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Activated protein kinase (AMP)-activated protein kinase (AMPK) senses the cellular
energy status and coordinates catabolic and anabolic processes. Extensive studies
have proposed that AMPK regulates energy homeostasis, cell growth, autophagy,
mitochondrial biology and inflammation. The biological functions of AMPK vary in
different tissues or organs. As a unique organ that produces milk, the mammary
gland has recently attracted substantial research attention. This review discusses how
AMPK in the mammary gland is activated by energy deprivation and heat stress via
the activation of canonical and non-canonical pathways. In addition, the important
downstream targets of AMPK and their functions in the mammary gland, especially
during milk synthesis, are summarized in the review.
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INTRODUCTION

Energy homeostasis plays a critical role in maintaining the survival and function of cells. In
1967, Atkinson proposed using the adenylate system [ATP (adenosine 5′ triphosphate) + ADP
(adenosine diphosphate) + AMP (adenosine monophosphate)] to estimate cellular energy levels
(Atkinson and Fall, 1967; Atkinson and Walton, 1967). ATP acts as a high-energy bond donor,
and ATP can be broken down into ADP and AMP, which is accompanied by the release of energy.

Abbreviations: 4EBP1, eukaryotic initiation factor 4E binding protein 1; ACC, acetyl-coA carboxylase; ADP, adenosine
diphosphate; AMP, adenosine monophosphate; AMPK, AMP-activated protein kinase; ATGL, adipose triglyceride lipase;
ATM, ataxia telangiectasia mutated; ATP, adenosine 5’ triphosphate; CaMKKβ, Ca2+/calmodulin-activated protein kinase
kinase-β; CPT1, carnitine palmitoyltransferase 1; CSN1S1, Casein Alpha S1; DMI, dry matter intake; eEF2K, eukaryotic
translation elongation factor 2 kinase; FA, fatty acid; FABP3, fatty acid-binding protein 3; FAS, fatty acid synthase; GLUT4,
glucose transporter 4; Jak, Janus kinase; LKB1, liver kinase B1; LXRα, liver X recepter α; mTORC1, mammalian target of
rapamycin complex 1; PIKK, phosphoinositide 3 kinase-like kinase; PPARγ, peroxisome proliferators-activated receptors γ;
ROS, reactive oxygen species; S6K1, ribosomal protein S6 kinase 1; SCD, stearoyl-CoA desaturase; SREBP1c, sterol regulatory
element-binding protein 1c; Stat, signal transducer and activator of transcription; TAG, triacylglycerol; TBC1D1, TBC1
domain family member 1; TSC2, Tuberin 2; TXNIP, thioredoxin-interactingprotein.
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Increased levels of cellular ADP and/or AMP are indicators of
decreased energy status. AMP-activated protein kinase (AMPK)
is the dominant energy sensor in eukaryotic cells (Hardie, 2007).
As a master regulator of metabolism, AMPK is proposed to
regulate energy homeostasis (Hardie et al., 2012), cell growth
(Mihaylova and Shaw, 2011), autophagy (Mihaylova and Shaw,
2011), and mitochondrial biology (Herzig and Shaw, 2018).
Recent advances in research have proposed that the biological
effects of AMPK can be tissue- and/or cell type-specific.
Hypothalamic AMPK modulates the energy balance of the whole
body via the regulation of food intake (López et al., 2016). In T
cells, AMPK regulates cell migration and determines CD8+ T
cell fate (differentiation into effector or memory CD8+ T cells)
(Finlay and Cantrell, 2011). However, the functions of AMPK in
the mammary gland are still unclear.

