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Acute central nervous system (CNS) injuries, such as stroke, traumatic brain injury
(TBI), and spinal cord injury (SCI) present a grave health care challenge worldwide
due to high morbidity and mortality, as well as limited clinical therapeutic strategies.
Established literature has shown that oxidative stress (OS), inflammation, excitotoxicity,
and apoptosis play important roles in the pathophysiological processes of acute
CNS injuries. Recently, there have been many studies on the topic of ferroptosis,
a form of regulated cell death characterized by the accumulation of iron-dependent
lipid peroxidation. Some studies have revealed an emerging connection between
acute CNS injuries and ferroptosis. Ferroptosis, induced by the abnormal metabolism
of lipids, glutathione (GSH), and iron, can accelerate acute CNS injuries. However,
pharmaceutical agents, such as iron chelators, ferrostatin-1 (Fer-1), and liproxstatin-1
(Lip-1), can inhibit ferroptosis and may have neuroprotective effects after acute CNS
injuries. However, the specific mechanisms underlying this connection has not yet been
clearly elucidated. In this paper, we discuss the general mechanisms of ferroptosis
and its role in stroke, TBI, and SCI. We also summarize ferroptosis-related drugs
and highlight the potential therapeutic strategies in treating various acute CNS injuries.
Additionally, this paper suggests a testable hypothesis that ferroptosis may be a novel
direction for further research of acute CNS injuries by providing corresponding evidence.

Keywords: ferroptosis, iron metabolism, lipid metabolism, stroke, traumatic brain injury, spinal cord injury,
therapy

INTRODUCTION

Acute CNS injuries, including stroke, TBI, and SCI, are a major burden of morbidity and mortality
worldwide (GBD, 2016, 2019). Each year, approximately 80 million individuals in the United States
suffer a stroke. Moreover, deaths caused by stroke contribute to nearly 5% of all deaths in the
United States. Ischemic stroke accounts for 87% of all strokes, with ICH comprising the remaining
10% (Benjamin et al., 2019). Another neurological disease worth mentioning is TBI, which has
a global incidence of more than 50 million cases annually (Maas et al., 2017; Jiang et al., 2019).
Regarding the mechanisms associated with acute CNS injuries, previous literature has shown that
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various mechanisms, including OS, inflammation, excitotoxicity,
and apoptosis, play important roles in the pathophysiological
processes of acute CNS, and targeting these mechanisms may
provide neuroprotection (Roth et al., 2014; Chamorro et al., 2016;
Duan et al., 2019; Nazemi et al., 2020). However, there is a
lack of effective therapeutic strategies in treating long-term CNS
injuries. Patients who survive CNS injuries often have long-term
disabilities due to substantial neurological deficits and impaired
tissue function, therefore requiring subsequent lifelong care.
New therapeutic approaches are urgently required to improve
outcomes of patients with acute CNS injuries. In recent years,
there has been increasing interest in ferroptosis, suggesting
a potential role of ferroptosis in acute CNS injuries and
offering opportunities for novel pharmacological interventions,
as ferroptosis can be modulated by small molecules (Friedmann
Angeli et al., 2014; Lewerenz et al., 2018; Alim et al., 2019).

Ferroptosis, first observed in response to treatment of tumor
cells via small-molecule chemical probes, is a newly identified
form of regulated cell death characterized by the accumulation
of iron-mediated lipid peroxides (Dixon et al., 2012). It differs
from other programmed cell deaths (e.g., apoptosis, necrosis, and
autophagy) at the morphological, biological, and genetic levels
(Dixon et al., 2012). Regarding the function of ferroptosis within
the tumor, it is associated with malignant transformation, cancer
progression, and drug resistance [for review see Su et al. (2020)].
Moreover, ferroptosis regulation may be useful for anti-cancer
therapy (Guo et al., 2019; Su et al., 2020). Although ferroptosis
was first defined in cancer cells and has potential in cancer
treatment, the latest experimental results have identified its role
in the pathophysiology of acute organ injuries, such as acute
kidney, lung, and brain injuries (Dixon et al., 2012; Friedmann
Angeli et al., 2014; Kenny et al., 2019; Hu et al., 2020; Li Y.C.
et al., 2020). More importantly, ferroptosis can cause neuronal
cell death and neurological deficits in CNS injuries and human
neurodegenerative diseases (Dixon et al., 2012; Morris et al.,
2018). Therefore, targeting ferroptosis through effective anti-
ferroptotic agents may provide direction for treating acute CNS
injuries (Tuo et al., 2017; Zille et al., 2017; Kenny et al., 2019).

Abbreviations: 4-HNE, 4-hydroxy-2-nonenal; AA, arachidonic acid; ACSL4,
acyl-CoA synthetase long-chain family member 4; AdA, adrenic acid;
ALOX5, arachidonate 5-lipoxygenase; BBB, blood–brain barrier; BMSC,
bone marrow mesenchymal stem cells; BPS, bathophenanthrolinedisulfonic
acid; BSO, buthionine sulfoximine; CCI, cortical impact injury; CNS, central
nervous system; CoQ10, coenzyme Q10; COX-2, cyclooxygenase-2; DFO,
deferoxamine; DFP, deferiprone; DMT1, divalent metal transporter 1; EC,
(-)-epicatechin; Fe2+, ferrous iron; Fe3+, ferric iron; Fer-1, ferrostatin-1;
FPN, ferroportin; FSP1, ferroptosis suppressor protein 1; FTH1, ferritin heavy
chain 1; FTL, ferritin light chain; GPX4, glutathione peroxidases 4; GSH,
glutathione; Hb, hemoglobin; HIF-1α, hypoxia-inducible factor 1α; HIF-
PHD, hypoxia-inducible factor prolyl hydroxylase; I/R, ischemia/reperfusion;
ICH, intracerebral hemorrhage; IREB2, iron metabolism essential factor iron
response element binding protein 2; Lip-1, liproxstatin-1; LOX, lipoxygenases;
LPCAT3, lysophosphatidylcholine acyltransferase 3; MCAO, middle cerebral
artery occlusion; MDA, malondialdehyde; NAC, N-acetylcysteine; NACA,
N-acetylcysteine amide; Nrf2, nuclear factor erythroid 2-related factor; OS,
oxidative stress; PEBP1, phosphatidylethanolamine-binding protein 1; PTGS2,
prostaglandin-endoperoxide synthase 2; PUFA, polyunsaturated fatty acid; ROS,
reactive oxygen species; RSL3, RAS synthetic lethal 3; SBI, secondary brain injury;
SCI, spinal cord injury; Se, selenium; STEAP3, six-transmembrane epithelial
antigen of the prostate 3; TBI, traumatic brain injury; TEM, transmission electron
microscopy; TF, transferrin; TFR, transferrin receptor.

So, what is the underlying mechanism of ferroptosis, and how
does it affect acute CNS injuries?

