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Angiogenesis is one of the key mechanisms involved in tumor growth and metastatic
dissemination. The vascular endothelial growth factor (VEGF) and its receptors (VEGFR)
represent one of the major signaling pathways which mediates angiogenesis. The
VEGF/VEGFR axis was intensively targeted by monoclonal antibodies or by tyrosine
kinase inhibitors to destroy the tumor vascular network. By inhibiting oxygen and nutrient
supply, this strategy was supposed to cure cancers. However, despite a lengthening of
the progression free survival in several types of tumors including colon, lung, breast,
kidney, and ovarian cancers, modest improvements in overall survival were reported.
Anti-angiogenic therapies targeting VEGF/VEGFR are still used in colon and ovarian
cancer and remain reference treatments for renal cell carcinoma. Although the concept
of inhibiting angiogenesis remains relevant, new targets need to be discovered to
improve the therapeutic index of anti-VEGF/VEGFR. Neuropilin 1 and 2 (NRP1/2), initially
described as neuronal receptors, stimulate angiogenesis, lymphangiogenesis and
immune tolerance. Moreover, overexpression of NRPs in several tumors is synonymous
of patients’ shorter survival. This article aims to overview the different roles of NRPs in
cells constituting the tumor microenvironment to highlight the therapeutic relevance of
their targeting.
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GENERALITIES ON THE NEUROPILINS

Genomic Organization and Protein Structure
The Neuropilins are type-1 membrane glycoproteins of 130–140 kDa. Two proteins of the same
family, Neuropilin 1 and 2 (NRP1 and NRP2), coded by two different genes on independent
chromosomes (10p12 for NRP1 and 2q34 for NRP2), share 44% of sequence homology. They
are composed of a N-terminal extracellular domain, a transmembrane domain and a cytoplasmic
domain of 43–44 amino acids. The extracellular domain comprises five subdomains: a1, a2, b1,
b2, and c. The cytoplasmic part does not contain a signaling domain but has a PDZ domain
and a triplet of amino acids “serine, glutamic acid, alanine (SEA).” The PDZ domain enables
the formation and the stimulation of signaling complexes. The membrane and cytoplasmic parts
are implicated in the receptors’ dimerization. Soluble forms of NRP1 and NRP2 (sNRP1, sNRP2)
without transmembrane and without cytoplasmic domain and an isoform of NRP2 without the
SEA amino acid triplet are formed after alternative splicing.
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The Phenotype of Knock-Out Mice
NRP1 gene invalidation (KO) induces defects in vascular,
nervous, and cardiac network and leads to an embryonic
lethality between 10 and 12.5 days (Kawasaki et al., 1999). The
overexpression of NRP1 is lethal for embryos of about 12.5 days
with cardiac defects (Kitsukawa et al., 1995).

NRP2 KO is not lethal but a diminution of lymphatic vessels
and some abnormalities during the neural development are
observed (Yuan et al., 2002).

Mice with a double NRP1 and NRP2 KO present more severe
vascular abnormalities and embryos die at 8.5 days (Takashima
et al., 2002) with the presence of important avascular zones and
of some gaps between the blood vessels.

NRP Ligands
The NRPs bind to specific ligands and form heterodimers with
five families of receptors. The dimerized ligands bind to the NRP
homo- or heterodimers and to partner receptors dimers to form
a complex which induces a specific intracellular signal. The sNRP
are competitive forms for the binding of vascular endothelial
growth factor (VEGF) to the membrane NRP1.

SEMA3/Plexin
The NRPs were first described as neuronal receptors binding the
semaphorins (SEMA, seven classes described) which constitute
a family of proteins that guide axons growth and are involved
in cell apoptosis, migration and tumor suppression. SEMA3C
is involved in endothelial cell apoptosis, it inhibits pathological
angiogenesis and it promotes invasion and metastasis in cancers.
SEMA3A is an angiogenesis inhibitor, that is less expressed
during tumor development. Indeed, it controls pericytes
recruitment to vessels (Niland and Eble, 2019). Neuropilins form
a complex with SEMA receptors, the plexins. The binding of
the SEMA on NRP is established through the a1, a2, b1, and
b2 domains (Roy et al., 2017). The ternary complex between
NRPs, SEMAs and the plexins enhances signal transduction
during development, axon guidance and immunity. NRP1 binds
preferentially to SEMA3A and NRP2 to SEMA3C or 3F (Roy
et al., 2017). SEMA3E/PlexinD1 pathway is involved in the
initial development of axon tracts in the forebrain and in the
establishment of functional neuronal networks. Some axons
expressed plexinD1 but not NRP1, in this case SEMA3E acts as a
repellant. When neurons express plexinD1 and NRP1, SEMA3E
is an attractant (Chauvet et al., 2007). The extracellular part of
NRP1 is sufficient in inducing the attractive axonal guidance.
PlexinD1 is necessary for SEMA3E’s effects on axonal guidance.
However, NRP1 is necessary to control the gating response
of SEMA3E to induce a repulsive or attractive axon growth
(Chauvet et al., 2007). According to the major role played by the
NRP1/SEMA3E signaling in neurodevelopment, any defect may
be related to neural disorder as it was suggested in a mouse model
of schizophrenia (Daoust et al., 2014).