The mammary gland is a unique organ for the secretion of
milk. The mammary gland contains not only the epithelial cells
but also the stromal compartment (also known as connective
tissue or fat pad) (Hennighausen and Robinson, 2005). Mammary
epithelium includes luminal and secretory cells that are involved
in milk production during lactation period. The primary
components of the mammary stroma are adipocytes, but it also
contains fibroblasts, blood vessels and neurons. Milk directly
regulates the early growth and health of neonates. The main
components of milk are carbohydrates, lipids, and proteins with
small proportions of minerals and vitamins. Colostrum is the
milk secreted shortly after fallowing and consists a higher level of
immunoglobulins (IgG, IgM, and IgA). These immunoglobulins
are involved in the establishment of passive immunity for
neonates. The energy requirements and mobilization in the
mammary gland are high and very complicated. During lactation,
energy is not only consumed by the mammary gland to maintain
its basic metabolism but also largely used for milk production
(Sampson and Jansen, 1984). In this review, we summarized
recent advances in the understanding of the mechanism by which
AMPK regulates milk production and mammary gland biology.
Understanding the functions of AMPK and its downstream
targets in the mammary gland will contribute to the development
of nutritional or drug-related strategies for improving mammary
gland health and promoting milk production.

AMP-ACTIVATED PROTEIN KINASE

AMP-activated protein kinase exists as a heterotrimer, which
consists of one catalytic subunit (α) and two regulatory subunits
(β and γ) (Xiao et al., 2011). There are multiple isoforms of
these AMPK subunits, including α1, α2, β1, β2, γ1, γ2, and
γ3 (Hardie et al., 2006). AMPKα1 is dominantly expressed
in the mammary gland (Quentin et al., 2011), while AMPK
α2 and γ3 are undetectable (McFadden and Corl, 2009). This
evidence indicates that the expression of AMPK subunits could
be tissue dependent.

The canonical mechanism by which AMPK is activated
(phosphorylation at Thr172) relies on increased levels of
ADP, AMP or Ca2+. LKB1 (liver kinase B1) and CaMKKβ

(Ca2+/calmodulin-activated protein kinase kinase-β) are the

primary upstream kinases of AMPK (Hawley et al., 2003, 2005).
During conditions of energy deprivation, ADP can directly
bind to the γ regulatory subunit of AMPK (Hardie et al.,
2012). In even more severe situations, ADP is converted to
AMP, which leads to a conformational change in AMPK and
increases its activity by approximately 10-fold (Hardie et al.,
2012). This conformational change also protects AMPK from
being dephosphorylated and ensures its activation. In addition,
increased levels of Ca2+ can directly regulate AMPK activity
through CaMKKβ and in manner that is independent of the
level of ADP or AMP (Hawley et al., 2005). In the human
mammary gland, activated LKB1 and CaMKKβ are also reported
to increase the activity of AMPK (Høyer-Hansen et al., 2007;
Chung et al., 2017).

In addition to ADP, AMP and Ca2+, AMPK can also be
activated by non-canonical signals, such as low oxygen (Marsin
et al., 2000), reactive oxygen species (ROS) (Alexander et al.,
2010; Ditch and Paull, 2012) and DNA damage (Ji et al., 2010;
Sanli et al., 2010). When oxygen is limited, nutrients are not
completely oxidized, which limits the production of ATP (Depré
et al., 1998). ROS are proposed to regulate AMPK through
two different pathways: (1) oxidation of the two conserved Cys
residues in the AMPK α subunit (Alexander et al., 2010) and
(2) activation of ataxia telangiectasia mutated (ATM), which
is a phosphoinositide 3 kinase-like kinase (PIKK) that triggers
the activation of AMPK (Ditch and Paull, 2012). DNA damage-
induced activation of AMPK is also ATM-dependent (Storozhuk
et al., 2013; Tripathi et al., 2013).

ACTIVATION OF AMPK IN THE
MAMMARY GLAND

Negative energy balance (NEB) is widely observed in swine
and cow production, especially during lactation. Elevated ADP
or AMP is often associated with a NEB (Figure 1). The
feed intake of primiparous sows usually fails to meet the
nutritional requirements for fetal growth and milk production,
leading to the mobilization of protein and fat reserves in the
body. Similarly, the peak lactation period of cows generally
occurs 4–6 weeks after delivery, but the dry matter intake
(DMI) does not reach its maximum until 8–10 weeks after
delivery (Bertics et al., 1992). Thus, during this period, the
energy intake in dairy cows is not able to meet the demand
for milk production (especially in high-yielding cows). AMPK
signaling in the mammary gland is highly active during
this period, which results in a 15–20% decrease in milk
production in sows and cows (Eastham et al., 1988; Wang et al.,
2018). In vitro experiments also demonstrated that AMPK is
significantly activated in mammary epithelial cells during energy
deprivation (cells cultured without glucose or amino acids)
(Zhang M. et al., 2018).

