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Cytokinesis is the step of the cell cycle in which the cell must faithfully separate
the chromosomes and cytoplasm, vyielding two daughter cells. The assembly and
contraction of the contractile network is spatially and temporally coupled with the
formation of the mitotic spindle to ensure the successful completion of cytokinesis.
While decades of studies have elucidated the components of this machinery, the so-
called usual suspects, and their functions, many lines of evidence are pointing to other
unexpected proteins and sub-cellular systems as also being involved in cytokinesis.
These we term the unusual suspects. In this review, we introduce recent discoveries
on some of these new unusual suspects and begin to consider how these subcellular
systems snap together to help complete the puzzle of cytokinesis.
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OVERVIEW OF CYTOKINESIS

The growth and development of cells and tissues depend in part on the segregation of genetic and
cytoplasmic components of a mother cell into two daughter cells during cell division. Defects in
any step of this process can result in missegregation of genetic material, leading to multinucleation,
polyploidy, and eventually aneuploidy, which is associated with many diseases, including cancer
(Storchova and Pellman, 2004; Normand and King, 2010). The final step of cell cycle is cytokinesis,
when a contractile network (CN) composed of actin filaments, non-muscle myosin II and other
necessary factors work to physically divide the mother cell (Fujiwara et al., 2005; Shi and King,
2005; Robinson et al., 2012; Leite et al., 2019; Pollard and O’Shaughnessy, 2019). The CN is
the driver and responder to active force production and can be organized into meshworks like
those in mammalian and amoeboid cells or rings like those in yeasts (Fishkind and Wang, 1993;
Kamasaki et al., 2007; Reichl et al., 2008). Furthermore, the fluid dynamics of the system that are
created in part by cortical tension and the cell’s viscoelastic properties are also major contributors
to cytokinesis (Zhang and Robinson, 2005). Collectively, furrow ingression is driven by active
(ATP consuming) contraction from myosin II pulling on actin filaments and the Laplace pressures
created by cortical tension and local (cleavage furrow) and global/polar (emerging daughter cell)
membrane curvatures (Zhang and Robinson, 2005; Poirier et al., 2012).
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The process of the CN formation is spatially and temporally
coupled with the assembly of the antiparallel, interdigitating
microtubules, which can be formed either by the astral
microtubules or the central spindle (Baker et al., 1993; Ding
et al., 1993). The central spindle plays multiple roles during cell
division, including segregation of chromosomes, positioning of
the cleavage furrow, and separation of daughter cells (Straight
and Field, 2000). Cytokinesis is completed by the process of
abscission, facilitated by the ESCRT-III complexes, resulting in
complete physical separation of the two daughter cells (Ettema
and Bernander, 2009; Mierzwa and Gerlich, 2014).

While it has been appreciated for decades that cytokinesis
is a highly robust and dynamic process, we are beginning
to understand some of the mechanisms responsible for this
robustness (Kee et al., 2012; Srivastava and Robinson, 2015;
Srivastava et al.,, 2016; Singh et al., 2019). Crosstalk between
and integration of various sub-cellular systems exist to ensure
fidelity and coordination of the entire cellular system (Kothari
et al.,, 2019a). The field has appropriately focused on what we
will term the wusual suspects - i.e., the players of actomyosin II
CN, microtubule-based mitotic spindles, RhoGTPase regulators,
and many others (Figure 1). However, many lines of evidence are
pointing to many unexpected proteins and sub-cellular systems
as also being involved in cytokinesis — we term these proteins the
unusual suspects.

In this review, we focus on recent discoveries implicating
some of these new unusual suspects- factors and proteins
involved in pathways and networks that are generally assigned
different sub-cellular roles, but that appear to be contributing
to the cytokinesis machinery too. These unusual suspects are
categorized into a total of four groups: membrane-associated
proteins, RNA-related proteins, nuclear proteins, and metabolic
enzymes. We anticipate that embracing these new players will
lead the field to uncover a more holistic understanding of
how cytokinesis works. But, perhaps more importantly, they
will also guide us to a deeper understanding of how cellular
systems are integrated in complex biological processes more
broadly. Moreover, we want to state up front that we believe
that this list of unusual suspects is just beginning to take off,
and therefore, we expect that the list presented here is neither
comprehensive nor final.

