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Human embryonic stem cells (hESCs) possess the potential of long-term self-renewal
and three primary germ layers differentiation, and thus hESCs are expected to have
broad applications in cell therapy, drug screening and basic research on human early
embryonic development. Many efforts have been put to dissect the regulation of
pluripotency and direct differentiation of hESCs. TGFβ/Activin/Nodal signal pathway
critically regulates pluripotency maintenance and cell differentiation through the main
signal transducer SMAD2/3 in hESCs, but the action manners of SMAD2/3 in hESCs
are sophisticated and not documented yet. Here we review and discuss the roles of
SMAD2/3 in hESC pluripotency maintenance and differentiation initiation separately.
We summarize that SMAD2/3 regulates pluripotency and differentiation mainly through
four aspects, (1) controlling divergent transcriptional networks of pluripotency and
differentiation; (2) interacting with chromatin modifiers to make the chromatin accessible
or recruiting METTL3-METTL14-WTAP complex and depositing m6A to the mRNA of
pluripotency genes; (3) acting as a transcription factor to activate endoderm-specific
genes to thus initiate definitive endoderm differentiation, which happens as cyclin
D/CDK4/6 downstream target in later G1 phase as well; (4) interacting with endoderm
specific lncRNAs to promote differentiation.

Keywords: SMAD2/3, human embryonic stem cell, pluripotency, cell cycle, differentiation, lncRNAs, epigenetic
modification

INTRODUCTION

The TGF-β superfamily comprises TGF-βs, activins, nodal, growth and differentiation factors
(GDFs) and bone morphogenetic proteins (BMPs). More than 60 TGF-β family members have
been identified in multicellular organisms, with at least a half of proteins are encoded in human
genome (Feng and Derynck, 2005). TGF-β signal originates from the binding of ligand dimers
and heteromeric complex of type I (ALK1-7) and type II transmembrane serine/threonine
kinase receptors. Activated type II receptors phosphorylate the type I receptors kinase domain,
and then phosphorylate the intracellular SMAD proteins (Wu and Hill, 2009). There are
three functional classes containing eight SMAD proteins: receptor-regulated SMADs (R-SMAD)
including SMAD1/2/3/5/8, Co-mediator SMAD4 (Co-SMAD), and the inhibitory SMAD6 and 7
(I-SMAD). All SMAD proteins share Mad Homology domains MH1 and MH2: the MH1 domain
contains a β-hairpin structure that mediates DNA binding, and the MH2 domain mediates SMAD
oligomerization and establishes signal specificity by mediating proper type I receptor interaction
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with specific DNA binding partners (Weiss and Attisano,
2013). TGF-β/Activin/Nodal signaling occurs through ALKs
4, 5, and 7 and SMAD2/3 (Massague et al., 2005). It is
reported that inhibition of Activin/Nodal signaling causes hESCs
differentiation (James et al., 2005; Vallier et al., 2005; Xiao
et al., 2006). On the other hand, Activin/Nodal signaling,
through the TGF-β receptors and its effector SMAD2/3, initiates
definitive endoderm differentiation in human and mouse ESC
(Tremblay et al., 2000; Kubo et al., 2004; D’Amour et al., 2005).
Accumulated reports show that TGF-β/Activin/Nodal signaling
and its effectors SMAD2/3 are not only necessary for hESC self-
renewal but also required for germ layer differentiation. However,
the mechanism that SMAD2/3 coordinates different partners
to determine different cell fate decisions is not systematically
elaborated. Herein, this review is focusing on the roles and
mechanisms of SMAD2/3 in regulating hESC pluripotency
maintenance and germ layer differentiation.