DISCOVERY AND MECHANISMS OF
FERROPTOSIS

Small-molecule probes are valuable tools for studying different
types of regulated cell death (Gangadhar and Stockwell, 2007).
During the identification of ferroptosis, there were two important
chemical probes. Ferroptosis inducers, erastin, and RSL3, were
discovered in a phenotypic small molecule-screening study
(Dolma et al., 2003; Yang and Stockwell, 2008). Erastin, a
synthetic compound, was capable of inducing non-apoptotic cell
death to selectively kill HRAS-mutant engineered cancer cells,
and in this process, there was no evidence of caspase activation
or apoptotic hallmarks (Dolma et al., 2003; Yagoda et al., 2007).
Another compound was RSL3, found in 2008, and capable of
triggering a similar form of non-apoptotic and iron-dependent
oxidative cell death (Yang and Stockwell, 2008). This erastin- and
RSL3-induced cell death did not exhibit the morphological or
biochemical features of apoptosis, and inhibition of necroptosis
or autophagy had no effect on this mode of cell death (Wolpaw
et al., 2011; Dixon et al., 2012; Yang et al., 2014). However, this
manner of cell death could be prevented by the iron chelator,
DFO, and antioxidants (e.g., Vitamin E) (Dolma et al., 2003;
Yagoda et al., 2007; Yang and Stockwell, 2008). Therefore, the
term “ferroptosis” was first proposed in 2012 to describe this
novel iron-dependent non-apoptotic cell death (Dixon et al.,
2012). Hallmark contributions of ferroptosis were well-displayed
by Hirschhorn and Stockwell (2019) and Li J. et al. (2020) [for
review see Hirschhorn and Stockwell (2019); Li J. et al. (2020)].
Hadian and Stockwell (2020) drew a SnapShot to provide an
overview of ferroptosis-related pathways. Although the exact
mechanisms of ferroptosis are still being explored, the initiation
and execution of ferroptosis involve several biological processes,
including lipid, GSH, and iron metabolism, as well as other
regulatory processes (Dixon et al., 2012; Figure 1).

Lipid Metabolism Related to Ferroptosis
Lipid metabolism is closely linked to the regulation of ferroptosis.
The accumulation of lipid peroxidation seems to be a key
process in the execution phase, in which PUFAs play an
important role (Stockwell et al., 2017; Wenzel et al., 2017; Yamada
et al., 2020). Usually, free PUFAs, especially AA and AdA are
esterified to membrane phospholipids [mainly PUFA-containing
phosphatidylethanolamines (PEs)]. With the presence of two
lipid-metabolic enzymes, ACSL4 and LPCAT3, these membrane
phospholipids undergo oxidation to drive ferroptosis (Doll et al.,
2017; Kagan et al., 2017). The knockout of ACSL4 or loss
of LPCAT3 resulted in significant resistance of certain non-
neuronal cells to ferroptosis (Dixon et al., 2015; Yuan et al., 2016;
Doll et al., 2017; Kagan et al., 2017). Following the generation
of AA/AdA-PE, activated LOXs catalyze AA/AdA-PE into pro-
ferroptotic lipid peroxidation AA/AdA-OOH-PE (Yang et al.,
2016; Lei et al., 2019). The role of the LOXs in ferroptosis
is also supported by a study indicating that genetic depletion
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FIGURE 1 | General mechanism of ferroptosis associated with lipid, amino acid, and iron metabolism. The inactive Fe3+ is delivered into the cell by TFR1 and
reduced to Fe2+ in the endosome. Then, DMT1 transports Fe2+ to the labile iron pool (LIP). Autophagic degradation of ferritin (ferritinophagy) releases Fe2+ from
ferritin, which is mediated by NCOA4. Fe2+ produces lipid ROS via the Fenton reaction and through the LOX pathway. Moreover, ACSL4 is required to activate
polyunsaturated fatty acid, especially AA and AdA, to AA/AdA-CoA, then LPCAT3 catalyzes these derivatives and membrane PEs to form AA/AdA-PE, which are
further converted into pro-ferroptotic lipid peroxidation under the activity of iron-containing LOXs. In conclusion, the Fenton reaction and oxidation of lipids facilitate
the generation of lipid ROS, thus leading to ferroptosis. The system xc- is a cystine/glutamate antiporter. Intracellular cystine is reduced to cysteine for the
biosynthesis of GSH. GPX4 converts two GSH molecules to GSSG each catalytic cycle to reduce lipid hydroperoxides, and then GSSG can be recycled back via
GSH reductase in an NADPH-dependent manner. Ferroptosis inducers inhibit the GPX4-GSH-cysteine axis, thus inhibiting the reduction of lipid ROS. AA/AdA,
arachidonic acid or adrenic acid; AA/AdA-CoA, arachidonic acid or adrenic acid coenzyme A; AA/AdA-PE, arachidonic acid or adrenic
acid-phosphatidylethanolamine; AA/AdA-OOH-PE, arachidonic acid or adrenic acid-hydroperoxides-phosphatidylethanolamine; AA/AdA-OH-PE, arachidonic acid or
adrenic acid-hydroxides-phosphatidylethanolamine; ACSL4, acyl-CoA synthetase long-chain family member 4; BSO, buthionine sulfoximine; CoA, coenzyme A; Cp,
ceruloplasmin; Cys, L-cysteine; DMT1, divalent metal transporter 1; Fer-1, ferrostatin-1; FPN, ferroportin; γ-GC, gamma-glutamylcysteine; γ-GCS,
gamma-glutamylcysteine synthetase; Glu, L-glutamate; GPX4, glutathione peroxidase 4; GR, glutathione reductase; GS, glutathione synthetase; GSH, reduced
glutathione; GSSG, di-glutathione; LIP, labile iron pool; Lip-1, liproxstatin-1; LOX, lipoxygenase; LPCAT3, lysophosphatidylcholine acyltransferase 3; NCOA4, nuclear
receptor coactivator 4; PE, phosphatidylethanolamine; RSL3, RAS-selective lethal 3; STEAP3, 6-transmembrane epithelial antigen of the prostate 3; TF, transferrin;
TFR1, transferrin receptor 1.

or inhibition of LOXs by inhibitors [e.g., zileuton (Liu et al.,
2015) and Vitamin E hydroquinone (Hinman et al., 2018)] could
protect against ferroptosis in some cell types (Seiler et al., 2008;
Yang et al., 2016). Recently, PEBP1 was shown to bind 15-
LOX and alter the substrate specificity, changing it from free
fatty acid to AA-PE, thereby promoting lipid oxidation (Wenzel
et al., 2017). Furthermore, lipid peroxidation is thought to play
a role in the final phase of ferroptosis, although the downstream
mechanisms remain unclear (Lei et al., 2019). In one hypothesis,
lipid peroxides may decompose into reactive toxic aldehydes,
such as MDA or 4-HNEs. These decomposed substances react
with proteins, nucleic acids, and membrane lipids to initiate
ferroptosis (Domingues et al., 2013; Zhong and Yin, 2015). Dixon
et al. also favored the hypothesis that showed that increased
expression of AKRF1C genes could suppress ferroptosis by
encoding aldoketoreductases to detoxify the end-products of
lipid peroxidation (Dixon and Stockwell, 2014; Stockwell et al.,
2017). As for inhibitors of lipid peroxidation, ferrostatins are the
novel synthetic antioxidants that specifically trap lipid radicals

and exert anti-ferroptotic function. Fer-1, the first-generation
ferrostatin, prevents ferroptosis induced by erastin and RSL3
in HT1080 cells (Dixon et al., 2012). Lip-1 is another recently
discovered ferroptosis inhibitor. It can prevent the accumulation
of lipid ROS and inhibit erastin- or RSL3- induced ferroptosis
in vitro (Friedmann Angeli et al., 2014). In conclusion, AA/AdA-
related lipid metabolism can induce ferroptosis, and inhibiting
LOXs or lipid peroxidation may have protective effects.