MEMBRANE-ASSOCIATED PROTEINS

Discoidin

Discoidin I and II are N-acetylgalactosamine (GalNAc)-binding
lectins found predominantly in the cytoplasm of the amoeba
Dictyostelium discoideum (Alexander et al., 1992). Classically,
the discoidins are considered key to Dictyostelium development
as their expression increases as the Dictyostelium cells enter
the developmental stage (Rosen et al, 1973; Frazier et al,
1975). Originally, discoidins were suggested to play a role in
mediating cell-cell interaction owing to their lectin properties.
However, Discoidin I was recently found to interact genetically
and biochemically with a key protein involved in cell contractility
and cytokinesis, namely cortexillin I (Robinson and Spudich,

2000; Kothari et al., 2019b). Myosin II and the actin crosslinker
Cortexillin I are essential components of the CN and their
mechanosensory ability and accumulation at the cleavage furrow
were proven to be vital for the progression and completion of
cytokinesis (Faix et al., 2001; Zhang and Robinson, 2005; Effler
et al., 2007; Kee and Robinson, 2008; Ren et al., 2009). In vivo
interactions of discoidin I and cortexillin I as well as IQGAP2,
an activator of Cortexillin I and Myosin II, were also confirmed
using fluorescence cross-correlation spectroscopy. Interestingly,
discoidin also acts as a genetic suppressor of cortexillin I
null mutants through a selection for genetic suppressors
where discoidin overexpression could rescue the developmental
phenotypes of cortexillin I null cells (Robinson and Spudich,
2000). Collectively, discoidin proteins might provide a scaffolding
function and help recruit essential components of the CN system
to the division site during cytokinesis.

Another possibility is that the discoidins may help to directly
connect the CN to the plasma membrane. It is not fully
understood in any system how the CN is attached to the
membrane, particularly in the context of cytokinesis. Dividing
Dictyostelium cells show an enrichment of glycosylated proteins
at the cleavage furrow membrane as the lectin concanavalin
A preferentially labels the cleavage furrow membrane (Faix
et al., 2001). Thus, the combination of observations suggests a
provocative hypothesis that extracellular discoidin might also
interact with the cortical cytoskeleton through a transmembrane
domain containing protein. The human discoidin domain
receptor (DDR1) protein does exactly this, except it contains a
transmembrane domain and interacts with non-muscle myosin
ITA (Huang et al, 2009). Invasive tumors and associated
metastases show elevated expression of DDR1, suggesting its role
as a promoter of tumor cell invasion (Yang et al., 2010; Henriet
et al., 2018). However, this type of function would most likely
be distinct from discoidin’s function in forming complexes with
cortexillin and IQGAP?2 in the cytoplasm.

Discoidin was not the first sugar-related protein that
was speculated to be crucial in cytokinesis-related processes.
Mucin is also a glycosylated protein and is a component
of ring canals and intercellular bridges, structures formed
by incomplete cytokinesis, in various cell types and tissues
in Drosophila melanogaster (Robinson and Cooley, 1997;
Kramerova and Kramerov, 1999). Even though the exact
functions of mucinoprotein in ring canal networks are not
well-understood, it is possible that it might be an important
constituent of a complex or backbone that facilitates the assembly
of these structures. Further studies are needed to elaborate on the
exact roles and functions of discoidin and other sugar-binding
proteins that take part in cytokinesis.