In addition to NEB, heat stress is reported to negatively
regulate mammary gland development and milk production
in cows (Tao et al., 2011) and sows (Renaudeau and Noblet,
2001). Intriguingly, recent findings indicate that heat stress
triggers the activation of AMPK in the mammary gland. In
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the murine mammary gland, the AMPK signaling pathway is
significantly upregulated by heat stress (Han et al., 2019). In
a transcriptomic study of the bovine mammary gland, AMPK
signaling was the most highly activated pathway in response
to heat stress (Gao et al., 2019). The non-canonical pathway
could be a potential link between heat stress and AMPK
(Figure 2). First, under heat stress, ROS are increased and
accumulate in the bovine mammary gland (Li et al., 2019).
Activation of AMPK decreases the production of ROS (El-
Sisi et al., 2019) and enhances the antioxidant capacity (Guo
et al., 2020) of the mammary gland. Second, oxygen uptake
is significantly decreased in sows during heat stress (Black
et al., 1993). Third, heat stress induces DNA damage in the
mammary gland (Nair et al., 2010). In addition, heat stress
also decreases feed intake in mammals, which indirectly triggers
a decrease in energy intake and subsequently increases the
levels of ADP and AMP. Therefore, heat stress can coordinately

regulate AMPK through canonical and non-canonical pathways
in the mammary gland.

AMPK REGULATES MILK SYNTHESIS

Milk Fat
The process of milk fat synthesis in different species has been
previously well summarized (Bionaz and Loor, 2008; Osorio
et al., 2016; Zhang S. et al., 2018). Briefly, the process includes
de novo fatty acid (FA) synthesis, FA uptake, FA activation,
FA intracellular transport, FA elongation, FA desaturation,
triacylglycerol (TAG) synthesis and lipid droplet formation.
The FAs used for milk fat synthesis are either derived from
blood circulation or are originally synthesized in the mammary
gland. AMPK is a critical sensor that regulates fat metabolism
in the mammary gland (Figure 3). It has been reported

FIGURE 1 | Negative energy balance induces the activation of mammary AMPK through the canonical pathway: during lactation, decreased maternal feed intake
usually fails to meet the requirement for milk secretion and leads to a negative energy balance. Elevated ADP or AMP in the mammary gland is associated with a
negative energy balance and promotes AMPK activity. AID, auto-inhibitory domain; CAMKK2, calmodulin dependent protein kinase kinase 2; CBM,
carbohydrate-binding module; CBS, cystathionine-beta-synthase; LKB1, liver kinase B1.
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FIGURE 2 | Heat stress induces the activation of mammary AMPK through canonical and non-canonical pathways: heat stress increases ROS, decreases blood
oxygen, and alters DNA integrity, which further activates AMPK (non-canonical pathway). Additionally, the decreased feed intake (increased ADP and AMP) caused
by heat stress also activates AMPK. ROS, reactive oxygen species; AID, auto-inhibitory domain; ATM, ataxia telangiectasia-mutated gene; CAMKK2, calmodulin
dependent protein kinase kinase 2; CBM, carbohydrate-binding module; CBS, cystathionine-beta-synthase; LKB1, liver kinase B1.

that AMPK activators 5-aminoimidazole-4-carboxamide
1-β-D-ribofuranoside (AICAR) and A-769662 (A76) are reported
to inhibit fat synthesis in the bovine mammary gland (McFadden
and Corl, 2009; Huang et al., 2020).