SMAD2/3 CONTROLS DIVERGENT
TRANSCRIPTIONAL NETWORKS OF
PLURIPOTENCY AND ENDODERM
DIFFERENTIATION

Human ESCs are derived from the blastocyst with the potential
of long-term self-renewal and three primary germ layers
differentiation (Thomson et al., 1998) and cultured in medium
with basic fibroblast growth factor (bFGF) and Activin or
TGF-β. TGF-β/Activin/Nodal signaling is essential for the
maintenance of hESC pluripotency and self-renewal, while
FGF2 serving as a competence factor (James et al., 2005;
Xiao et al., 2006). Inhibition of Activin/Nodal signaling by
Follistatin or by Activin receptor inhibitor SB431542 causes
hESC differentiation (James et al., 2005; Vallier et al., 2005;
Xiao et al., 2006). Pluripotency is maintained by the OCT4-
SOX2-NANOG transcriptional network, which forms a positive
feedback loop that activates pluripotency genes and inhibits the
expression of differentiation associated genes (Boyer et al., 2005;
He et al., 2009). Activin A is sufficient for the maintenance
of self-renewal and pluripotency and induces the expression of
OCT4, NANOG and SOX2 (Xiao et al., 2006; Xu et al., 2008),
suggesting that pluripotent transcription factors might be the
targets of TGF-β/Activin/Nodal signaling in hESCs. Inhibition of
Activin/Nodal results in a more decrease of NANOG expression
than OCT4 and SOX2 in hESCs, and thus induces differentiation
toward neuroectoderm. Constitutive expression of NANOG
is sufficient to maintain the pluripotency of hESC in the
absence of Activin/Nodal signaling (Vallier et al., 2009a,b).
In addition, transfection of small interfering RNAs targeting
NANOG in hESCs causes differentiation to extraembryonic
endoderm and trophectoderm lineages (Hyslop et al., 2005).
Therefore, NANOG is considered as a direct target of TGF-
β/Activin/Nodal signaling, which is further demonstrated by
the study that SMAD2/3 can directly bind with the NANOG
proximal promoter to activate NANOG expression and repress
autocrine BMP signaling (Xu et al., 2008; Vallier et al., 2009a;

Brown et al., 2011; Sakaki-Yumoto et al., 2013). Meanwhile,
NANOG and SMAD2/3 can bind to regulatory elements of
endoderm genes with other transcription repressors to inhibit
differentiation (Xu et al., 2008; Brown et al., 2011). For instance,
NANOG and SMAD2/3 inhibits Smad-interacting protein 1
(SIP1) expression to block neuroectoderm differentiation (Chng
et al., 2010). Like SIP1, SNON (also named as SKIL), a
potent SMAD2/3 corepressor, is expressed in hESCs but
rapidly down-regulated upon differentiation. In pluripotent state,
SNON is transcriptionally activated by OCT4/SOX2/NANOG
complex and is selectively recruited by SMAD2, and then
SMAD2/SNON together binds to mesendodermal genes to
suppress the expression (Tsuneyoshi et al., 2012). A recent
report shows that Jun N-terminal kinase (JNK)-JUN family
genes JUN co-occupies ESC-specific enhancers with OCT4,
NANOG, SMAD2/3, and specifically inhibits the exit from
the pluripotent state by impeding the decommissioning of
ESC enhancers and inhibiting the reconfiguration of SMAD2/3
chromatin binding from ESC-specific to endoderm-specific
enhancers (Li et al., 2019). Overall, SMAD2/3 is necessary for
self-renewal and pluripotency maintenance: SMAD2/3 not only
targets NANOG to positively regulate OCT4-SOX2-NANOG
transcriptional network, but also interacts with repressors such
as SIP1, SNON and JUN to inhibit lineage genes associated with
primary germ layer differentiation (Figure 1).