Chloride Intracellular Channels

Another unexpected class of membrane proteins that were found
to play a role in cytokinesis are the highly-conserved chloride
intracellular channels (CLICs). Comprised of six members that
exist primarily as membrane-bound proteins, CLICs are involved
in diverse cellular functions, including cell-cell interactions,
angiogenesis, and membrane potential regulation (Rual et al.,
2005; Singh and Ashley, 2007; Chalothorn et al., 2009). Multiple
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FIGURE 1 | The usual suspects of cytokinesis. (A) During cytokinesis, the cell cortex contracts at the midzone forming the cleavage furrow. The system at work is
presented as a jigsaw puzzle with multiple pieces coming together. Many players of this process can be categorized into two main sets of machinery: the contractile
network (CN) and the mitotic spindle, represented by the two large jigsaw pieces. (B) The CN consists of actin filaments, myosin Il, and actin crosslinkers, which are
organized into meshworks or rings and which generate mechanical forces at the cleavage furrow. One major regulator of this CN in metazoans is the RhoA small
GTPase (Chircop, 2014). (C) The mitotic spindle is composed of antiparallel, interdigitating microtubules that form either the astral microtubules or the central
spindle. Along with its binding proteins and motors, the mitotic spindle segregates the chromosomes, positions the cleavage furrow, and helps regulate daughter cell
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studies have also implicated CLIC4 in cancer progression. The
expression level of CLIC4 was found to be gradually decreased
in squamous cancer cells as they transformed from benign to
malignant, a prominent indicator of a role in mitosis regulation
(Suh et al.,, 2012).

Growing evidence implicates the function of CLIC4 in
actin-mediated processes (Suginta et al., 2001; Singh et al,
2007; Singh, 2010). For instance, CLIC4 is recruited to the
plasma membrane and the cleavage furrow upon activation
of RhoA in an F-actin-dependent manner (Ponsioen et al.,
2009; Argenzio et al, 2018). Additionally, CLIC4 is a direct
molecular interactor of profilin-1 and a component in
the RhoA-mDia2 signaling pathway that induces cortical
actin polymerization (Argenzio et al, 2018). A previous
proteomics study investigating the biochemical changes at
the cell surface during cell division revealed a significant
enrichment of both CLIC4 and CLICI on the surface of
rounded up mitotic cells compared with flat interphase cells
(Ozlu et al., 2015). A recent study comparing the interaction
networks of CLIC4 and a CLIC4 mutant version defective

in putative substrate binding led to the identification of
ezrin, anillin, and ALIX, proteins known to be crucial for
cytokinesis, as partners of CLIC4 (Uretmen Kagiali et al,
2020). Furthermore, double knockout of CLIC4 and CLIC1
subsequently impaired the stability of membrane-cortical
actin interaction. HeLa cells lacking both CLIC4 and CLIC1
displayed abnormal bleb formation and defective abscission
(Uretmen Kagiali et al., 2020). In another study, cells absent
of CLIC4 had significantly decreased recruitment of myosin
ITA and IIB to the furrow, similarly leading to membrane
blebbing and impeding CN maturation (Peterman et al,
2020). It was also previously found that cortical actin
controls cell cycle progression, and tumor cells lose their
dependence on cortical branched actin (Molinie et al,
2019). Through their role in maintaining cortical and CN
stability, CLICs might facilitate normal mitotic progression
and prevent the transformation from benignity to malignancy
in cancer cells.

Overall, CLIC4 and CLIC1 are two additional membrane-
associated proteins that are recruited to the cortex, where they
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potentially help anchor the CN, allowing for proper contraction
and cell division.

RNA-RELATED PROTEINS

RNA-Binding Proteins

RNPs (ribonucleoproteins) are a large family of RNA-binding
proteins that have important roles in mRNA translation
and regulation (Ziemienowicz et al., 2003). RNPs commonly
localize in nuclei and cytoplasmic mRNP granules. In general,
they contain one or more RNA-recognition motifs (RRMs)
and often have a predicted intrinsically disorganized region
(IDR). While the exact functions of many RNPs are still
being defined, studies in some systems indicate that RNPs
contribute to cytokinesis.