Glutathione Metabolism Related
to Ferroptosis
Previous studies have identified that two major mechanisms, the
Se-dependent GPX4-GSH-cysteine axis (Friedmann Angeli et al.,
2014; Yang et al., 2014; Friedmann Angeli and Conrad, 2018;
Ingold et al., 2018) and the FSP1-ubiquinone (CoQ10)-NAD(P)H
pathway (Bersuker et al., 2019; Doll et al., 2019), were associated
with lipid peroxidation and ferroptotic cell death. Additionally,
the FSP1-CoQ10-NAD(P)H pathway is a complementary system
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to the GPX4-GSH-cysteine axis for controlling ferroptosis. In this
axis, key steps include cystine uptake via system xc-, reduction
of cystine to cysteine, GSH biosynthesis, and GPX4-mediated
reduction of phospholipid hydroperoxides to lipid alcohols.
During the process, the cystine/glutamate antiporter (system xc-
) which consists of the light-chain subunit xCT (SLC7A11) and
the heavy-chain subunit CD98 (SLC3A2) exchanges intracellular
glutamate for extracellular cystine at a ratio of 1:1. Cystine is
then reduced to cysteine for GSH synthesis [for review see Xie
et al. (2016)]. In this regard, several agents [e.g., glutamate and
erastin (Dixon et al., 2012), sulfasalazine (Gout et al., 2001),
and sorafenib (Dixon et al., 2014)] can inhibit the system xc- to
cause the decreased acquisition of precursors and GSH depletion,
ultimately leading to ferroptosis. Other agents, including BSO
(Sun et al., 2018) and acetaminophen (Lorincz et al., 2015),
were observed directly blocking GSH synthesis. Conversely,
ferroptosis induced by cystine deprivation can be reversed by
reagents that increase the level of intracellular cysteine/cystine.
For example, an in vitro study showed that when in the presence
of β-mercaptoethanol, the cells were able to constantly utilize
cystine through a mixed disulfide of β-mercaptoethanol and
cysteine (Ishii et al., 1981). In addition, the loss of cysteinyl-
tRNA synthetase, as Hayano et al. (2016) indicated, could trigger
the transsulfuration pathway and lead to inhibition of ferroptosis
induced by cystine deprivation.

Glutathione peroxidases 4 is a type of selenoprotein that
contains one selenocysteine at the active site and seven
cysteines. It plays an important role in regulating ferroptosis,
and its inhibition promotes ferroptosis (Yang et al., 2016).
Regarded as the only GPX that can eliminate biomembrane lipid
peroxidation, GPX4 has a unique ability in ferroptosis. It is
capable of reducing the toxic, membranous lipid hydroperoxides
into non-toxic lipid alcohols (Brigelius-Flohé and Maiorino,
2013; Yang et al., 2014). Increasing GPX4 has been shown to be
beneficial in many models of disease by inhibiting ferroptosis
(Lan et al., 2020; Shen et al., 2020). However, knockdown or
inactivation of GPX4 contributes to the accumulation of lipid
peroxidation and initiation of ferroptosis (Park et al., 2019; Ye
et al., 2020). For example, RSL3 directly inactivated GPX4 by
covalently binding to selenocysteine to trigger ferroptosis (Yang
et al., 2014, 2016), and FIN56 promoted degradation of GPX4
(Shimada et al., 2016).

Iron Metabolism Related to Ferroptosis
Besides lipid and GSH metabolism, the essential trace element
for life, iron, is indispensable for the execution of ferroptosis
(Dixon and Stockwell, 2014). The circulating Fe3+ and TF
complex are endocytosed into cells by the membrane protein
transferrin receptor 1 (TFR1). In the endosome, Fe3+ is reduced
to Fe2+ by STEAP3, and Fe2+ is then released into unstable
iron pools mediated by DMT1, or stored in ferritin, which is
composed of FTL and FTH1 (Yang and Stockwell, 2008; Dixon
et al., 2012). Excessive Fe2+ is exported through the membrane
protein FPN and oxidized by ferroxidases, such as ceruloplasmin
(Bogdan et al., 2016; Shang et al., 2020). In this process,
iron accumulation (Shang et al., 2020) and administration of
iron-bound, rather than iron-free TF, promote erastin-induced

ferroptosis (Gao et al., 2015). On the contrary, using some iron
chelators [e.g., DFP (Wu et al., 2020), DFO (Wu et al., 2018;
Chen et al., 2020), and BPS (Codenotti et al., 2018)] may suppress
ferroptosis and provide a potential therapeutic approach for
diseases. In fact, there are some iron-chelating agents under
clinical development for the treatment of cancers [for review see
Brown et al. (2020)]. Moreover, inhibition of the IREB2 increases
the expression of FTL and FTH1, thus decreasing sensitivity to
ferroptosis (Gammella et al., 2015).

Although the importance of intracellular free iron in
ferroptosis is confirmed, the regulatory mechanism of iron
remains unknown. To date, the evidence has shown that the
non-enzymatic free radical chain reaction involving Fenton
Chemistry, in which Fe2+ is converted to Fe3+ with increased
ROS (Winterbourn, 1995; He et al., 2020), and enzymatic
processes (most notably the lipoxygenase pathway, LOXs),
contributed to the formation of lipid peroxides in ferroptosis.
Moreover, iron may promote ferroptosis through other iron-
dependent enzymes, such as HIF-PHDs (Siddiq et al., 2009).
Therefore, iron metabolism is one of the mechanisms of
ferroptosis, and utilizing iron chelators to decrease iron may be
useful for treating diseases.

THE ROLE AND MECHANISM OF
FERROPTOSIS IN ACUTE CNS INJURIES

As described above, ferroptosis is an iron-dependent cell death
that involves abnormal metabolism of lipids, GSH, and iron.
The methods of measurement in evaluating ferroptosis in diverse
diseases mainly depend on monitoring the levels of iron and
lipid peroxidation, the activity of GPX4, as well as the ability of
ferroptosis inhibitors (e.g., iron chelators, LOX inhibitors, and
ferrostatins) to reduce cell death [for review see Xie et al. (2016)].
Observations of typical morphological features under a TEM
also contribute to the distinguishing characteristics of ferroptosis
compared to other cell deaths, both in vitro and vivo (Friedmann
Angeli et al., 2014; Alim et al., 2019; Li et al., 2019d). Recently,
numerous studies have confirmed the hypothesis of ferroptosis
in the pathophysiology of acute CNS injuries, including stroke
(Alim et al., 2019; Guan et al., 2019), TBI (Kenny et al., 2019;
Xiao et al., 2019; Xie et al., 2019), and SCI (Dinc et al., 2013; Hu
et al., 2017). More studies are included in the following text and
Figure 2 is a brief summary of ferroptosis in acute CNS injuries.

The Role and Mechanism of Ferroptosis
in Ischemic Stroke
Ischemic stroke occurs when the blood flow to a certain portion
of the brain is obstructed secondary to occlusion of cerebral
arteries. The following deprivation of oxygen and energy triggers
an ischemic cascade, such as OS and inflammation, resulting in
neuronal excitotoxicity and cell death (Khoshnam et al., 2017; Li
et al., 2019a; Zhang K. et al., 2019). Before ferroptosis was defined,
iron accumulation [for review see Selim and Ratan (2004)] had
been found in lesioned regions, such as the basal ganglia and the
hippocampal area of the brain, and iron overload exaggerated
neuronal damage during reperfusion (Dietrich and Bradley, 1988;
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FIGURE 2 | An overview of ferroptosis-associated mechanism and potential therapy in acute CNS injuries.