However, highly activated Activin/Nodal signal results in
definitive endoderm differentiation. High concentrations of
Activin A induces efficient differentiation of hESCs towards
definitive endoderm: 50–100 ng/ml Activin A drives endoderm
differentiation (D’Amour et al., 2005), whereas 5 ng/ml Activin
A is supportive to maintain pluripotency of hESCs (Xiao et al.,
2006; Tsai et al., 2010; Tomizawa et al., 2013). SMAD2/3 directly
binds to endodermal lineage specifiers such as SOX17, FOXA2,
GATA6, and GSC to induce endoderm differentiation (Brown
et al., 2011; Kim et al., 2011). In addition, the pluripotent factors
OCT4, SOX2, and NANOG control EOMES expression at onset
of endoderm specification, and SMAD2/3 further interacts with
EOMES to initiate endodermal transcription network expression
(Teo et al., 2011). Activin/Nodal signaling also interacts with
other signal pathways, mainly including BMP and WNT to
synergistically promote endoderm differentiation (D’Amour
et al., 2005; Loh et al., 2014). Higher activity of WNT/β-catenin
stimulated by high dosage of WNT3A or glycogen synthase
kinase-3 (GSK-3) inhibitors is required for maximally inducing
definitive endoderm differentiation together with Activin A
(Gadue et al., 2006; Teo et al., 2014). PI3K/AKT signaling,
stimulated by fibroblast growth factor (FGF), directly modulates
the downstream of WNT pathway to maintain undifferentiated
hESCs (Ding et al., 2010). PI3K/AKT can also inhibit SMAD3
phosphorylation causing blocking of nuclear translocation (Remy
et al., 2004). In addition, the inhibition of PI3K activity causes
decrease of the mRNA and protein levels of Nanog (Storm et al.,
2007), and activation of PI3K/AKT signaling is sufficient to
maintain pluripotency of primate ESCs (Watanabe et al., 2006).
Furthermore, Activin/Nodal specifies definitive endoderm from
hESCs only when PI3K signaling is low (McLean et al., 2007).
It seems that PI3K/AKT signaling is the important switcher
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FIGURE 1 | The Multiple Roles of SMAD2/3 in Maintenance of hESCs. Activated TGF-β/Activin/Nodal signaling causes SMAD2/3 phosphorylation in distal
C-terminal SXS motif (in green), which thus interacts with SMAD4 to form heterooligomeric complex and enters nucleus. Accumulated SMAD2/3/4 complex in
nucleus can directly bind to the promotor regions of pluripotency marker genes, such as NANOG and OCT4, promoting the positive feedback loop of
OCT4-SOX2-NANOG. In addition, SMAD2/3 can inhibit SIP1 expression to block neuroectodermal differentiation. SMAD2/3 also interacts with NANOG to repress
differential genes expression, or recruits SNON activated by OCT4/SOX2/NANOG, or interacts with JUN, and then together with OCT4/SOX2/NANOG complex to
suppress lineage genes expression. Meanwhile, PI3K/AKT is highly activated in hESCs. PI3K/AKT on one hand inhibits ERK and WNT signaling, allowing SMAD2/3
to activate pluripotency associated target genes rather than lineage genes; on the other hand, the downstream of PI3K/AKT mTORC2 can phosphorylate SMAD2/3
resulting the degradation mediated by NEDD4Land thus blocking the direct activation of lineage genes.

for Activin/Nodal signaling in pluripotency or differentiation.
Supporting with this notion, a later study suggests that
PI3K governs Activin A/SMAD2/3 to promote pluripotency
or differentiation cell fate in hESCs when PI3K activity is
in high or low level, respectively (Singh et al., 2012). Singh
and colleagues found that PI3K/AKT inhibits RAF/MEK/ERK
and canonical WNT signaling, allowing SMAD2/3 to activate
pluripotency associated target genes, such as NANOG, at high
level of PI3K in undifferentiated state. When PI3K/AKT signaling
is absent, the ERK activates canonical WNT signaling pathways
and then the WNT effectors such as β-catenin and SNAIL can
permit SMAD2/3 to activate differentiation associated genes
(Singh et al., 2012). However, there is a controversial: Na
and colleagues observed the inhibition of MEK/ERK prevents
differentiation and promotes hESCs self-renewal (Na et al.,
2010) while others showed that MEK/ERK signaling positively
contributes to maintain self-renewal of hESCs (Armstrong et al.,
2006; Li et al., 2007). Yu and colleagues provide more details
in molecular mechanism. PI3K antagonizes the Activin/Nodal
signaling in definitive endoderm differentiation by activated
rapamycin complex 2 (mTORC2). Activation mTORC2 induces
SMAD2/3 phosphorylation at T220/T179 residues which is not
dependent on AKT, CDK, or ERK activity. The phosphorylated
SMAD2/3 recruits E3 ubiquitin ligase NEDD4L, which causes

SMAD2/3 degradation and blocks endoderm differentiation
(Yu et al., 2015).

Taken together, Activin/Nodal signaling via SMAD2/3 on
one hand is involved in controlling divergent transcriptional
networks by interacting with different partners to regulating
pluripotency or differentiation in hESCs. On the other hand,
Activin/Nodal signaling antagonizes with PI3K/AKT pathway
in pluripotency and differentiation. High PI3K and low Activin
activity in hESCs promotes SMAD2/3 binding and activating
gene expression of pluripotent transcription factors (Figure 1).