In Dictyostelium, overexpression of RNP-1A suppresses the
effect of nocodazole, a microtubule inhibitor, on cellular growth
of Dictyostelium discoideum (Zhou et al., 2010; Ngo et al., 2016).
This protein has protective functions on the microtubule ends,
and also localizes to the polar cortex in dividing cells and to
the leading edges of migrating cells. These strongly suggest a
role of RNP-1A in regulating microtubule dynamics, possibly
through stabilizing the linkage between microtubules and the
cortex. A later study using proteomics found that a separate
RNP, RNP-1B, was a molecular interactor of cortexillin I (Kothari
et al., 2019b). In the same study, using fluorescence cross-
correlation spectroscopy, RNP-1A was found to interact strongly
with cortexillin I. The full significance of these interactions is still
under investigation.

The recognition of RNA-binding proteins as potential
effectors of cytokinesis was not entirely surprising, as CAR-
1, another RNA-binding protein found at P granules and the
mitotic spindle during cell division, was identified using an
RNA-interference screen for genes essential for cytokinesis in
C. elegans embryos (Zipperlen et al., 2001; Boag et al., 2005;
Squirrell et al, 2006). In car-1-depleted embryos, cleavage
furrow ingression was significantly disrupted, and the anaphase
spindle structure was greatly defective (Audhya et al., 2005).
As the study was conducted primarily in early C. elegans
embryos where tight temporal-spatial regulations of maternally
supplied RNAs are critical, the defects found in car-1-depleted
cells may be due to the local translational incompetence of
microtubule components. This effect was similar to a previously
characterized RNA-binding protein, CPEB, whose inhibition also
results in spindle structural defects (Groisman et al., 2000).
Overall, these roles of RNA-binding proteins in cytokinesis
regulation elucidates an important crosstalk between local
protein translation and steps in cell division. It is tempting
to speculate that the unique localization and interactions of
these RNP-1 proteins facilitates localized mRNA translation
during cytokinesis when cells are undergoing dynamic and robust
cell shape changes.

RNA Helicases

Another unusual suspect that falls under the realm of RNA-
related proteins are the RNA helicases. The importance of RNA

helicases in regulating cell cycle progression and mitosis is not
entirely surprising. Indeed, since the progression of the cell cycle
requires the coordination of enormous cohorts of differentially
expressed proteins through each step, cells need mechanisms
to tightly regulate mRNA transcription, translation, and protein
degradation to facilitate this dynamic process. For example,
RNA helicases have been implicated to play critical roles in
mRNA export pathways that are tightly linked to gene products
involved in mitosis regulation (Strasser and Hurt, 2001; Herold
et al., 2003). Indeed, the RNA helicases UAP56 and URH49
were characterized to form distinct mRNA export machineries
to regulate a subset of genes specifically involved in mitosis
(Yamazaki et al., 2010). Depletion of these RNA helicases, as a
result, leads to mitotic progression defects.

However, unexpected functions of several RNA helicases in
cytokinesis independent from its traditional roles in regulating
mitotically expressed proteins have been discovered. CGH-1, a
DEAD box RNA helicase that localizes to P granules and other
possible mRNA-protein particles, was originally identified to
be in a multiprotein complex together with CAR-1, another
unusual suspect mentioned above, and a localization regulator
of CAR-1 in C. elegans (Navarro et al., 2001; Audhya et al,
2005). Embryos depleted of cgh-1 had penetrant sterility while
those partially depleted exhibited perturbed localization of
CAR-1 and phenocopied car-1-depleted cells with defects in
microtubule structures. The study suggested that CGH-1 and
CAR-1 cooperatively regulate anaphase spindle structure in
embryonic cytokinesis.