AMPK phosphorylates its downstream proteins at Ser/Thr
residues (recognition motifs of AMPK: 8(X,β)XXS/TXXX8) (8,
hydrophobic; β, basic) (Dale et al., 1995). Acetyl-coA carboxylase
(ACC) is a rate-limiting enzyme in fatty acid metabolism. It is
one of the primary downstream pathways of AMPK. AICAR

activates AMPK and inhibits ACC1 in goat mammary epithelial
cells (Zhang et al., 2011). The coding and amino acid sequences
of ACC were first identified in the murine mammary gland
in 1988 (López-Casillas et al., 1988). Two isoforms of ACC
have been identified in animals, namely, ACC1 (ACACA) and
ACC2 (ACACB). ACC1 is a cytosolic protein that catalyzes
the conversion of acetyl-CoA to malonyl-CoA during de novo
FA synthesis (Abu-Elheiga et al., 2000). ACC2 is associated
with the outer membrane of mitochondria. The malonyl-CoA
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FIGURE 3 | AMPK regulates mammary milk fat synthesis: AMPK phosphorylates and inactivates ACC1 and ACC2. ACC1 is a cytosolic protein that converts
acetyl-CoA to malonyl-CoA during de novo fatty acid synthesis. ACC2 is associated with mitochondria and regulates mitochondrial fatty acid oxidation through the
inhibition of CPT1 by malonyl-CoA. AMPK inhibits the transcriptional activity of SREBP-1c through the phosphorylation of SERBP1c at Ser372, which further
decreases the expression of ACC1, FAS, SCD and FABP3, which participate in fatty acid synthesis. ACC1, acetyl-coA carboxylase 1; ACC2, acetyl-coA carboxylase
2; AID, auto-inhibitory domain; CBS, cystathionine-beta-synthase; CPT1, carnitine palmitoyl transferases 1; FABP3, fatty acid binding protein 3; FAS, fatty acid
synthase; LXRα, liver X receptor α; SCD, stearoyl-CoA desaturase; SFA, saturated fatty acid; SRE, sterol-regulatory element; SREBP1c, sterol-regulatory element
binding protein 1c; TAG, triacylglyceride; USFA, unsaturated fatty acid.
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produced by ACC2 regulates mitochondrial fatty acid oxidation
through the inhibition of carnitine palmitoyltransferase 1 (CPT1)
(Abu-Elheiga et al., 2000). ACC is highly expressed in the
mammary gland during the lactation period (López-Casillas et al.,
1991). The dominant isoform of ACC in the mammary gland
varies among different animals. In the rat mammary gland, the
main type of ACC is ACC2, while ACC1 is mainly expressed
in white adipose tissue (López-Casillas et al., 1991; Ponce-
Castañeda et al., 1991). However, both ACC1 and ACC2 are
highly expressed in the murine mammary gland (Takebe et al.,
2009). Similarly, ACC1 (Lv et al., 2015) and ACC2 (Palombo et al.,
2018) are also detected in the porcine mammary gland and are
upregulated during lactation. In dairy cows, ACC1 is considered
a critical regulator of fatty acid synthesis in the mammary
gland (Matsumoto et al., 2012; Tao et al., 2015). Short-term
energy deprivation induces ACC phosphorylation and inhibits
fatty acid synthesis in bovine mammary gland epithelial cells
(McFadden and Corl, 2009). Thus, AMPK is proposed to control
the switch between lipogenesis and lipid oxidation through the
phosphorylation or dephosphorylation of ACCs.

The other critical downstream target of AMPK is sterol
regulatory element-binding protein 1c (SREBP1c), which is
a lipogenic transcription factor. Previously, AMPK activation
(triggered by AICAR or A-769662) was reported to decrease
the mRNA expression of lipogenic genes, including FAS and
FABP3 in the bovine mammary gland (Zhang et al., 2011; Huang
et al., 2020). AMPK inhibits the transcriptional activity of sterol
regulatory element binding protein-1c (SREBP-1c) through the
phosphorylation of SERBP1c at Ser372 (Li et al., 2011). SREBP1c
was initially identified as a regulator of lipogenesis in the liver
(Horton et al., 2002). Subsequently, SREBP1c has been proposed
to regulate milk fat synthesis in cows (Li et al., 2014), goats
(Xu et al., 2016b), and swine (Che et al., 2019). SREBP-1c binds
to the promoter of lipogenic genes and increases their mRNA
expression (Horton et al., 1998). The core promoter region of
SREBP1c in the goat mammary gland is located from −395 to
+1 bp upstream of the transcriptional start site and includes
liver X receptor α (LXRα) binding elements and sterol regulatory
elements (Xu et al., 2016a). In bovine mammary epithelial
cells, the overexpression of SREBP1c significantly increases the
expression of ACC1, FAS (fatty acid synthase), SCD (stearoyl-
CoA desaturase) and FABP3 (fatty acid-binding protein) (Li et al.,
2014). Consistently, the knockdown of SREBP1c decreases the
expression of lipogenic genes (Li et al., 2014). In goat mammary
epithelial cells, SREBP1c overexpression upregulates numerous
genes that are responsible for de novo fatty acid synthesis and fatty
acid transportation (Xu et al., 2016b). In the murine mammary
gland, the knockdown of SREBP1c decreases the expression of
FAS and SCD2 (Rudolph et al., 2010). Thus, AMPK can indirectly
control transcription of lipogenic genes in the mammary gland
through the phosphorylation of SREBP1c.