SMAD2/3 INTERACTS WITH
EPIGENETIC MODIFIERS

The pluripotency and differentiation of ESC is regulated not
only by the core transcriptional network but also epigenetic
modifiers, as epigenetic modification supports a permissive
or repressive chromatin environment for transcription. In
mouse ESCs, SMAD2/3 recruits the histone demethylase JMJD3
to target genes Nodal and Brachyury, thereby counteracting
repression of Polycomb (Dahle et al., 2010). A follow-up
study reveals that SMAD2/3 can also counteract Polycomb
repression to regulate Oct4 expression during initiation of ESC
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differentiation (Dahle and Kuehn, 2013). Similarly, helix-loop-
helix (HLH) proteins HEB also interacts with SMAD2/3 at
distal enhancer elements and associates with PRC2 at promotors
of mesendodermal genes (Yoon et al., 2015). In addition, it
is reported that TGF-β/Nodal signals trigger differentiation in
mouse ESC by influencing H3K9me3 modification, the hallmark
of heterochromatin. The activation of Nodal signal induces the
formation of TRIM33-SMAD2/3 complex. The PHD and Bromo
cassette of TRIM33, respectively, recognizes K9me3 and binds
an adjacent K18ac, making the chromatin accessible, which
in turns allows SMAD2/3-SMAD4 to bind to the promotor
of Gsc and Mixl1 to finally promote stem cell differentiation
(Xi et al., 2011).Whether there is similar mechanism that
SMAD2/3 interacts with Polycomb complex to respond to
pluripotency maintenance or differentiation initiation in hESCs
is rarely reported until recent years. Wang and colleagues
show that in hESCs Activin signal impairs PRC2 activity by
SMAD2-mediate reduction of EZH2 protein level, which is the
catalytic subunit of PRC2 (Wang et al., 2017). Further study
documents that the global reduction of H3K27me3 by Activin
signal causes the forkhead protein FOXH1 to recruit into open
chromatin regions, which together with SMAD2 and β-catenin
activates mesendodermal genes expression, such as HAS2 and
ALDH3A2 (Xu et al., 2018). Except for inhibitory epigenetic
modification, it is also reported that Activin/Nodal signaling
is relevant with the H3K4me3 maintenance on the master
regulators of both pluripotency and germ layer specification in
hESCs (Bertero et al., 2015). SMAD2/3 interacts with H3K4
methyltransferases complex COMPASS and its cofactor DPY30
to maintain H3K4me3 marks on pluripotency and mesendoderm
genes. Inhibiting Activin/Nodal signaling causes specifically
impaired H3K4me3 level on promotor and enhancer regions.
Knockdown DPY30 in hESCs reduces expression of pluripotency
and endoderm markers but increases neuroectoderm genes.
Further mechanistic studies show that SMAD2/3 cooperates
with NANOG and DPY30 to regulate H3K4me3 deposition on
pluripotency and cell fate decision associated genes (Bertero et al.,
2015). Recently the same group shows SMAD2/3 interacts with
the METTL3-METTL14-WTAP complex identified by genome-
wide analysis of SMAD2/3 interactome, which deposits N6-
methyladenosine (m6A) on RNA. The interaction between
SMAD2/3 and METTL3-METTL14-WTAP complex promotes
m6A deposition on specific regulators of pluripotency such
as NANOG, which resulting the degradation of NANOG
mRNA and thus facilitating pluripotency exit and differentiation
initiation (Bertero et al., 2018). Taken together, SMAD2/3
can interact with multiple epigenetic modifiers to function
in different levels, together controlling pluripotency and
mesendoderm differentiation initiation (Figure 2).

SMAD2/3 MEDIATES hESC
DIFFERENTIATION PROPENSITY IN G1
PHASE

Human ESCs in different cell cycle phases exhibit biased
differentiation propensity, which involves in CDK4/6-mediated