Interestingly, CGH-1 is the C. elegans homolog of DDXe,
a member of DEAD box RNA helicase proteins DDXs, which
is involved diverse pathways, including mRNP assembly and
export, immune response, regulation of cell cycle progression and
tumorigenesis (Fuller-Pace, 2013). The exact functions of DDXs
in regulating cell cycle and tumorigenesis remain controversial.
Knockdown of DDX3 in mice embryonic cells led to reduced
growth and proliferation (Li et al., 2014). However, a recent study
elucidated a possible mechanism through which DDX3, another
member of the DDX family, positively controls cytokinesis and
subsequently acts as a tumor suppressor. DDX3 localizes to
centrosomes throughout the cell cycle and prevents chromosome
misalignment by inactivating and aggregating supernumerary
centrosomes (Chen et al., 2017). DDX silencing subsequently
led to chromosome misalignment, segregation defects, and
eventually cell death. In another study, loss of DDX3 led to
enhanced cell proliferation (Chang and Liu, 2010). Moreover,
DDX3 localizes to the midbody during late cell division (Chen
et al., 2017). These studies support the possibility of novel
roles of RNA helicases in maintaining structural integrity of
essential mitotic and cytokinesis components, therefore ensuring
successful completion of cell division.

NUCLEAR PROTEINS
Importin-g

Importin-p (human transportin/karyopherin b2) acts as a
transporter for proteins and complexes, moving them into the
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nucleus. Once thought to be exclusively a transporter, importin-
P is gradually emerging as a regulator of various other cellular
processes, including cell cycle and cytokinesis. For instance,
a mutation in the coding gene Kapl04, which codes for the
importin-B homolog in budding yeast, promotes mitotic exit
(Asakawa and Toh-e, 2002). Overexpression of importin-8
also leads to aberrant spindle formation and delayed mitotic
progression (Roscioli et al., 2012).

In the context of cytokinesis, importin-f might function
through interacting with anillin - a direct interactor of the
cytokinetic regulator RhoA and a scaffolding protein of the
CN. Anillin contains a highly conserved nuclear localization
signal (NLS) that binds to importin-3 and is needed to
mediate cortical polarization during cytokinesis; mutating its
NLS significantly reduces anillin’s affinity for the equatorial
cortex (Beaudet et al, 2017). Interestingly, overexpression of
importin-f negatively regulates anillin’s cortical localization,
instead of enhancing it, suggesting that importin-f competes
with a cortical receptor for anillin binding. Thus, free importins
may function as a molecular ruler, or buffer, for which
an optimal level is required to maintain the appropriate
cortical recruitment of anillin. Binding of importin-f is directly
regulated by Ran-GTP and therefore, the potential functions
of importin-f in cytokinesis are likely to be coupled with Ran
and its GTP gradient, whose potential cytokinetic functions
are discussed next.

RAN

Ras-related nuclear protein (Ran) is a small G-protein involved
in transporting various proteins and cellular components in
and out of the nucleus through the nuclear pore complex. The
function of Ran is tightly regulated by the GTP gradient across
the nuclear membrane. Ran has been implicated in numerous
cellular processes such as DNA synthesis, nuclear envelope
structure, and cell cycle progression (Sazer and Dasso, 2000).
Mounting evidence now suggests that Ran also participates in
regulating cytokinesis.

Recent studies revealed that chromatin-associated signals can
regulate the cortical dynamics during cytokinesis (Norden et al,,
2006; Mendoza et al., 2009). Due to its concentration gradient
with the peak occurring around the chromatin, chromatin-
associated Ran-GTP is potentially also a regulator of the cortex.
During meiosis of mouse oocytes, chromatin positioned near
the cortex induces the formation of an actin cap via Ran-
GTP, and the placement of DNA-coated beads near the cortex
induces cortical polarity independent of microtubules (Deng
etal., 2007). Active Ran regulates human anillin during anaphase
and decreasing Ran-GTP leads to the ectopic localization
of anillin and myosin to the cell poles and blocks proper
furrowing (Beaudet et al., 2017). These studies suggested that
a chromatin-associated Ran-GTP gradient may function as
a molecular ruler that helps recruit and organize essential
components at the cortex.