In addition to ACC and SREBP-1c, AMPK also regulates
milk fat synthesis through adipose triglyceride lipase (ATGL)
and TBC1 domain family member 1 (TBC1D1). ATGL mainly
regulates the first step of the lipid lipolysis process. ATGL is a
downstream target of peroxisome proliferator-activated receptor
γ (PPARγ) (Shi et al., 2013) but not of SREBP1c (Xu et al.,

2016b). Recently, AMPK was reported to activate ATGL through
the phosphorylation of Ser406 (Ahmadian et al., 2011; Kim
et al., 2016). In the goat mammary gland, ATGL is considered
an important enzyme that regulates milk fat synthesis (59). In
contrast to ATGL, TBC1D1 has been shown to regulate the
translocation of glucose transporter 4 (GLUT4), which is an
important insulin-sensitive transporter of glucose (Sakamoto and
Holman, 2008). AMPK regulates the activity of TBC1D1 through
the phosphorylation of Ser237 and Thr596 (Pehmøller et al.,
2009). Interestingly, a whole genome resequencing study in cows
showed that TBC1D1 expression is correlated with milk fat
percentage (Jiang et al., 2016, 2019).

It is worth noting that some potential targets of AMPK might
also regulate milk fat synthesis in the mammary gland. For
example, AMPK increases the activity of Coactivator 1 alpha
(PGC-1α) through the phosphorylation of Thr177 and Ser538
(Jäger et al., 2007). PGC-1α is a transcriptional coactivator of
transcription factor PPARγ (Handschin and Spiegelman, 2006).
In the liver, PGC-1α is proposed to regulate fatty acid β-oxidation
through PPARγ (Inagaki et al., 2007). The other potential
target protein is Liver X receptors (LXRs), which regulates the
expression of SREBP1c and the process of lipogenesis. In the liver,
AMPK is found to inhibit the ligand-induced LXR activity on
Srebp-1c promoter (Yap et al., 2011). Intriguingly, recent studies
reported that the activation of LXRs also increases the fatty acid
synthesis in the mammary gland (McFadden and Corl, 2010;
Oppi-Williams et al., 2013). To date, PGC-1α and LXR have
been identified as downstream targets of AMPK in the liver. It
would be interesting to know whether these mechanisms could
be validated in the mammary gland as well.

Milk Protein
Milk proteins, such as caseins and whey proteins, are important
sources of nutrition for neonates. Colostrum contains
immunoglobulins, such as IgG, IgM, and IgA, which are
important to establish the early immunity of neonates. The
amino acids used for milk protein synthesis are transported via a
complicated transportation system (Zhang Y. et al., 2018). The
process of milk protein synthesis requires a significant amount of
energy (Moe, 1981). The master regulator of protein synthesis is
mammalian target of rapamycin complex 1 (mTORC1). Dietary
energy deprivation activates AMPK and inhibits mTORC1
in the rat mammary gland (Jiang et al., 2008). Similarly, in
bovine mammary epithelial cells, energy deprivation increases
the phosphorylation of AMPK by inhibiting the mTORC1
signaling pathway (Burgos et al., 2013). Glucose deprivation in
bovine mammary epithelial cells leads to the downregulation
of the mRNA expression of Casein Alpha S1 (CSN1S1), CSN2
and CSN3, which encode as1-casein, β-casein and κ-casein,
respectively (Zhang M. et al., 2018). However, glucose promotes
αS1-casein and β-casein protein synthesis in the bovine
mammary gland (Wang et al., 2019).

