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In the mammalian adult hippocampus, new neurons are continuously generated
throughout life in the subgranular zone of the dentate gyrus. Increasing evidence
point out the contribution of adult-born hippocampal granule cells (GCs) to cognitive
processes such as learning and memory, indicating the relevance of understanding
the molecular mechanisms that control the development of these new neurons in the
preexisting hippocampal circuits. Cell proliferation and functional integration of adult-
born GCs is a process highly regulated by different intrinsic and extrinsic factors. In
this review, we discuss recent advances related with cellular components and extrinsic
signals of the hippocampal neurogenic niche that support and modulate neurogenesis
under physiological conditions.

Keywords: neural stem cells, adult hippocampal neurogenesis, niche signals, adult born granule cells, granule
cell integration

INTRODUCTION

Several studies provide evidences indicating that hippocampal neurogenesis is needed for
the integration of new information into pre-existing context promoting flexible learning and
adaptive behaviors. Physiological experiences such as learning, physical exercise and exposition
to enrich environment (EEs) have been associated with an increase in survival, proliferation and
differentiation of adult-born hippocampal cells. Moreover, others pathophysiological conditions,
such as aging, stress, and degenerative disorders (like Alzheimer disease, AD) have been described
to impair and decrease adult neurogenesis (Goncalves et al., 2016; Toda et al., 2019). These
effects are modulated through different signaling molecules produced in the adult hippocampal
neurogenic niche.

Understanding the signals derived from this specific microenvironment results essential to
enhance the process of neuronal integration in the aged and diseased brain. In this minireview, we
focus our attention in the complexity of the adult hippocampal neurogenic niche, which provides
multiple signals that are integrated by the neural stem cells (NSCs) and the newborn neurons to
respond adequately in different circumstances.
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ADULT HIPPOCAMPAL NEUROGENESIS

Adult hippocampal neurogenesis has been confirmed in the
majority of mammals, but whether it is present in humans has
been the issue of an intense recent debate (Boldrini et al., 2018;
Sorrells et al., 2018). Methodological factors seem to contribute
to the discrepancies between studies that describe the presence
or absence of neurogenesis in the human adult dentate gyrus
(DG). Future research using different approaches will be needed
to understand how adult-born granule cells (GCs) are generated.
Recent studies describe that human hippocampal neurogenesis
persists through the ninth decade of life and is associated with
cognitive status in patients with AD, providing evidence of the
potential relevance of this process for many human disorders
(Moreno-Jimenez et al., 2019; Tobin et al., 2019).

The general pattern of hippocampal neurogenesis is conserved
across different mammalian species. Hippocampal NSCs give
rise to GCs throughout a highly regulated process, which
involves the exit of the quiescence state, posterior divisions,
specification to a neuronal fate, neuronal differentiation, and the
physiological integration in the preexisting hippocampal circuits.
Along this period morphological, intrinsic electrical properties
and synaptic connections evolve in parallel toward a mature
neuronal phenotype. All the process is tightly controlled by
physiological stimuli, that modify the hippocampal niche (Toni
and Schinder, 2015; Toda et al., 2019).

CELLULAR COMPONENTS OF THE
HIPPOCAMPAL NEUROGENIC NICHE

The adult hippocampal neurogenic niche is a specialized and
dynamic microenvironment, which involves both cellular and
non-cellular components of the DG. Altogether, cells and
the signals produced by them can regulate the neurogenic
process acting at different levels from proliferation to functional
integration (Figure 1).