In another study, Ran-GTP was found to positively regulate
the actomyosin cortex for pseudocleavage furrowing in the early
Drosophila embryo development (Silverman-Gavrila et al., 2008).
Ran controls pseudocleavage furrow organization independently

of its role in regulating the microtubule cytoskeleton. Further,
disruption of the Ran pathway prevented pseudocleavage furrow
formation and restricted the depth and duration of furrow
ingression of those pseudocleavage furrows that did form. To
further elucidate the mechanism through which Ran-GTP acts
to regulate cytokinesis, the authors found that Ran is required
for the pseudocleavage furrow localization of the septin, peanut, a
protein whose association with anillin contributes to stabilization
of the CN. In fact, the direct binding of the nuclear transport
receptors importin-o and - to anillin prevented the binding of
peanut to anillin (van Oostende Triplet et al., 2014), and since
binding of importin-f is directly regulated by Ran-GTP, Ran
appears to be a regulator of anillin and peanut’s association.
Therefore, Ran-GTP plays an important role in pseudocleavage
furrow ingression in syncytial embryos.

Overall, Ran-GTP acts as a microtubule-independent pathway
that regulates polarization of contractile protein anillin (a
process traditionally thought to require microtubules) to couple
signals from the chromatin to the cortex and to ensure
robustness of cytokinesis.

Lamin B

Lamins are important constituents of the nuclear lamina in
eukaryotes. Apart from their functions in maintaining the
structural integrity of the nuclear pores and membranes, lamins
are crucial for the assembly and disassembly of the nuclear
envelope during mitosis (Lopez-Soler et al.,, 2001; Gruenbaum
et al.,, 2005). In addition to its canonical roles within the
nucleus, lamin B, a ubiquitously expressed type of lamin, helps
regulate mitosis. In M-phase-arrested Xenopus egg extracts,
lamin B associates with the mitotic spindles as well as the
surrounding regions of the spindle. When expression of lamin B
was reduced using siRNA in HeLa cells, typical spindle defects
such as poor spindle morphology and lack of chromosome
segregation were detected, suggesting a role for lamin B in
facilitating spindle assembly (Tsai et al, 2006). In the same
study, the authors also reported that lamin B is also an essential
component in the formation of the mitotic matrix, allowing
for tethering for other spindle assembly factors. Dominant
negative forms of lamin B significantly disrupted this matrix
formation, leading to severing of the mitotic spindles and
cytokinesis arrest. These results indicate the significant role of
lamin B in maintaining the integrity of mitotic spindles during
cytokinesis. The prevailing idea to explain these observations
is that the disassembled lamin B is dispersed throughout
the cytoplasm during mitosis. However, a fraction of lamin
B may remain associated with the mitotic spindle and/or
mitotic chromosomes (Beaudouin et al., 2002). This pattern of
localization of lamin B elucidates its novel role in regulating
cytokinesis. Interestingly, association of lamin B with the mitotic
spindle is regulated by Ran-GTP, eliciting the possibility of an
entirely novel pathway of mitotic spindle regulation involving
Ran and its downstream targets (Ma et al., 2007; Cavazza and
Vernos, 2015). Strikingly, ESCRT-III-mediated membrane fusion
facilitates reintegration of lagging chromosome fragments into
micronuclei through lamin-based channels during cytokinesis
in Drosophila, emphasizing the intricate integration between
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the abscission and chromosome segregation machineries during
cytokinesis (Warecki et al., 2020).