Kondo et al., 1995; Lipscomb et al., 1998; Park et al., 2011).
In MCAO animals, the iron intake was positively associated
with the infarct volume (Castellanos et al., 2002; García-Yébenes
et al., 2012). Consistently, one in vitro study demonstrated
that holo-transferrin increased ROS production, and caused
neuronal cell death induced by deprivation of oxygen and glucose
(DeGregorio-Rocasolano et al., 2018). The experimental results
also illustrated that administration of exogenous apotransferrin
reduced brain damage and improved neurological outcomes
with decreased lipid peroxidation, supporting the involvement
of ferroptosis in ischemia (DeGregorio-Rocasolano et al., 2018).
What’s more, the iron levels in the brain increased as humans
age (Ward et al., 2014), which may exacerbate ischemic stroke.
Recently, the tau-iron interaction has been proposed as an
effective modulator of ferroptosis in ischemic stroke. The tau
knockout mice were found to have increased protection from
ferroptotic cell death following I/R injury, and the benefit of
tau knockout was reinstated in older mice using iron-targeting
interventions (Tuo et al., 2017). In this regard, iron chelation
therapy reduced ischemic damage and improved outcome in
mammals after ischemic stroke (Freret et al., 2006; Hanson
et al., 2009). Consistently, Speer et al. (2013) found that the
iron-dependent HIF-PHDs served as a target of metal chelators
in ferroptosis, and the administration of iron chelators could
inhibit HIF-PHDs, rather than suppress Fenton’s Reaction or
ROS production, providing beneficial effects on subjects.

Additionally, other ferroptosis-associated mechanisms, such
as LOXs-mediated pathology (Yang et al., 2016) and the GPX4-
GSH-cysteine axis (Cho et al., 2007; Guan et al., 2019), were
found to be involved in brain ischemia. MDA, a marker

of oxidized lipids, was noticeably elevated, and this change
correlated with increased activity of LOXs in an ischemic animal
brain (Yigitkanli et al., 2013; Guan et al., 2019). Treatment with
12/15-LOX inhibitor (ML351) was shown to reduce infarct sizes
and reperfusion damage in a mouse model (Rai et al., 2014).
Moreover, Tuo et al. (2017) observed that brain damage was
significantly attenuated by ferroptosis inhibitors, Lip-1, and Fer-
1, in an MCAO model. As for the GPX4-GSH-cysteine axis,
various groups provide direct evidence supporting that inhibition
of system xc- induces ferroptosis and aggravates ischemia.
Lan et al. (2020) found that acute cerebral ischemia-induced
neuronal ferroptosis and treatment with Naotaifang increased the
expression levels of xCT, GPX4 and GSH, and the number of
Nissl bodies in MCAO rats. These data suggested that Naotaifang
may rescue ischemic stroke by inhibiting ferroptosis through the
xCT/GPX4 pathways (Lan et al., 2020). Huang et al. (2019) also
observed that inhibition of system xc- with erastin aggravated
ferroptosis and augmenter of liver regeneration protected the
kidney from ischemia-reperfusion injury in ferroptosis through
GSH/GPX system. Guan et al. (2019) and Cho et al. (2007)
identified reduced levels of GSH and decreased activities of
GPX4 in ischemia. However, many researchers hold opposing
views and state that activated system xc- can exacerbate ischemic
cerebral injury due to increased glutamate. In their studies,
xCT was expressed in significant concentrations in astrocytes
in the mouse brain (Jackman et al., 2012; Thorn et al., 2015;
Ottestad-Hansen et al., 2018). Increased activity of system xc-
(Soria et al., 2014) promoted the release of glutamate which
may contribute to excitotoxicity in pathological situations (e.g.,
oxygen and glucose deprivation), leading to neuronal death
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(Thorn et al., 2015; Ottestad-Hansen et al., 2018). Hsieh et al.
(2017) used both in vitro and in vivo models to reveal that HIF-
1α triggered long-lasting glutamate excitotoxicity via activation
of system xc- dependent glutamate outflow. HIF-1α conditional
knockout mouse had reduced extracellular glutamate in cerebral
ischemia-reperfusion, suggesting that system xc- was a promising
therapeutic target (Hsieh et al., 2017). Therefore, inhibition of
system xc- can induce ferroptosis to promote neuronal death due
to GSH depletion and activation of system xc- can also increase
neuronal death because of glutamate-associated excitotoxicity.
Whether induction of system xc- activity is beneficial or
detrimental might depend on the pathway of induction and
whether inhibition of system xc-or induction of xCT is the more
promising neuroprotective strategy remains to be explored.

Other studies have confirmed the benefits of the necroptosis
inhibitor, necrostatin-1, indicating that alternative forms of
regulated cell death were involved in ischemic brain injury
(Degterev et al., 2005). However, necrostatin-1 was later found
to protect against ferroptosis through an unknown target
(Friedmann Angeli et al., 2014). These results suggest that there
is the direct involvement of ferroptosis in the pathogenesis of
ischemic stroke. What about ferroptosis in hemorrhagic stroke?

The Role and Mechanism of Ferroptosis
in ICH
After ICH, there is a consequent physical disruption of the
neurovascular architecture due to the mass effects and elevated
pressure surrounding hemorrhagic sites, inducing primary brain
injury. Subsequently, iron accumulates as a result of the
degradation of Hb and its metabolite, hemin, which contributes
to SBI (Hu et al., 2016). Previous data have identified multiple
forms of cell death after ICH, including necrosis, apoptosis,
and autophagy (Qureshi et al., 2001, 2003; Wang et al., 2015;
Li et al., 2018). To date, multiple laboratories have provided
converging lines of evidence that support the role of ferroptosis
in ICH with the presence of observed molecular markers and
morphological features (Li et al., 2017; Zille et al., 2017; Zhang
et al., 2018; Alim et al., 2019), and the underlying mechanisms of
ferroptosis in ICH are analogous to those of ischemic stroke. It
was identified that iron overload stimulated neuronal ferroptosis,
which aggravated brain damage (Wu et al., 2003, 2011). Besides,
as one of the major upstream regulators of ferroptosis, GPX4
inactivation also contributes to ICH (Forcina and Dixon, 2019).
It was found that levels of GPX4 were reduced and brain injury
was exacerbated in a rat model of ICH induced by autologous
blood injection, whereas overexpression of GPX4 was able to
alleviate SBI and improve neurological outcomes (Zhang et al.,
2018). Li et al. (2017) also indicated that administration of Fer-
1 reduced Hb-induced cell death and iron deposition, prevented
impairment of GPX4 activity in vitro, and improved neurologic
function in collagenase-induced ICH models.

Many recent studies have suggested potential approaches to
reduce brain damage. Zille et al. (2017) revealed that several
ferroptosis inhibitors, including Fer-1, DFO, Trolox (a lipid
peroxidation inhibitor), and NAC (a cell-permeable cysteine
analog), were able to alleviate Hb- and hemin-induced cell death

in vitro. Alim et al. (2019) also supported the role of Fer-1 by
showing that inhibition of ferroptosis by Fer-1 exerted a long-
term cerebroprotective effect in in vitro and in vivo ICH models.
Dharmalingam et al. (2020) synthesized a multifunctional
nanoparticle that protected cells from both senescence and
ferroptosis, leading to a reduction of hemin/iron-induced toxicity
in experimental ICH. In addition, Karuppagounder et al. (2018)
found that ALOX5 inhibition could protect against ICH- or
hemin-induced ferroptosis in vivo following ICH.