Astrocytes
Astrocytes represent one of the main modulators of the
neurogenic niche (Song et al., 2002). They control cell
proliferation, migration, differentiation and synaptic integration
of newborn GCs through membrane-associated molecules and
by secreting soluble signals like fibroblast growth factor-2
(FGF-2), WNT (Wingless) ligands, thrombospondin-1 (TSP-
1), cytokines, and extracellular matrix (ECM) proteins among
others (Trejo et al., 2001; Shetty et al., 2005; Lu and Kipnis,
2010; Casse et al., 2018). They also control the availability
of neurotransmitters in the synaptic cleft. The relevance of
astrocytes in the maturation of adult-born GCs was evidenced
using transgenic approaches to block vesicular release. This
strategy resulted in both reduced glutamatergic synaptic input
and dendritic spine density that was accompanied by a reduction
in cell survival and functional integration of adult-born, but
not of mature DG neurons (Sultan et al., 2015). Astrocytes
can affect positively or negatively neurogenesis, depending on
their metabolic state. While in normal physiological conditions

astrocytes produce molecules that positively regulate this process,
in pathological situations, they suffer modifications in their
transcriptome and secretome that may contribute to impairment
of neurogenesis and cognitive deficits. Thus, cytokines such as IL-
6, TNF-α, and IFN-γ are produced by astrocytes in inflammatory
processes (Vallieres et al., 2002; Liddelow and Barres, 2017;
Casse et al., 2018).

Microglia
Several studies have shown the relevance of microglia in adult
hippocampal neurogenesis. They are involved in phagocytosis of
apoptotic adult-born GCs (Sierra et al., 2010). Therefore, ablation
of microglia in the adult DG results in decreased number of
neuroblasts (Kreisel et al., 2019). Interestingly, a recent report
has described that phagocytic microglia act as a sensor of local
cell death and modulate the balance between cell proliferation
and cell survival in the neurogenic niche (Diaz-Aparicio et al.,
2020). Microglial cells regulate neurogenesis through both cell-
cell interaction mechanisms and secreted factors. Thus, animals
lacking CX3CR1 microglial receptor, involved in microglial-
neuronal interaction, resulted in impaired morphology and
deficient synaptic integration of adult-born GCs in the DG (Bolos
et al., 2018). Microglial activation by pro-inflammatory molecules
results in defects in different steps of adult neurogenesis.
Cytokines secreted by microglia in the context of inflammation
include: IL-6, IL-1β, and tumor necrosis factor-α (TNF-α; Cacci
et al., 2005; Gemma et al., 2007; Ekdahl et al., 2009).

Vascular Cells
A growing body of data indicates that blood vessels are essential
components of hippocampal NSC niches. Vascular cells can
impact neurogenesis directly by producing neurogenic factors
or indirectly, transporting neurogenic substances produced by
other cells. Many studies indicate that endothelial cells secrete
different trophic factors such as brain-derived neurotrophic
factor (BDNF), vascular endothelial growth factor (VEGF), and
chemokines such as CCL11, which affect NSCs proliferation
and maturation of these cells (Cao et al., 2004; Kim et al.,
2004; Licht et al., 2011; Villeda et al., 2011; Licht and
Keshet, 2015). A recent study indicates that endothelial cells,
through the expression of the monocarboxylic acid transporter
1 (MCT1), contribute to the maintenance of lactate homeostasis
promoting neurogenesis and cognitive functions (Wang et al.,
2019). Another important source of neurogenic signals comes
from the brain vasculature which provide signaling molecules
secreted by local or distal sources. These include trophic
factors, hormones, lipids and exosomes (Batiz et al., 2015;
Licht and Keshet, 2015).

Neural Stem Cells and Neuronal Cells
Increasing evidence shows an important role for NSCs as
regulators of their own niche, influencing the development
of their progeny at different neurogenic stages. VEGF,
neurotrophin-3 (NT3), Pleiotrophin (PTN), and BDNF are some
of the factors released by the NSCs (Vicidomini et al., 2020).