SMAD2/3 phosphorylation. Primate ESCs exhibit unusual cell
cycle features which are different from mouse ESCs, including
dramatically shortened G1 phase (Becker et al., 2006; Fluckiger
et al., 2006). Subsequent studies show that shortened G1 phase
of cell cycle in hESCs is a cause, rather than a consequence of
pluripotency. A short G1 limits the “window of opportunity” for
which a cell can be responsive to differentiation cues (Neganova
et al., 2009; Lange and Calegari, 2010), and lengthening G1 phase
of pluripotent cell promotes differentiation in mouse and human
(Filipczyk et al., 2007; Koledova et al., 2010; Lange and Calegari,
2010; Sela et al., 2012). Human ESCs express all G1-specific
Cyclins (D1, D2, D3, and E) and cyclin-dependent kinases (CDK)
(CDK2, CDK4, and CDK6) at variable levels (Neganova et al.,
2009; Lange and Calegari, 2010). Knockdown of CDK2 in hESCs
results in arrest at G1 phase and differentiation to extraembryonic
(Neganova et al., 2009), suggesting that CDK2 is very important
for cell cycle regulation and pluripotency maintenance in hESCs.
Recent reports have provided some explanations for how to
determine cell fate propensity in G1 phase. Using FUCCI reporter
system, which is a sensor of cell cycle, Pauklin and Vallier
observed hESCs in early G1 phase can only initiate endoderm
differentiation but neuroectoderm differentiation is limited in
later G1 phase. Further mechanistic analysis shows that the
activity of Activin/Nodal signaling is controlled by Cyclin D,
which activates CDK4/6 to phosphorylate SMAD2/3 in the linker
region and thus makes the phosphorylated fail to enter nucleus.
Since the Cyclin D expression is low in early G1 and high in later
G1, thus Cyclin D/CDK4/6 inhibits the transcriptional activity
of Activin/Nodal signaling to determine cell fate propensity by
controlling the cellular localization of SMAD2/3 (Pauklin and
Vallier, 2013). Consistently, SMAD3 is proved to be the substrate
of CDK4 in MEF, and the phosphorylated SMAD3 by CDK4
inhibits its transcriptional activity (Matsuura et al., 2004).

Singh and colleagues also reported the heterogeneity
correlated with cell cycle, but their results indicate that
WNT/ERK signal promotes heterogeneity in late G1 cells,
including developmental regulators expression such as GATA6,
SOX17, FOXA2 (Singh et al., 2013). A later study by the same
group further proved that the bivalent state is not stable in hESCs
either, especially in G1 phase. H3K4me3 is transient increased
at developmental genes by CDK2-dependent phosphorylation
of the MLL2 histone methyl-transferase during G1, thereby
opening a “window of opportunity” for lineage specification
(Singh et al., 2015). In addition, a recent single-cell level
study shows that hESCs exhibit high single-cell variation in
absolute G1 length which is controlled by WNT/β-catenin
pathway. A longer and wider distribution of G1 phase is
regulated by WNT inhibition, allowing global reduction of
5-hydroxymethylcytosine (5hmC) on lineage-specific genes
and thus causing biased differentiation toward neuroectoderm
lineages but not affecting pluripotent genes expression. Transient
decrease of G1 length by transgenic manipulation shows
predominantly contributing to mesendoderm (Jang et al.,
2019). Different with the previous report (Pauklin and Vallier,
2013), the single-cell analysis results show that the length of
G1 has no effect on SMAD2/3 activity (Jang et al., 2019). Taken
together, it is consistent that G1 phase creating a “window
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FIGURE 2 | The Multiple Mechanisms of SMAD2/3 Regulating Mesendoderm Differentiation of hESCs. Epigenetically, SMAD2/3 recruits JMJD3 to its target genes,
erasing H3K27me3 marker. Then, SMAD2/3 interacts with COMPASS and its cofactor DPY30 to maintain H3K4me3 marks on these genes. In addition, differentially
expressed Cyclin D in early and later G1 phase determines the biased lineage differentiation propensity. Low expression of Cyclin D in early G1 causes low level of
CDK4/6, blocking the phosphorylation of SMAD2/3 in the linker region (in red) and thus allowing SMAD2/3 enter nucleus to activate mesendodermal genes
expression. Meanwhile, CDK2 may phosphorylate MLL2 during G1 and causes H3K4me3 transiently increased at developmental genes, thereby opening a “window
of opportunity” for lineage specification. The third action model is mediated by lncRNAs. Certain highly expressed lncRNAs interact with SMAD2/3 and recruit
SMAD2/3 to and activate the expression of endodermal transcription factors such as FOXA2/GSC.

of opportunity” for mesendodermal genes expression, which
endows hESC differentiation propensity to mesendoderm in
early G1 phase (Figure 2). However, how to initiate lineage
specification and whether SMAD2/3 is controlled in G1 phase
are still controversial and need to be further clarified.

