired autophagy activity is commonly responsible for these
LSDs (Seranova et al., 2017). For example, NCLs can be
caused by mutations in lysosomal proteases, which leads to
a deficiency in the autophagy-dependent degradation of NCL
proteins (Brandenstein et al., 2016). Mutated NPC1 protein
can block autophagy induction through the inhibition of
SNARE-dependent membrane fusion, whereas ATG5-deficient
cells exhibit increased NPC1protein accumulation (Sarkar et al.,
2013). Thus, the pharmacological induction of autophagy may
ameliorate the phenotypes of LSDs.

Preeclampsia is a pregnancy complication characterized by
high blood pressure and signs of multiple organ damage (e.g.,
liver and kidney). Preeclampsia is associated with increased
oxidative stress, which can cause autophagy-dependent cell death
in extravillous trophoblasts. Mechanistically, oxidative stress
reduces lysosomal activities and enhances de novo sphingolipids
synthesis, which finally results in ceramide overload-dependent
autophagic cell death and subsequent inflammation response
(Melland-Smith et al., 2015). In addition to excessive autophagy-
mediated cellular damage in extravillous trophoblasts, mild
levels of autophagy may promote cell survival under hypoxic
and low-nutrient conditions (Nakashima et al., 2017). It
remains unknown whether a systemic autophagy response
affects pregnant women.

The liver is the hub of fat transport. After fat is digested
and absorpted, a portion of it enters the liver, and then it
is converted into body fat and stored. The liver is also one
of the main organs for the synthesis of FAs, cholesterol, and
phospholipids in the body. Excess cholesterol is excreted with
bile. Lipid metabolic imbalance leads to lipid accumulation in
the liver, resulting from steatosis due to non-alcoholic fatty liver
disease (NAFLD). The level of lipids in the liver is modulated by
lipophagy, and impaired lysosomal pathways are involved in the
pathogenesis of NAFLD. In contrast, the activation of autophagic
pathways has been shown to ameliorate steatosis and NAFLD
in animal models (Ma et al., 2013; Xiao et al., 2016; Kim et al.,
2019). These findings suggest that autophagy activators may have
therapeutic potential in NAFLD, which includes a spectrum of
hepatic disorders associated with obesity.

Altered lipid metabolism and autophagy also contribute to
neurodegenerative diseases, such as Parkinson’s disease (PD),
a progressive disorder that affects movement. Specific gene
mutations, such for as PTEN-induced kinase 1 (PINK1), increase
the risk of PD. PINK1 is an important regulator of mitochondrial
quality through multiple mechanisms, including mitophagy
(Rub et al., 2017). Depleted or mutated PINK1 can increase
mitochondrial oxidative injury, ER stress, and mitophagy
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FIGURE 3 | The role of selective autophagy in ferroptosis. Ferritinophagy, clockophagy, lipophagy, and mitophagy promote the degradation of the iron-storing
protein ferritin, the core circadian clock protein ARNTL, lipid droplets, and mitochondria, respectively. Activating these types of selective autophagy results in iron
accumulation and lipid peroxidation, which finally induces ferroptotic cell death.

deficient, which leads to cell death, inflammation, and immune
suppression in various diseases (Kang et al., 2016; Li et al.,
2018). Of note, reduced hydrolase activity has shown to increase
cholesterol accumulation during PD development (Garcia-Sanz
et al., 2017). Thus, reducing lipid storage may restore the activity
of autophagy, especially mitophagy, to alleviate mitochondrial
damage in PD (Han et al., 2018).

Metabolic syndrome includes a cluster of conditions, such as
hypertension, hyperglycemia, excessive waist fat, and abnormal
cholesterol levels. Autophagic activity is significantly reduced in
metabolic syndrome, which increases the risk of obesity, type
2 diabetes, and atherosclerosis. The inhibition of autophagy
promotes lipid accumulation, mitochondria dysfunction, and ER
stress (Perrotta and Aquila, 2015; Zhang et al., 2015; Martinez-
Useros and Garcia-Foncillas, 2016). In contrast, the activation of
autophagy may decrease metabolic syndrome-related diseases.

CONCLUSION AND PERSPECTIVE

Autophagy is a conserved adaptive response to environmental
changes and plays a pivotal role in cell survival and death.
It can degrade aging organelles and proteins to produce
amino acids, nucleotides, and FFAs for cell survival. At the
same time, it can also be used as an active mechanism to

induce autophagy-dependent cell death. Generally, ceramides
are involved in pro-survival autophagy, while PUFAs are
involved in pro-death autophagy. The process of autophagy
is regulated by a series of complex signaling molecules and
metabolic pathways. Lipid metabolism plays an important role
in regulating multiple cell processes. In the past 10 years, there
have been major breakthroughs in understanding the crosstalk
between lipid metabolism (e.g., digestion, absorption, catabolism,
biosynthesis, and peroxidation) and autophagy. In particular,
lipid metabolism has been found to be involved in the formation
of membrane structures related to autophagy. Inhibiting TG,
CE, and FA or increasing membrane lipid biosynthesis is
responsible for the induction of autophagy. Moreover, autophagy
promotes lipid catabolism and lipid peroxidation-induced cell
death, such as ferroptosis. Targeting the autophagy pathway
has received extensive attention in human diseases, including
lipid metabolism-related disorders. Although these advances
in knowledge have propelled the field forward, there is still
much to explore. For example, how does autophagy function
in lipid metabolism pathways in different cells or tissues? To
what extent does the lipid context around membranes affect
autophagy induction? How does autophagy switch from pro-
survival mode to a pro-death one that ruptures the membranes?
To what degree is selective autophagy specially linked to
ferroptotic cell death? Which ATG modifications are responsible
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for lipid disorder phenotypes? A better understanding of
the mechanisms of autophagy and possible links to lipid
metabolism will undoubtedly promote potential treatments for
a variety of diseases.
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