METABOLIC ENZYMES

Methylmalonate-Semialdehyde

Dehydrogenase

Methylmalonate-semialdehyde dehydrogenase (mmsdh) is an
enzyme typically thought of being located in the mitochondria
and that helps catalyze the production of propionyl- and acetyl-
CoA (Kedishvili et al., 2000). Recent studies suggests a possible
novel role of mmsdh in regulating cytokinesis. Previously
identified in a genetic suppression screen in Dictyostelium,
over-expression of mmsdh suppressed the dominant-negative
phenotype of a myosin II phosphomimetic (Ren et al., 2014).
For context, to generate force, the non-muscle myosin II must

polymerize into bipolar filaments, and this assembly is regulated
by heavy chain phosphorylation. The myosin II phosphomimetic
mimics this phosphorylated state and impairs bipolar filament
assembly (Egelhoff et al, 1993). Mmsdh promoted myosin II
phosphomimetic accumulation at the cortex and cleavage furrow
in myoll null cells, thus potentially acting as a modulator of
myosin II function (Ren et al., 2014).

Importantly, mmsdh showed up again as a molecular
interactor of cortexillin I and IQGAP2, core mechanosensory
proteins in the contractility system (Kothari et al., 2019b).
It is possible that mmsdh functions in cytokinesis through a
metabolic pathway that leads to post-translational modification
of several contractile enzymes, including myosin II. Mmsdh
catalyzes the degradation of valine, leading to the production
of propionyl-CoA. Indeed, post-transtional modifications are
important in modulating proteins involved in cytokinesis. In
mammalian cells, anillin and myosin IIA are acetylated during
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FIGURE 2 | Piecing together the unusual suspects of the cytokinesis system. (A) An overview of cytokinesis with both the usual and unusual suspects, represented
by the jigsaw pieces. Expanding our understanding of cytokinesis by studying these unusual suspects allows us to fully appreciate an intricate cellular system
complete with cross talks, redundancy, and network integration. (B) Membrane-associated proteins. Upon activation of RhoA, CLICs localize to the cortex where
they bind various cortical components, such as profilin-1 and ezrin. Through these interactions, CLICs may help stabilize the cortex and anchor the CN to the
membrane. Discoidin, through its interaction with the actin crosslinker cortexillin | and its regulator IQGAP2, might facilitate the assembly of the contractility network.
(C) RNA-associated proteins. RNP-1A through its protection of microtubules during cytokinesis may stabilize the mitotic spindle, ensuring successful cytokinesis.
CAR-1 and CGH-1’s roles are proposed to facilitate local translation of microtubule components, ensuring proper formation of the mitotic spindle. On the other hand,
RNP-1B interacts with cortexillin | and might play a role in regulating the contractility network. (D) Nuclear proteins. Ran and importin-g, through their interactions
with various cortical proteins, such as anillin and myosin Il, may act as molecular rulers, or buffers, coupled with a GTP gradient to ensure optimal recruitment of
these components to the cortex. In addition, lamin B, an interactor of Ran, is crucial for mitotic spindle assembly. (E) Metabolic enzymes. Mmsdh appears to help
myosin Il function and is a biochemical interactor of cortexillin | and IQGAP2. Along with its original known biochemical activity in valine degradation, leading to the
production of propionyl- and acetyl-CoA, mmsdh may promote the post-translational modification of contractile proteins, such as myosin Il. AMPK is also important
for mitotic apparatus assembly and regulation. Activation of AMPK by Plk1 may be important to couple cellular bioenergetic state to cell cycle progression.
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cytokinesis, and histone deacetylase (HDAC) inhibitors lead to
cytokinetic defects, consistent with this concept (Chuang et al.,
2010; Coulton et al., 2010; Marinova et al., 2011).