Furthermore, the role of ferroptosis in ICH is supported by
altered levels of other ferroptosis-related molecules. For example,
phospho-ERK1/2, regarded as a molecular feature of ferroptosis
(Yagoda et al., 2007), was significantly increased in mice with
ICH, but the MEK inhibitor, U0126, inhibited this type of cell
death (Zille et al., 2017). In addition, the expression levels of
PTGS2 were also significantly increased in in vitro and in vivo
ICH models (Li et al., 2017; Alim et al., 2019). Moreover, PTGS2
has been revealed as part of the downstream signaling pathway
of ferroptosis in cancer cells (Yang et al., 2014). Notably, a gene
product of PTGS2, known as COX-2, was substantially increased
in neurons after ICH, and treatment with Fer-1 could reduce its
expression and ICH-induced SBI, implying that COX-2 might be
used as a biomarker of ferroptosis (Zhao et al., 2007; Li et al.,
2017; Alim et al., 2019). Thus far, there is little evidence that
shows the relationship between ferroptosis and subarachnoid
hemorrhage. More studies are warranted to investigate this
promising topic.

The Role and Mechanism of Ferroptosis
in TBI
The previous literature has shown that TBI shares many
mechanisms (e.g., OS, inflammation, mitochondrial dysfunction,
and neuronal cell death) with stroke (Blennow et al., 2016).
In addition to these mechanisms, multiple studies have
demonstrated that ferroptosis may contribute to the neuronal
cell death and functional outcome in TBI (Ayton et al., 2014;
Stockwell et al., 2017). The altered levels of various ferroptosis
biomarkers provide evidence of ferroptosis in TBI. Studies have
detected elevated iron concentrations around the impaired tissue
as early as 3 days after injury, occurring in adult and aged
mice models of controlled CCI (Portbury et al., 2016, 2017; Xie
et al., 2019). The evidence also suggested that increased iron
accumulation was negatively associated with cognitive outcomes
in chronic TBI patients (Lu et al., 2015), while iron chelators
exhibited neuroprotective effects by diminishing iron-mediated
brain damage (Zhang et al., 2013; Khalaf et al., 2018). According
to recent studies, ferroptosis was identified in TBI through the
detection of ferroptosis-associated molecules, such as 15-LOX
and GPX4. For instance, there were enhanced levels of 15-
HpETE-PE and 15-LOX2 in the injured cortex and ipsilateral
hippocampus, and decreased levels of GPX4 in a pediatric rat
CCI model, suggesting that ferroptosis might occur within the
first hour after TBI (Wenzel et al., 2017). Researchers also
showed a preponderance of 15-LOX products in CCI-injured
adult mice, and increased ACSL4 and 15-LOX2 expression in
TBI, when compared with naive groups (Kenny et al., 2019).
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Moreover, numerous experimental and clinical studies observed
the increased levels of MDA and 4-HNE in either the injured
brain or serum following TBI (Hall et al., 2004; Readnower et al.,
2010; Lorente et al., 2015; Xiao et al., 2019; Xie et al., 2019). As
for the morphological features, Xie et al. (2019) first verifiably
identified the ferroptotic features around brain injury lesions
of TBI models at 3 days after CCI. As ferroptosis was shown
to participate in TBI by the above work, inhibiting ferroptosis
may be useful in treating TBI. For example, treatment with Fer-
1 significantly diminished iron accumulation, reduced neuronal
cell death, and attenuated neuronal degeneration (Kenny et al.,
2019; Xie et al., 2019). More details regarding therapy can be
found in the next section.

The Role and Mechanism of Ferroptosis
in SCI
In traumatic SCI, the primary injury causes immediate cellular
damage and initiates a continuous secondary injury cascade to
induce ischemia, inflammation, and cell death [for review see
Ahuja et al. (2017)]. Notably, following the rupture of the blood-
spinal cord barrier and blood vessels, hemorrhage occurs in the
acute phase of SCI and may last for days (Tran et al., 2018).
Like other acute CNS diseases, ferroptosis occurs in SCI, and
is accompanied by increased iron and accumulated ROS at the
site of injury (Liu et al., 2011; Visavadiya et al., 2016; Hao et al.,
2017), as well as excessive lipid peroxidation (Dinc et al., 2013;
Hu et al., 2017). This phenomenon is more apparent during
the first several hours (Liu et al., 2004). In adult mouse models,
Chen et al. (2015) observed that conditional ablation of Gpx4
in neurons could induce motor neuron degeneration and cause
rapid paralysis, but this result was delayed by supplementation
with vitamin E, suggesting that ferroptosis accelerated SCI.
Therefore, anti-ferroptotic seems to have potential in SCI, though
there are few studies. Feng et al. (2019) established a rat model
of DFO and confirmed the positive role of DFO in treating
SCI. In the DFO group, there were lower iron concentrations,
markedly increased GPX4 expression, and increased neuronal
survival (Feng et al., 2019). In the study conducted by Zhang
Y. et al. (2019) treatment with the third-generation ferrostatin,
SRS 16-86, increased neuronal survival and promoted locomotor
recovery in the SCI model, providing potential therapeutic
strategies for SCI. Indeed, it is well-known that the excitotoxicity
caused by glutamate accumulation preceded neuronal death and
reuptake failure of astrocytes, and also induced ferroptotic cell
death to stimulate secondary injury after SCI (Dixon et al.,
2014; Ahuja et al., 2017). The relationship between ferroptosis or
excitotoxicity in SCI requires further studies.

POTENTIAL AND EMERGING THERAPY
TARGETING FERROPTOSIS IN ACUTE
CNS INJURIES

As ferroptosis may be a significant pathogenic pathway in acute
CNS injuries, its therapeutic potential should be taken into
consideration. Ferroptosis inhibitors (including iron chelators,

ferrostatins, liproxstatins, LOX inhibitors, and antioxidants) may
prevent iron accumulation or lipid peroxidation, thus offering
therapeutic options for treating acute CNS injuries (Table 1).

Targeting Ferroptosis Therapy in
Ischemic Stroke
The mainstay of treatment for acute ischemic stroke is rapid
recanalization by mechanical thrombectomy or recombinant
tissue plasminogen activator, the only approved thrombolytic
agent. It is important to salvage the penumbra, which surrounds
the region of the infarct and promotes functional recovery.
However, the overall efficacy is limited due to the narrow
window of opportunity (Sandercock et al., 2012), but even after
timely recanalization, infarct volume often continues to increase
in I/R injury (Nour et al., 2013). As previous methods have
failed in clinical use, such as blocking excitotoxicity, the role of
ferroptosis has been highlighted (Khoshnam et al., 2017; Tuo
et al., 2017), and new therapeutic approaches targeting ferroptosis
or combined therapies are highly desirable.

As mentioned above, Lip-1 and Fer-1 are both compounds
with specific anti-ferroptotic activity. Intranasal administration
of Lip-1 and Fer-1, either immediately or 6 h after reperfusion,
significantly reduced neuronal damage and functional deficits in
MCAO mice, indicating the possible translational value of special
exogenous ferroptosis inhibitors (Tuo et al., 2017).