Neuronal activity regulates multiple stages of adult
neurogenesis from proliferation, survival, neuronal maturation,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 July 2020 | Volume 8 | Article 548

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00548 June 30, 2020 Time: 20:52 # 3

Bonafina et al. The Adult Hippocampal Neurogenic Niche

FIGURE 1 | Scheme showing the organization and composition of the adult hippocampal neurogenic niche. The different stages of adult born GCs maturation are
shown with neuronal and non-neuronal (astrocytes, microglia, and vascular cells) components. The extracellular matrix (ECM) is indicated in yellow. Soluble diffusible
signaling molecules produced by the different cellular components of the SGZ niche are mentioned in the table. SGZ, subgranular zone; GCL, granular cell layer; ML,
molecular layer.

and synaptic integration. Local interneurons, hilar inhibitory
neurons, mossy glutamatergic neurons and mature GCs from
the DG control different stages of newborn GCs integration.
Extensive literature has demonstrated an essential role of
neurotransmitters locally released by DG neurons or by axons
arising from projecting neurons in the modulation of adult-born
GCs development (Song et al., 2012, 2016; Toni and Schinder,
2015; Bao et al., 2017; Yeh et al., 2018; Groisman et al., 2020).
This topic will not be discussed in the present revision.

The cellular components of the subgranular zone (SGZ)
provide a complex regulatory architecture that allow the correct
development of the adult-born GCs, promoting their correct
integration in the preexisting hippocampal circuits. Neural
activity triggered by physiological experiences is essential to
govern the interaction between the different cellular components
that control the neurogenic process by secreting specific
signals. An interesting example of the signal integration in
the hippocampal neurogenic niche was evidenced in a recent
study which shows that hippocampus-associated behaviors

increase microvascular blood-flow velocity in the DG and
enhance hippocampal neurogenesis. The authors proved that
this effect is mediated by parvalbumin-expressing neurons which
increase blood flow via nitric-oxide signaling. This increase
in the microvascular hemodynamics enhances IGF-1 signaling
promoting the newborn cell survival (Shen et al., 2019).

SUBGRANULAR ZONE NICHE SIGNALS

The different cellular components of the neurogenic niche
can modulate neurogenesis by multiple signaling mechanisms
(Figure 2). Here we describe different types of signals produced
by the SGZ niche focusing in the new advances and novel factors
that has been described during the last years.

Intercellular Contacts
Direct cell–cell interaction is critical in stem cell maintenance.
A known membrane molecule, Notch, and its ligands can mediate
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FIGURE 2 | Schematic representation of the different cellular and molecular mechanisms that modulate adult neurogenesis in SGZ. In the figure, we summarize the
novel signals most recently described. (A) Intercellular contacts including Notch/JAG1/DLL1 and Eph/ephrines between NSCs and adjacent cells. (B) Extracellular
matrix (ECM) molecules contributes to the preservation of stem cells pool and the morphological differentiation of adult born-GCs. ECM can also modulate the
availability of soluble factors present in the SGZ niche, like Pleiotrophin (PTN) and BDNF. (C) Exosomes has recently been proposed to have a key role in cell-cell
communication in SGZ niche. (D) Soluble diffusible factors have been described to have multiple roles in regulating adult hippocampal neurogenesis. Some external
signals, their receptors and their biological action were indicating. Question mark indicates that the source of the ligand is still unknown. Arrow indicates autocrine
signaling. More studies are needed to understand the interaction between these signals. GC, granular cell; NSC, neural stem cell; CSPG, chondroitin sulfate
proteoglycan.

direct interaction between NSCs and neighboring cells, and thus
play an important role in neurogenesis. Ablation of Notch in
hippocampal NSCs during adulthood promotes cell cycle exit and
neuronal fate determination (Breunig et al., 2007; Ables et al.,
2011). The importance of Notch signaling in the maintenance
of NSC quiescence in SGZ has been also demonstrated by
ablation of the Notch ligands DELTA1 (DLL1) and JAGGED1
(JAG1) in DG stem cells (Ehm et al., 2010; Imayoshi et al.,
2010; Kawaguchi et al., 2013; Lavado and Oliver, 2014). Notch
ligands are also expressed by astrocytes from the adult DG
and reduction in the levels of JAG1 results in a reduction
in Notch signaling and increase in neuronal differentiation
(Wilhelmsson et al., 2012).