AMP-Activated Protein Kinase

AMP-activated protein kinase (AMPK) is a highly conserved
serine/threonine kinase that plays central roles in metabolic stress
sensing that facilitates intracellular ATP preservation in response
to energy deprivation (Hardie, 2007; Jones and Thompson,
2009). AMPK is present in the nucleus and cytoplasm, and
its intracellular distribution is regulated by stress and cell
growth (Kodiha et al, 2007). In addition to its role as an
energy sensor, AMPK was found to act as a suppressor of
cell proliferation. Enhanced activation of AMPK inhibits tumor
growth and oncogenic transformation of several cancer cell
lines (Zakikhani et al., 2006; Kuhajda, 2008). Many studies
followed to elucidate the mechanisms of AMPK regulating
cell division. Substantial evidence now suggests that AMPK
plays obligatory role in chromosome segregation and cytokinesis
completion. A Drosophila genomic screen identifies AMPK as a
gene crucial for proper cell cycle progression. S2 cells lacking
AMPK expression show strong defects in spindle morphology
(Bettencourt-Dias et al, 2004). In human cancer-derived
epithelial cells, the active form of AMPK a-catalytic subunit
transiently associates with several mitotic structures including
centrosomes and central spindle midzone from early stages of
mitosis to cytokinetic completion (Vazquez-Martin et al., 2009).
Furthermore, kinase activity of Plk1, a major regulator of mitotic
progression, regulates localization and activation of AMPK at the
mitotic apparatus. Pharmacological inhibition of PLK1 disrupts
normal localization and phosphorylation of AMPK at its catalytic
site, leading to cytokinesis failure (Vazquez-Martin et al., 2011).
Studies in budding yeast reveal similar observations. Loss of
Snfl, the budding yeast ortholog of AMPK, caused cells to
display aberrant spindle alignment, further highlighting its role
in regulating the mitotic spindle (Tripodi et al., 2018). The exact
mechanisms and functions of AMPK in the context of cytokinesis
regulation remain to be elucidated, but AMPK could be central
to physically and temporally tethering the energy state of a cell to
cell cycle progression.

CONCLUSION

While substantial progress has been made with regard to the
intricacies of the CN and mitotic spindle formation and function,
we are now in position to appreciate that cytokinesis results
from the function of a truly integrated and collaborative cellular
system (Figure 2). Further, these examples of unusual suspects

Alexander, S., Sydow, L. M., Wessels, D., and Soll, D. R. (1992).
Discoidin  proteins of Dictyostelium are necessary for normal

cytoskeletal organization and cellular morphology during aggregation.
Differentiation 51, ~ 149-161.  doi:  10.1111/j.1432-0436.1992.tb00
691.x

in cytokinesis can help motivate us to think beyond the scope
of just a few sub-cellular systems and pathways that drive
a cellular process. We also should take into consideration
that under physiological contexts, a cellular system is under
constant environmental pressures that can be chemical and
mechanical in nature. Cells are exquisitely exceptional at coping
with these challenges. Recent studies have drawn upon this
principle to identify new roles of known factors as well as new
unknown factors. For instance, a study recently published used
mechanically loaded cellular systems to study cytokinesis in the
context of mechanics and identified new functions of several
factors (Singh et al., 2019). The authors found that factors such as
MEL-11 and LIN-5, canonically involved in regulating myosin II
function and spindle positioning, respectively, are also involved
in regulating cortical rotation, further elucidating how cells
simultaneously respond to and create forces during cytokinesis.
Expanding our understanding of cytokinesis by studying
these unusual suspects allows us to fully appreciate an intricate
cellular system loaded with cross talks, redundancy, and network
integration. By doing so, we will begin to better understand how
other systems operate. For example, RNPs localize to and help
organize P-granules, leading to the concept of phase transitions.
It is also important to note that most current scientific methods
still focus on cells and tissues in their most optimal culturing or
physiological conditions. However, cells in their native contexts,
such as in the tissue of an organism, are embedded in a complex
3D environment where they are constantly challenged with
stresses and signals from their surroundings. No doubt, the
concept of cellular complexes being formed through low affinity,
highly dynamic, and responsive interactions is a more general
underpinning of highly integrated, robust, and adaptive cellular
systems and processes for which cytokinesis is a model example.
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