In addition, CoQ10 is an endogenous lipid-soluble antioxidant
with established efficacy in suppressing the initiation and
amplification of lipid peroxidation (Morris et al., 2013;
Viswanathan et al., 2017), presenting a promising candidate for
ferroptosis inhibition. Intriguingly, in vivo studies have reported
that oral CoQ10 administration markedly improved neurological
outcomes in both rat MCAO models and acute ischemic stroke
patients (Ramezani et al., 2018; Nasoohi et al., 2019). This
neuroprotective benefit of CoQ10 was associated with its anti-
apoptotic effect, as the levels of peroxidation products were not
altered (Nasoohi et al., 2019). The authors attributed this to
a relatively higher dose and multiple potential mechanisms of
CoQ10. Of note, it is worth considering whether inhibition of
ferroptosis is involved.

Recently, Guan et al. (2019) found that carvacrol, a plant-
derived monoterpenic phenol, inhibited hippocampal neuronal
damage and reduced functional deficits in gerbils following
I/R injury. Furthermore, treatment with carvacrol (100 mg/kg,
intraperitoneally) for two consecutive weeks after reperfusion
was associated with decreased ROS, reduced iron overload, and
increased levels of GPX4, suggesting a possible neuroprotective
role of carvacrol via ferroptosis inhibition (Guan et al., 2019).
Carvacrol is thought to easily cross the BBB because of the small
molecular weight and the lipophilic profile (Savelev et al., 2004).
A previous study has proven the benefits of carvacrol when
administered intraperitoneally at 2 h after reperfusion. When
administered intracerebroventricularly, the treatment window
was prolonged to 6 h (Yu et al., 2012). When administered safely,
carvacrol may be regarded as a potential therapeutic agent.

Edaravone is an effective radical scavenger that inhibits lipid
oxidation by scavenging chain-initiating water-soluble radicals

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 July 2020 | Volume 8 | Article 594

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00594 July 13, 2020 Time: 15:29 # 8

Shen et al. Ferroptosis in Acute CNS Injuries

TABLE 1 | Ferroptosis-associated drugs in treating the acute CNS injuries.

Disease Drug Type Administration Route Function and Mechanism

Ischemic
stroke

Liproxstatin-1
(Lip-1)

Lipid peroxides
inhibitor

Intranasal Attenuated motor function deficits, cognitive impairment;
improved neuroscores; reduced infarct volumes in middle
cerebral artery occlusion (MACO) mice.

Ferrostatin-1 (Fer-1) Lipid peroxides
inhibitor

Intranasal Attenuated neurological deficits and infarct volumes in MACO
mice.

ML351 Inhibitor of
15-lipoxygenase-1

Intravenous Reduced neurological impairment and infarct volume in MACO
mice.

Amyloid precursor
protein ectodomain

Protein stabilizing
ferroportin to export
iron

Intravenous Improved neuroscores and infarct volume; prevented iron
accumulation in the lesioned hemisphere in MACO mice.

Ceruloplasmin Copper regulating
iron-mediated
transport

Intraperitoneal Suppressed ischemia-induced hippocampal iron elevation in
the lesioned hemisphere in MACO mice.

Carvacrol Monoterpenic
phenol

Intraperitoneal Reduced neuronal cell death, increased GPx4 expression in
gerbils I/R hippocampal neurons (in vitro); decreased the level
of lipid peroxide and MDA, TFR, increased the Fpn1
expression; alleviated neuronal degeneration and memory
deficits in I/R gerbils.

Deferoxamine Iron chelator Intraperitoneal Suppressed the level of MDA.

Edaravone Free radical
scavenger; A
clinically
approved drug
for treating acute
ischemic stroke

Not applicable Suppressed the accumulation of lipid peroxidation and ROS
production; inhibited ferroptosis induced by cystine deprivation,
erastin and RSL3 by scavenging radical species in
non-neuronal cells (in vitro).

Tat-linked SelP
Peptide

BBB-permeable
peptide containing
selenocysteine

Intraperitoneal Reduced infarct volume in rodent MCAO model.

ICH Ferrostatin-1 Lipid peroxides
inhibitor

Intracerebroventricular
or intraperitoneal

Prevented lipid ROS, MDA and GPx activity deficit (in vitro);
inhibited Hb/ferrous-induced and hemin/hemoglobin-induced
neuronal death (in vitro); reduced iron deposition and lipid ROS;
diminished injury volume; rescued degenerating neurons, and
corrected neurologic deficit in collagenase-induced ICH model;
suppressed the level of GPX4; alleviated neuronal dysfunction;
moderated brain atrophy and exerted long-term neuroprotective
effects in autologous blood infusion model of ICH.

Liproxstatin-1 Lipid peroxides
inhibitor

Intraperitoneal Inhibited Hb-induced cell death; decreased neurologic deficits
and lesion volume; rescued neuronal cells in
collagenase-induced ICH model.

Zileuton/BW
B70/BW A4C

Arachidonate
5-lipoxygenase
(ALOX5) inhibitors

Not applicable Inhibited Hb/hemin-induced cell death (in vitro).

Compound 968 Glutaminase
inhibitor

Intraperitoneal Decreased degenerating neurons.

Deferoxamine Iron chelator Inhibited hemin/hemoglobin-induced neuronal death.

N-acetylcysteine
(NAC)

Glutathione
prodrug;
Thiol-containing
redox modulatory
compound

Intraperitoneal Inhibited hemin/hemoglobin-induced neuronal death (in vitro);
increased glutathione, deceased nuclear ALOX5-derived
reactice lipid species, reduced neuronal death, improved
functional recovery in collagenase-induced mouse model of
ICH.

Trolox Water soluble lipid
peroxidation
inhibitor

Not applicable Inhibited hemin/hemoglobin-induced neuronal death (in vitro).

U0126 Extracellular-
signaling kinase 1/2
(ERK1/2) inhibitor

Not applicable Inhibited hemin/hemoglobin-induced neuronal death (in vitro).

(-)-Epicatechin Brain-permeable
flavanol

Orally Diminished heme oxygenase-1 expression and brain iron
deposition via an Nrf2-independent pathway, reduced lesion
volume and ameliorated neurologic deficits in
collagenase/autologous blood/thrombi-induced ICH model.

(Continued)
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TABLE 1 | Continued

Disease Drug Type Administration Route Function and Mechanism

Loxothiazolidine-4-
carboxylate
(OTC)

Cysteine prodrug Not applicable Inhibited hemin-induced neuronal death (in vitro).

Glutathione ethyl
ester

Membrane
permeable form of
glutathione

Not applicable Inhibited hemin-induced neuronal death (in vitro).

Tat SelPep BBB-permeable
peptide containing
selenocysteine

Intraperitoneal Increased GPX4 expression; prevented hemin-induced
ferroptosis and preserved cell bodies and neurites of neurons
(in vitro); unregulated transcriptional expression of GPX4;
inhibited cell death and improved function in
collagenase-induced ICH model.

Selenium Essential
micronutrient

Intracerebroventricular Diminished cell death and improved functional recovery in a
mouse model of ICH.

TBI Ferrostatin-1 Lipid peroxides
inhibitor

Intracerebroventricular Reduced neuronal death in mechanical stretch-elicited TBI
model (in vitro); reduced iron accumulation, neuron
degeneration and lesion volume; ameliorated cognitive and
motor function deficits in the adult controlled cortical impact
injury (CCI) mouse model.

Triacsin C Acyl-CoA
synthetase
long-chain family
member 4 (ACSL4)
inhibitor

Not applicable Reduced neuronal cell death in mechanical stretch-elicited TBI
model (in vitro).