Eprhrin/Eph signaling has also been involved as important
players regulating stem cell behavior. Initial studies showed
that Ephrin-B2 presented by astrocytes interacts with EphB4
receptors on NSCs, promoting neuronal differentiation (Ashton
et al., 2012). A recent study indicates that the intercellular
signaling between mature GCs and NSCs regulates the transition

of quiescent NSCs to newborn neurons. During running,
membrane-bound ligand, Ephrin-B3 on mature GCs acts as a
negative regulator for activation of adjacent NSCs expressing
EphB2 receptor (Dong et al., 2019).

Extracellular Matrix Signals
All cell types in the SGZ niche are in contact with the ECM, a
complex and dynamic network of macromolecules with different
physical and biochemical properties. The ECM acts providing
a physical supportive structure and also molecular signals
to regulate NSC development. The contribution of the ECM
molecules to the modulation of hippocampal neurogenesis is
complex, as they can act by interacting directly with cellular
receptors or indirectly as modulators of the availability of soluble
factors present in the neurogenic niche (Figure 2B). Among ECM
molecules that have been involved in hippocampal neurogenesis
is the extracellular glycoprotein Reelin, which promotes NSC
proliferation and also dendritic maturation (Won et al., 2006;
Teixeira et al., 2012). During the last years proteoglycans
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have emerged as important cues for the proliferation and
differentiation of new neurons in the SGZ. Thus, pharmacological
depletion of chondroitin sulfate proteoglycan (CSPG) in the DG
reduces the densities of newborn GCs. The dendritic arborization
of these neurons was also reduced by CSPG digestion, and
behavioral analysis of these animals revealed cognitive memory
impairments. Interestingly, the ability of EE to promote GC
production and improve cognitive behaviors was impaired in
mice that lacked a key enzyme for CSPG synthesis indicating
that the extracellular CSPGs participate in the pro-neurogenic
effects of the EE (Yamada et al., 2018). Another major constituent
of the forebrain ECM is the glycosaminoglycan hyaluronan
(Hyaluronic acid, HA), which is present in the SGZ. Mice lacking
the HA transmembrane receptor, CD44, which is expressed by
NSC, show an increase in stem cell proliferation, suggesting
a role of this molecule in NSC quiescence. The fact that HA
is synthesized by NSC and increases in the SGZ with aging
suggest that HA accumulation may contribute to the reduced
neurogenesis observed in aged animals (Su et al., 2017).

Soluble Diffusible Factors
The different cells that constitute the DG neurogenic niche
regulate stem cell activity by secreting diffusible signaling
molecules, which represent the majority of extracellular cues
that regulate neurogenesis (Figure 2D). Among them, the role
of bone morphogenetic proteins (BMPs) and WNT signaling
has been well established. Thus, WNT signaling produced by
NSCs and astrocytes in the SGZ can regulate different stages
of adult neurogenesis. It is well-known that WNT signaling
promotes proliferation and NSC self-renewal, while, endogenous
WNT signaling inhibitors, such as sFRP3 and Dkk1, promote
stem cell quiescence and controls the timing of newborn granule
neuron maturation (Lie et al., 2005; Bowman et al., 2013; Jang
et al., 2013; Seib et al., 2013; Varela-Nallar and Inestrosa, 2013).
Different members of the WNT family have also been associated
to the promotion of dendrite development of adult born GCs
(Arredondo et al., 2020). Regarding to the BMPs, they have
emerged as critical inducers of NSC quiescence and long-term
maintenance in SGZ (Gobeske et al., 2009; Mira et al., 2010;
Yousef et al., 2015). The soluble factor Sonic Hedgehog (Shh),
which is critical at early stages of embryonic brain development,
has also been involved in adult hippocampal neurogenesis
promoting the proliferation SGZ NSCs before they become
quiescent (Han et al., 2008; Noguchi et al., 2019).

Trophic factors, such as IGF-1 and VEGF are relevant players
involved in adult neurogenesis at different developmental stages
that have previously been deeply analyzed (Cheng et al., 2001;
Lichtenwalner et al., 2001; Fournier and Duman, 2012; Kirby
et al., 2015; Nieto-Estevez et al., 2016; Mir et al., 2017).