mTORC1 is a master regulator of anabolic and catabolic
metabolism in cells (Howell and Manning, 2011). More
specifically, mTORC1 participates in the regulation of gene
transcription (Mayer and Grummt, 2006), protein translation
(Mamane et al., 2006), and apoptosis (Thedieck et al., 2013).
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FIGURE 4 | Continued
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FIGURE 4 | AMPK regulates mammary milk protein synthesis: mTORC1 is the master regulator that controls milk protein synthesis in the mammary gland through
4EBP1 and S6K1. AMPK directly inhibits mTORC1 through the phosphorylation of raptor at Ser 792. AMPK also decreases mTOR activity through the
phosphorylation of TSC2 (a negative mTORC1 regulator) at Ser1345. The genes encoding as1-casein (CSN1S1), β-casein (CSN2) and κ-casein (CSN3) are also
decreased with the activation of AMPK. 4EBP1, eukaryotic initiation factor 4E binding protein 1; AID, auto-inhibitory domain; CBS, cystathionine-beta-synthase;
eEF2, eukaryotic elongation factor 2; eEF2K, eukaryotic elongation factor 2 kinase; eIF4A, eukaryotic initiation factor 4A; eIF4E, eukaryotic initiation factor 4E; eIF4G,
eukaryotic initiation factor 4G; Raptor, regulatory associated protein of TOR; Rheb, ras homolog enrichedin brain; S6K1, s6 kinase 1; TSC2, tuberin 2; mTOR,
mammalian target of rapamycin; mTORC1, mammalian target of rapamycin complex 1; mLST8, mammalian ortholog of LST8.

FIGURE 5 | A working model of how AMPK regulates milk secretion and mammary gland function. ACC1, acetyl-coA carboxylase 1; ACC2, acetyl-coA carboxylase
2; SREBP1c, sterol regulatory element binding protein-1c; TSC2, tuberin 2. Solid circle indicates this function has been widely verified in the mammary gland.
Dashed circle indicates this function still needs to be verified in the mammary gland.

Eukaryotic initiation factor 4E binding protein (4EBP1) and
ribosomal protein S6 kinase 1 (S6K1), which mainly regulate
protein translation, are two independent downstream regulators
of mTORC1 (Kim and Guan, 2019). Two independent pathways
have been previously reported to inhibit mTOR activity through
AMPK activation (Figure 4). First, AMPK inhibits TSC2
(Tuberin 2, which is a negative regulator of mTORC1) through
the phosphorylation of Ser1345 (Inoki et al., 2006). Second,
AMPK inhibits Raptor (a component of mTORC1) through the
phosphorylation of Ser792 (Carling et al., 1987). In the mammary

gland, AMPK is also reported to regulate the phosphorylation of
TSC2 (Inoki et al., 2006) and Raptor (Burgos et al., 2013).