Liproxstatin-1 Lipid peroxides
inhibitor

Not applicable Reduced neuronal cell death in mechanical stretch-elicited TBI
model (in vitro).

Baicalein 12/15-lipoxygenase
inhibitor

Intraperitoneal Reduced neuronal cell death in mechanical stretch-elicited TBI
model (in vitro); attenuated phosphatidylethanolamine oxidation
and improved function in CCI mouse model.

miR-212-5p agomir MicroRNAs agomir Intracerebroventricular Improved memory and learning in CCI mice.

SCI Deferoxamine Iron chelator Intraperitoneal Increased xCT, GSH, and GPX4 levels; protected neurons and
promoted long-term functional recovery in rat contusion SCI
model.

SRS 16-86 Small molecule
ferroptosis specific
inhibitor

Intraperitoneal Upregulated GPX4, GSH and xCT levels; down-regulated the
expression of 4HNE; increased neuronal survival and promoted
functional recovery in rat contusion SCI model.

and chain-carrying lipid peroxyl radicals due to its amphiphilicity
(Watanabe et al., 2018). There are several papers describing its
alleviatory effects on neurological symptoms in ischemia models,
and its effective treatment window of at least 3 h after embolism
(Nishi et al., 1989; Kawai et al., 1997; Lapchak and Zivin, 2009).
In the clinical setting, the appropriate dosage and course of
edaravone use for patients suffering from acute ischemic stroke
include intravenous administration of 60 mg daily for up to
14 days (Feng et al., 2011). Homma et al. (2019) recently indicated
that edaravone participates in rescuing ferroptotic cell death
induced by cystine deprivation, erastin, and RSL3 (Homma et al.,
2019). In addition, edaravone was confirmed to suppress the
accumulation of Fe2+ and lipid peroxidation in vitro, which are
known as the metabolic characteristics of ferroptosis.

Targeting Ferroptosis Therapy in ICH
Currently, there are no proven medical or surgical treatments
that substantially improve the neurological outcomes in patients
with ICH because of multiple underlying mechanisms, including
inflammation, excitotoxicity, and OS (Keep et al., 2012). As
emerging studies suggest that ferroptosis is involved in SBI after

ICH, and contributes to 80% of whole-cell death in vitro (Li et al.,
2017; Zille et al., 2017), ferroptosis-based treatments could be
highly considered.

Li et al. demonstrated the neuroprotective effects of Fer-
1 by striatum injection immediately after and by cerebral
ventricular injection 2 h after collagenase-induced ICH [for
review see Li et al. (2017)]. Intraperitoneal administration of
Fer-1 (a 3-h delay and then once daily) in the autologous
blood infusion model of ICH was also shown to improve long-
term neurological function (Alim et al., 2019). Moreover, when
combined with other inhibitors of either apoptosis or necrosis,
Fer-1 was found to be more effective at reducing Hb-induced
cell death, which should be further investigated in in vivo models
(Li et al., 2017).

Various evidence has shown that iron chelators reduce Hb-
and iron-induced neurotoxicity attenuates brain edema, and
improve functional neurologic outcomes after ICH (Nakamura
et al., 2004; Wu et al., 2012; Hatakeyama et al., 2013). A meta-
analysis of 20 studies involving animal models of ICH revealed
that DFO was neuroprotective, particularly when administered
2–4 h after ICH induction (Cui et al., 2015), whereas there
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remains a lack of conclusive clinical evidence regarding iron
chelators (Zeng et al., 2018).

N-acetylcysteine (Gilbert et al., 1991; Leslie et al., 1992;
Varga et al., 1997) is an FDA-approved cysteine prodrug capable
of regulating the activity of system xc- and the biosynthesis
of GSH [for review see Berk et al. (2013)]. Interestingly, a
recent study reported that systemic administration of NAC
post-injury reduced neuronal death and improved behavior
following ICH in mice (Karuppagounder et al., 2018). They
further pointed out that NAC inhibited hemin- and ICH-
induced ferroptosis by neutralizing nuclear ALOX5-derived toxic
lipid species (Karuppagounder et al., 2018). This process relied
on increased GSH and enhanced activity of GSH-dependent
antioxidant enzymes. Considering the poor absorption of direct
GSH administration and the insufficient capacity of GSH to cross
the BBB (Witschi et al., 1992), NAC may be treated as an adjuvant
therapy candidate capable of penetrating the BBB to enter the
brain (Farr et al., 2003).

In addition, EC, a brain-permeable flavanol, was shown to
reduce early brain injury and improve neurologic deficits in
multiple experimental ICH models when administered orally at
3 h post-treatment and subsequent daily administration (Chang
et al., 2014). The neuroprotective effects of EC were partially
associated with decreased iron deposition and modulation
of ferroptosis-related gene expression, indicating the possible
ability of EC to inhibit ICH-induced ferroptotic cell death
(Chang et al., 2014).

Se is indispensable for the ferroptosis-resistant function of
GPX4 (Ingold et al., 2018). It was recently uncovered that Se
could amplify an adaptive transcriptional program response to
neuronal ferroptosis (Alim et al., 2019), making it a potential
therapeutic strategy. Further studies discovered that injection
of Se directly into the mouse cerebral ventricle following
ICH was associated with elevated GPX4 levels, diminished
ferroptotic death, as well as improved functional recovery.
Moreover, the researchers developed a peptide (Tat SelPep),
which contained a Tat transduction domain combined with
selenoprotein P. Intraperitoneal injection of Tat SelPep showed
similar effects compared to Se, but with reduced toxicity and
a wider treatment window, with benefits shown even at 6 h
post-injury (Alim et al., 2019).

Targeting Ferroptosis Therapy in TBI
When contemplating feasible treatments for TBI, researchers
focus on secondary events, which cause delayed damage,
to provide applicable therapeutic windows for interventions
[for review see Lozano et al. (2015)]. Given that there
are currently no effective treatments approved by clinical
trials for TBI patients (Pearn et al., 2017), there exists
a pressing need for developing more innovative methods,
such as targeting ferroptotic cell death in a highly regulated
manner. The ferroptosis signaling molecules can be prevented
as a result of reducing PE oxidation by inhibiting the
ability of 15LOX/PEBP1 complexes to produce 15-HpETE-PE,
administrating 15LOX inhibitors, or augmenting the GPX4/GSH
system to remove oxidized PE products (Wenzel et al., 2017;
Kenny et al., 2019).

Baicalein is a polyphenolic antioxidant 12/15-LOX inhibitor
and is well-known to exert neuroprotective effects in cerebral
ischemia [for review see Liang et al. (2017)]. Recently, Kenny et al.
(2019) demonstrated that baicalein decreased the accumulation
of pro-ferroptotic PE oxidation, but not pro-apoptotic cardiolipin
oxidation after CCI, indicating that the 15-LOX inhibitory
effects of baicalein may have an anti-ferroptotic role in TBI.
Several studies have also revealed a reduction of functional
and histological damage with the immediate administration of
baicalein post-injury (Chen et al., 2008; Kenny et al., 2019). With
low levels of toxicity and the ability to cross the BBB (Tsai et al.,
2002), baicalein offers great promise in clinical settings if the
effect of delayed drug delivery is evaluated.