During the last years new soluble molecules known for other
functions, have emerged as modulators of the neurogenic process.
Thus, the Globule-epidermal growth factor (EGF) 8 (MFGe8),
a molecule involved in the phagocytosis of apoptotic cells, was
found to be expressed by quiescent NSCs and astrocytes in
the SGZ. Recently, it was shown that adult specific deletion of
MFGe8 in NSCs promotes the increase in NSC proliferation
and depletion of the neurogenic pool causing a decreased

neurogenesis at later developmental stages (Zhou et al., 2018).
Another soluble protein, Semaphorin7a (Sema7a), which has
been previously described as a guidance molecule, has emerged
as a novel key factor in the control of adult hippocampal
neurogenesis. Interestingly, Sema7a regulates different stages of
adult neurogenesis via two, stage-specific different receptors.
Thus, Sema7a inhibits progenitor proliferation by acting
though Plexin, in early neural progenitors and subsequently,
during differentiation, Sema7a promotes dendrite maturation
and spine development acting through β1-integrin receptors
(Jongbloets et al., 2017).

The role of the neurotrophins in hippocampal adult
neurogenesis is well documented. Particularly, BDNF is
expressed in SGZ by NSCs, mature DG granule neurons and
also by non-neuronal cells, while its receptor, TrkB, is broadly
expressed by NSCs at different developmental stages (Vilar
and Mira, 2016). Brain-derived neurotrophic factor acting
through TrkB has been associated to survival, proliferation
and maturation of adult-born GCs (Scharfman et al., 2005; Li
et al., 2008; Taliaz et al., 2010). Dendrite development, spine
growth and synapse formation were markedly impaired in
adult-born GCs from TrkB-deficient mice in which the receptor
was conditionally deleted in NSC and in animals in which
BDNF was ablated in the entire forebrain (Bergami et al., 2008).
Interestingly, conditional deletion of BDNF in NSCs resulted
in a similar impairment in dendrite growth indicating that the
effect of BDNF on dendrite maturation is mainly autocrine.
In support of an autocrine role of BDNF, its deletion in NSC
abolished the promotion of dendritic growth induced by running
(Wang et al., 2015).

Other member of the neurotrophin family, NT-3 is highly
expressed in the adult DG. Conditional ablation of NT-3 in the
brain throughout development shows normal proliferation in
the SGZ, a reduction in the number of newly generated granule
neurons and an increase in the proportion of cells that do
not express differentiation markers, indicating a role of NT3 in
maturation of neural progenitor cells (Shimazu et al., 2006).

A more recent work has demonstrated that the protein
PTN secreted by hippocampal NSCs from the SGZ niche is
important for the correct development and integration of the new
neurons in the DG. Ablation of PTN leads to defects in neuronal
integration and synaptic activity of the newborn neurons in the
hippocampus without affecting the production or survival of
them. This effect is mediated by one of the PTN receptors, ALK,
which is expressed by NSCs. Interestingly, this study showed
that the expression of PTN is reduced with aging but that the
administration of PTN is able to ameliorate the age-induced
defects of hippocampal neurogenesis (Tang et al., 2019).

Recently, glial-derived neurotrophic factor (GDNF), a
neurotrophic factor initially described for its potent effect on the
survival of dopaminergic nigrostriatal neurons was described
as a novel regulator of newborn GCs integration (Paratcha and
Ledda, 2008; Bonafina et al., 2019). The receptor of GDNF,
the GPI-linked protein GFRα1, is expressed by immature and
mature adult-born GCs. Conditional ablation of GFRα1 in
NSCs indicated that GDNF/GFRα1 complex is required for
proper maturation and integration of adult-born GCs into
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preexisting hippocampal circuits. Conditional knockout mice
for GFRα1 showed impairment in behavioral pattern separation,
which has been associated to deficits in adult neurogenesis. This
study shows that voluntary physical exercise promotes GDNF
expression in the DG and dendritic development. However, the
deletion of GFRα1 in the newborn GCs abolishes the increase in
dendrite complexity induced by running, revealing that the effect
of running on dendrite development depends partially on GDNF
expression (Bonafina et al., 2019).