SMAD2/3 INTERACTS WITH lncRNA
PROMOTING DIFFERENTIATION

Long non-coding RNAs (lncRNAs) are transcribed with longer
than 200 nucleotides and have been found wildly expressed
from mammal genome, and play an important role in diverse
biological processes, including regulation of stem cell (Fatica
and Bozzoni, 2014). During hESCs differentiates into endoderm,
there are reported that SMAD2/3 serve as RNA-interacting
protein to actively participate in endoderm differentiation by
different action mechanism (Jiang et al., 2015; Daneshvar et al.,
2016; Chen et al., 2020). DEANR1 is the first reported lncRNA
that regulates human definitive endoderm differentiation.
DEANR1 is highly expressed in endoderm and contributes
to endoderm differentiation by positively regulating endoderm
factor FOXA2. Mechanistically, DEANR1 facilitates FOXA2
activation by interacting with SMAD2/3 and recruiting to the
FOXA2 promotor (Jiang et al., 2015). DIGIT, an endoderm-
expressing lncRNA, is regulated by a SMAD3-occupied enhancer
proximal to DIGIT. DIGIT regulates the transcription of
GSC in trans, and deletion of the SMAD3-occupied enhancer

inhibits DIGIT and GSC expression and definitive endoderm
differentiation (Daneshvar et al., 2016). Very recently, lncRNA
LINC00458 is reported up-regulated in hESCs upon cultured
with soft substrate. Gain- and loss-of-function experiments
confirm that LINC00458 is functionally required for endodermal
lineage specification from hESCs induced by soft substrates.
Importantly, the endoderm-promoting function of LINC00458
depends on the interaction with SMAD2/3 (Chen et al., 2020).
These reports together suggest a new model that lncRNA may
function as a new co-factor of SMAD2/3 to mediate lineage
differentiation (Figure 2).

SUMMARY AND PROSPECT

SMAD2/3 is the major effector of TGFβ/Activin/Nodal signal,
which plays different roles in undifferentiated hESCs and
committed cells. Herein, we summarize the multiple action
manners of SMAD2/3 in pluripotency maintenance and
differentiation initiation in terms of transcription regulation,
epigenetic modification, cell cycle related differentiation bias and
interaction with lncRNAs. SMAD2/3 protects pluripotent state
by directly targeting OCT4-SOX2-NANOG network to maintain
pluripotency and interacts with other factors such as SIP1,
SNON, and JUN to inhibit differentiation at high PI3K/AKT
activity. When in differentiation context, SMAD2/3 is highly
activated by higher Activin/Nodal signal while low PI3K/AKT
activity. Accessible chromatin due to the increase of 5hmC
and H3K4me3 allows SMAD2/3 binding to developmental
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regulators to perform cell-fate decision function. It is very
likely that Activin/Nodal and its antagonistic PI3K/AKT signal
together determine SMAD2/3 functional switch in pluripotency
and differentiation. In addition, WNT pathway synergies with
Activin/Nodal to permit SMAD2/3 to activate differentiation
associated genes. Meanwhile, the co-regulators of SMAD2/3
also are decisive for SMAD2/3 function in different contexts.
However, there are controversies about the role of SMAD2/3
in cell cycle dependent differentiation initiation. In addition,
how SMAD2/3 chooses different co-regulators during the
pluripotency maintenance and differentiation transition is still
unclear but very important to understand the underlying
mechanism of cell fate determination.

Furthermore, the SMAD2/3 interactome analysis suggests
SMAD2/3 interacts with many other functional complexes except
for classic TGF-β signaling associated pathways, including E3
ubiquitin ligase, mRNA processing and degradation, DNA repair
and apoptosis (Bertero et al., 2018). Whether or which of these
interactions with SMAD2/3 are important for ESCs pluripotency
maintenance or differentiation is not uncovered yet. In addition,
SMAD2/3 also participates in lipid metabolism in mouse
hepatocytes (Yang et al., 2013) and epithelial-mesenchymal
transition and metastasis induction in breast cancer (Rios
Garcia et al., 2017). Of note, there is significant metabolic
difference between pluripotent state and differentiation in stem
cells (Mathieu and Ruohola-Baker, 2017). Does SMAD2/3 also
directly regulate metabolism related protein or signal pathways to
influence pluripotency or differentiation in hESCs? In addition to

the roles of SMAD2/3 reviewed in this article, there are still many
unknown roles of SMAD2/3 in hESCs that need to be clarified.
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