As mentioned above, NAC is a precursor for GSH, and it has
been shown to confer antioxidant and neuroprotective effects
after pre-clinical TBI (Eakin et al., 2014; Senol et al., 2014).
As for adult patients, a double-blinded and placebo-controlled
study indicated that supplementation of oral NAC had significant
short-term benefits on neurological symptoms and sequelae
resolution after blast-induced mild TBI (Hoffer et al., 2013).
Due to the low bioavailability of NAC, the compound, NACA,
was developed with increased membrane permeability, and its
neuroprotection was associated with the activation of the Nrf2-
antioxidant response elements signaling pathway in a mouse
model of TBI (Zhou et al., 2018). It is well-established that Nrf-
2 regulates xCT and GPX4, whose inhibition initiates ferroptosis
and promotes target genes that mediate the antioxidant and iron
metabolic status of cells (Zhou et al., 2018), suggesting another
anti-ferroptotic mechanism of NACA.

In a mouse CCI model of TBI, Fer-1 treatment had
been injected directly into the cerebral ventricle 0.5 h after
injury, causing a reduction in neuronal death and other
associated functional defects (Xie et al., 2019). However, more
research should be implemented to uncover feasible drug-
delivery methods.

Moreover, a recent study demonstrated the role of miR-
212-5p in suppressing ferroptosis after TBI, partially by
targeting PTGS2 (Xiao et al., 2019). Further results showed
that intracerebroventricular injection of miR-212-5p agomir
improved spatial memory and learning in CCI mice, suggesting
that miR-212-5p may serve as a potential ferroptosis inhibitor to
be used in treating TBI. As previously discussed, the oxidation of
AA/AdA-PE is a critical step in ferroptosis execution. Therefore,
inhibition of ACSL (such as triacsin C and thiazolidinedione)
and formation of AA/AdA-esterified PE may also protect against
ferroptosis after TBI (Doll et al., 2017; Kagan et al., 2017;
Kenny et al., 2019).

Targeting Ferroptosis Therapy in SCI
There are no neuroprotective or neurodegenerative strategies
currently approved for acute traumatic SCI, but several are
currently undergoing clinical trials (Badhiwala et al., 2018).
The concept of “time is spine” is commonly applied in
the management of patients with SCI. Since ferroptosis
is likely involved in the acutes phases of SCI, therapies
targeting ferroptosis are promising (Badhiwala et al., 2018;
Zhang Y. et al., 2019).
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Targeting iron is one of the treatment strategies. The iron
chelator, DFO, reportedly reduced iron accumulation and lipid
peroxidation, while modulating the inflammatory response in
SCI (Paterniti et al., 2010; Liu et al., 2011; Dinc et al., 2013; Hao
et al., 2017). Experimental evidence indicated that DFO improved
motor function recovery when injected intraperitoneally post-
SCI (Paterniti et al., 2010; Liu et al., 2011; Hao et al., 2017).
Moreover, DFO showed neuroprotective effects comparable
with methylprednisolone, an effective antioxidant agent that is
contentious for the treatment of SCI because of harmful side
effects (Dinc et al., 2013; Silva et al., 2014). However, oral
treatment of deferasirox, another FDA-approved iron chelator,
failed to remove iron from the injured spinal cord, but markedly
depleted the systemic iron (Sauerbeck et al., 2013). Considering
the detrimental side effects (e.g., anemia) and the absence of
potent neuroprotection, systemic administration may not be
the ideal approach of iron chelators (Grossman et al., 2012;
Sauerbeck et al., 2013).

Besides, previous studies have demonstrated that NAC
administration suppressed OS, attenuated neuroinflammation,
and improved neuronal survival and neurological recovery
following SCI in rodent models (Karalija et al., 2012, 2014;
Guo et al., 2015). When administered immediately after SCI,
NACA, an amide derivative of NAC, improved mitochondrial
function, antioxidant GSH levels, and functional recovery in SCI
mice (Patel et al., 2014). These two GSH precursors facilitate
the biosynthesis of intracellular GSH. In addition, the GSH
antioxidant system plays a pivotal role in the regulation of
ferroptosis (Lv et al., 2019).

Recently, Li et al. (2019b) observed that CoQ10, a promising
ferroptosis inhibitor previously mentioned, exerted protective
effects by decreasing OS partly through activation of the
Nrf-2 signaling pathway after SCI. Moreover, Nrf-2 is
regarded as a significant mitigator of lipid peroxidation
and ferroptosis [for review see Dodson et al. (2019)].
Furthermore, CoQ10 was shown to protect BMSCs from
OS, and improved the therapeutic efficacy in combination with
BMSC transplantation, suggesting a promising therapy for SCI
(Li et al., 2019c).

Besides, post-injury intraperitoneal injection of SRS 16-86
proved to be more potent and stable than Fer-1. It also attenuated
the ferroptotic mitochondrial morphology in damaged areas,
and improved neurological deficits in SCI model, suggesting the
role of ferroptosis-specific inhibitors in the treatment of SCI
(Zhang Y. et al., 2019).

DISCUSSION AND PERSPECTIVE: WILL
FERROPTOSIS BE THE FUTURE
DIRECTION?

In this article, we primarily focus on the roles and therapeutic
potential of ferroptosis in various acute CNS injury processes,
including stroke, TBI, and SCI. Pharmacological effects of
multiple inducers and inhibitors of ferroptosis lie at the
intersection of lipid, amino acid, and iron metabolism. Although
some progress has been made in ferroptosis, there are still

controversial questions that have not been fully studied.
First, the relationship between ferroptosis and other forms
of cell death remains unknown. For example, p53 is an
important regulator, both in apoptosis and ferroptosis, while
autophagy plays a role in the process of ferroptosis via
ferritinophagy. As ferroptosis is involved in acute CNS
injuries complicated by necrosis, apoptosis, and autophagy, a
head-to-head comparison of individual inhibitors or various
combinations of inhibitors is required in further studies.
Second, the special molecular markers (e.g., caspase activation
for apoptosis or the autophagosome marker, LC3-II, for
autophagy) for identifying ferroptosis are still lacking. While
the increased mRNA levels of PTGS2 were found in cells
undergoing ferroptosis, it did not affect ferroptosis progress
(Yang et al., 2014). The specificity of PTGS2 expression or its
gene product, COX-2, for ferroptosis needs to be explored in
the context of different pathophysiologic processes. Actually,
there is copious evidence for the role of COX-2 in several
acute neurological disorders (e.g., ischemic and hemorrhagic
strokes) (Gong et al., 2001; Tomimoto et al., 2002). The research
of additional ferroptosis markers is of great importance for
in vivo studies in the future. Moreover, the exact role of
iron and the final molecular executor in ferroptosis remains
unclear. Considering the complexity of the CNS, the biochemical
regulation, as well as the sensitivity of ferroptosis in different cell
types (neurons, astrocytes, microglia, or oligodendrocytes), also
requires explication.

Potential treatment options targeting ferroptosis (e.g.,
iron chelators, ferrostatins, NAC, and CoQ10) have shown
neuroprotective effects in acute CNS injuries. However, these
benefits are largely based on animal models and have not
yet translated into clinical application. Furthermore, studies
are necessary to clarify the appropriate therapeutic window,
clinically feasible routes of administration, and BBB penetration
ability of anti-ferroptotic agents. Among the above-mentioned
agents, edaravone is the only approved drug with proven clinical
efficacy and safety, while others should be explored in further
clinical studies. More in-depth and comprehensive research
on ferroptosis should be conducted to develop therapeutic
methods and eventually alleviate the burden of acute CNS
injuries in the future.
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