As growth factors involved in hippocampal neurogenesis
acts through different receptors triggering specific downstream
signaling pathways, the remaining question is how newborn
neurons integrate this information. One possibility is that the
same cell expresses all the receptors but need to integrate the
different signals in order to respond appropriately. A second
possibility is the existence of subpopulations of adult-born GCs
each of which respond to different growth factors expressing
specific receptor repertoires. Moreover, the presence and the
abundance of receptors and the downstream signaling partners
can be modified during the maturation process. Thus, the
expression of different arrays of trophic factor receptors in the
adult-born GCs deserve further analysis.

Exosomes
These small membrane extracellular vesicles have emerged as
one of the major mediators of intercellular communication
(Figure 2C). Diverse array of proteins, lipids, mRNAs and
miRNAs have been identified in exosomes from different cell
types found in the SGZ niche. Although the role of exosomes
in the adult neurogenic niches is still unclear, growing indirect
evidence suggest that exosomes might play a critical role in cell-
cell communication in neurogenic niches (Batiz et al., 2015).
Some of the molecules expressed in the neurogenic environments
have been reported to be present in exosomes. Recently, a
study has shown that injection of purified exosomes derived
from neural cultures in postnatal mouse brains increases SGZ
neurogenesis indicating that exosomes contain molecular cargo
that regulates this process (Sharma et al., 2019).

Lipids
Over the last years, lipids have gained attention in the regulation
of adult neurogenesis (Knobloch, 2017). Lipids can be taken up
from circulation or synthetized de novo by NSCs. Cholesterol-
carrying lipoproteins receptor, LDL-r, has been associated to
adult hippocampal neurogenesis. Ablation of LDL-r in mice
results in a reduction of the proliferation of NSCs and also
a decline in the number of newborn GCs. These results were
confirmed by in vitro experiments in which NPCs exposed
to high concentration of plasma LDL results in a decreased
proliferation and reduced differentiation toward a neuronal
lineage (Engel et al., 2019). Although several studies indicate the
relevance of lipids in neurogenesis, how lipids affect this process
needs to be addressed in more detail.

The large literature about the different cells and the nature
of signals which modulate adult hippocampal neurogenesis
indicates that extrinsic control of this process is much more
complex than previously envisioned. The distribution of different

factors in the neurogenic niche, the precise signaling pathways
that they trigger, the interaction with other intrinsic and extrinsic
signals and their function in pathological process deserves
further investigation.

DISCUSSION

The great diversity of signals present in the niche should
be appropriately integrated by the adult-born GCs to
promote the proper maturation and integration of them
into preexisting circuits. The different factors derived from the
microenvironment induce specific transcriptional programs
that drive the maturation of the new cells and determine the
morphological and physiological properties of GCs at the
different stages during neuronal development and their response
to external stimuli.

In parallel to the great diversity of signals that have been
described as modulators of the hippocampal neurogenesis,
different studies pointed out to the heterogeneity of NSCs. This
idea indicates that not all NSCs or immature GCs respond
similarly to the different extracellular signals that are present
in the niche (Shin et al., 2015). Cellular heterogeneity in these
neurons may result in some populations being more responsive
to the variety of factors present in the niche and also being more
susceptible to different pathologies.

The identification of the array of factors present in
the SGZ niche during neurogenesis represents a crucial
knowledge because it opens the possibility to combine them
in order to improve the development of adult-born neurons
in physiopathological conditions. In this context a recent study
reported that mimicking the beneficial effects of exercise by
pharmacological induction of neurogenesis, combined with
elevation of BDNF levels in the DG revert the negative effects
of Alzheimer’s disease on newborn hippocampal neurons in a
mouse model of the disease (Choi et al., 2018).

Thus, understanding the complexity of the SGZ neurogenic
niche becomes essential for the development of novel therapeutic
strategies for the treatment of cognitive impairments associated
with aging and brain disorders in which adult hippocampal
neurogenesis is affected.
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