The other potential downstream target of AMPK in
the regulation of protein synthesis is eukaryotic translation
elongation factor 2 kinase (eEF2K), which is a negative regulator
of protein elongation (Leprivier et al., 2013). As a downstream
target of eEF2K, eEF2 is significantly increased during the
lactation period in the bovine mammary gland (Bionaz and Loor,
2011). This observation suggests that eEF2K is a crucial regulator
of milk synthesis during lactation.
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Milk Lactose
In the mammary gland, 55–70% of glucose is used for lactose
synthesis (Guinard-Flament et al., 2006). Glucose acts as a
substrate and provides energy for lactose synthesis. Compared
with studies regarding AMPK signaling during milk protein
and fat synthesis, studies regarding AMPK signaling during
lactose production are limited. This gap in the literature might
be because the mammary gland is the only model in which
lactose synthesis can be studied. In addition, technical challenges
make it difficult to induce high levels of lactose synthesis in
the mammary epithelial model in vitro. The mammary lactose
synthesis pathway has been previously summarized (Zhang
S. et al., 2018). Briefly, glucose and UDP-galactose (derived
from glucose) are synthesized into lactose in the Golgi bodies.
Some evidence indicates that lactose synthesis is inhibited by
AMPK activation. AMPK activation (stimulated by A-769662)
is found to decrease the rate of lactose synthesis in the bovine
mammary gland (Huang et al., 2020). Interestingly, activated
AMPK increases GLUT1 mRNA expression and glucose uptake
in the goat mammary gland (Zhang et al., 2011). AMPK-induced
increased GLUT1 expression occurs through the phosphorylation
of thioredoxin-interacting protein (TXNIP) at Ser308 (Wu et al.,
2013). Although glucose is a critical source for lactose synthesis,
the increase in GLUT1 does not indicate increased mammary
lactose synthesis. Under energy deprivation conditions, increased
cellular glucose is directly used to generate energy to maintain
basic cellular function rather than to synthesize lactose. The
detailed mechanism by which AMPK regulates the enzymes
involved in lactose synthesis is still unclear and requires
further research.

AMPK REGULATES MAMMARY GLAND
DEVELOPMENT

The Janus kinase (Jak)-signal transducer and activator of
transcription (Stat) signaling pathway is critical for mammary
gland development (Hennighausen and Robinson, 2001; Wagner
et al., 2004). Either glucose or amino acid deprivation activates
AMPK and simultaneously decreases the Jak2/STAT5 signaling
pathway in bovine mammary epithelial cells (Zhang M. et al.,
2018). Initially, it was proposed that Jak2/STAT5 is involved
in alveologenesis and mammary epithelial cell maintenance
(Wagner et al., 2004; Caffarel et al., 2012). Recently, Jak2/STAT5
was also found to regulate milk protein synthesis through the
regulation of casein translation (Yang et al., 2015). However, the
evidence supporting a direct connection between AMPK and
Jak2/STAT5 is still unclear and requires more study in the future.

AMPK FUNCTIONS BEYOND MILK
SYNTHESIS AND MAMMARY GLAND
DEVELOPMENT

In addition to regulating milk production, recent evidence
indicates that AMPK is involved in the regulation of other
biological functions of mammary glands (Figure 5); these

other biological functions include: (1) inhibiting epithelial
cell proliferation and decreasing cell cycle progression in the
mammary gland (Wang et al., 2019); (2) regulating circadian
clock protein expression in the mammary gland (Hu et al., 2020);
(3) relieving oxidative stress in the mammary gland (Guo et al.,
2020); and (4) increasing autophagy and enhancing the renewal
of the mammary gland (Li et al., 2020).

CONCLUSION AND OUTLOOK

To date, AMPK appears as a critical sensor in the mammary
gland that detects nutrient fluctuations and environmental
changes. Energy deprivation and heat stress are two major
elements involved in the activation of AMPK in the mammary
gland. AMPK regulates milk production (fat, protein, and
lactose) and mammary gland biology (development and
proliferation) through the regulation of transcription and
post-translational modifications.

To the best of our knowledge, the existing evidence regarding
the effects of the AMPK pathway on the mammary gland was
mainly obtained under conditions of energy deprivation (amino
acid or glucose deprivation). It is important to understand the
function of AMPK and its related signaling pathways in the
mammary gland using tissue-specific knockout mice. Future
studies using AMPK-specific agonists and antagonists may also
extend our understanding of AMPK signaling in the mammary
gland. To date, most research studying normal mammary gland
were performed in cows, mice and sows, rather than humans.
Thus, it is of great importance to investigate the functions
of AMPK in humans.

The most direct way to inactivate AMPK is to increase
energy intake. However, according to production experience,
it is very challenging to increase energy intake during the
lactation period in mammals due to the limited gut volume.
Thus, it would be interesting to determine whether an AMPK
antagonist could rescue the decrease in milk production caused
by energy deprivation and/or heat stress. The identification
of novel nutritional and pharmacological inhibitors of AMPK,
which can be widely and safely used as food or feed additives in
mammalian diets, remains a major challenge.
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