VEGF/VEGFR
The VEGF gene is composed of eight exons. Exons 1–5 are
implicated in the binding to vascular endothelial growth factor
receptors (VEGFR) and exons 7 and 8 in the binding to NRP1

and NRP2 (Guyot and Pages, 2015). The differential splicings of
exon 6, 7 and 8 induce two distinct families of isoforms. Isoforms
with the exon 8a are pro-angiogenic and isoforms with exon 8b
are anti-angiogenic (Harper and Bates, 2008). Four predominant
forms of VEGF exist: VEGF121, VEGF189, VEGF206 and the
more abundant and active in many cancers, the VEGF165.
The VEGF165 binds preferentially to NRP1 (Kd = 0.2 nM) as
compared to NRP2 (Kd = 5 nM).

In healthy people, VEGFs are involved in wound healing
and vascular homeostasis. However, VEGFs promote tumor
angiogenesis and lymphangiogenesis and high levels of VEGFs
expression are synonymous of poor prognosis in cancers.
NRP1 binds the VEGF165 and the receptors VEGFR1 and 2.
VEGF binding stimulates this pathway leading to increased
angiogenesis. NRP2 binds the VEGF165 and VEGFC, the
main lymphangiogenic factor, and forms a complex with the
receptors VEGFR2 or VEGFR3 to stimulate angiogenesis and
lymphangiogenesis. The binding occurs through the NRPs’ b1
and b2 domains. VEGFR activation by the VEGF does not
require the NRP. However, in some tumors, VEGFRs are absent
and NRP1 induce cell migration and angiogenesis in a VEGFR-
independent manner. VEGF binding to NRP1, independently
of VEGFR, activates RhoA and Ras, two effectors of different
signaling pathways (Niland and Eble, 2019).

Thus, the stimulation of NRP by the VEGF is highly relevant
in a therapeutic context.

PlGF/VEGFR
Placenta growth factor (PlGF) belongs to the VEGFs family and
binds to VEGFR1 but not to VEGFR2. It was initially described
as a placenta produced homodimeric protein. Three isoforms
are initiated from alternative splicing: PlGF1, PlGF2, and PlGF3.
PlGF2 is the only form containing exon 6, which codes for
an heparin binding domain (Migdal et al., 1998). PlGF2 binds
to NRP1 through amino acids encoded by exon 6 and exon 7
and PlGF1 through amino acids encoded by exon 7 (Migdal
et al., 1998). In breast cancer, PlGF1 and NRP1 overexpression
is correlated to a poor prognosis and PlGF2 is overexpressed in
cancer tissues as compared to normal tissue (Escudero-Esparza
et al., 2010). The PlGF/NRP pathway is implicated in tumor
growth, angiogenesis, migration, and metastasis for melanoma
cancers even in the absence of VEGFRs (Pagani et al., 2016).
PlGF is also a relevant target in retinal diseases resistant to anti-
VEGF therapies (Van Bergen et al., 2019). In the Sonic Hedgehog
subgroup of medulloblastoma, PlGF binds to NRP1 leading to
mitogen activated protein kinase (MAPK) signaling activation,
tumor growth and dissemination (Snuderl et al., 2013). Moreover,
the PlGF/NRP signaling pathway plays a key role in resistance to
anti-angiogenic therapies (Pagani et al., 2016).

HGF/cMET
The signaling pathway induced by the hepatocyte growth factor
(HGF) and its receptor (cMET) regulates endothelial cell survival,
proliferation and migration. HGF/cMET complex plays an
important role in tumor progression. NRP1, by binding to cMET,
induces tumor invasion. As HGF/cMET inhibits apoptosis and
promotes immune tolerance by interacting with the programmed
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death ligand 1 (PD-L1) (Balan et al., 2015), the stimulation of this
signaling pathway by NRP1 promotes tumor growth by inhibiting
the antitumor immunity.

TGFβ1/TGFβRs
TGFβ1/TβRs stimulates the SMAD2/3 signaling pathway, which
is involved in physiological development, host immunity,
inflammation and in tumor progression, and invasion. TGFβ

also promotes cancer progression and metastasis (Chaudhary
et al., 2014). TGFβ binds to NRP1 via its b1 domain and
forms a complex with TGFβ receptors I–III. Activation of
this signaling pathway stimulates angiogenesis in a VEGFR2-
independent manner. NRP1/TGFβ/TGFβR also promotes T
regulatory lymphocytes activity and immune tolerance.

PDGF/PDGFR
The increased expression of PDGF and its receptors on
tumor vasculature promotes pathological angiogenesis
(Chaudhary et al., 2014). This signaling pathway also induces
cell proliferation, differentiation, and epithelial to mesenchymal
transition (Niland and Eble, 2019). Four PDGF variant exist:
PDGFA, B, C, and D. These ligands bind to the tyrosine-
kinase receptors PDGRFα or β. Depending on the ligand, the
receptors will homo- or hetero-dimerize giving three possible
combinations: αα, αβ, or ββ. PDGF-stimulated PDGFRs activate
MAPK and PI3K signaling pathways. NRP1 forms a complex
with PDGF and PDGFR amplifying their respective downstream
signaling pathways.

FGF/FGFR2
FGF/FGFR2 complex induces cell migration and proliferation.
This axis is key for endothelial cell proliferation and subsequent
angiogenesis. By forming a complex with the FGFR2, the
NRPs play a key role in amplifying its signaling pathways and
consequently these biological phenomena.

Galectins
Galectins, part of the family of β-galactoside-binding proteins,
are involved in cell-cell and cell-matrix interactions. Galectin-
1 (Gal-1) induces tumor-associated HuVEC proliferation and
migration, by enhancing VEGFA effects, and HuVEC adhesion.
Gal-1 exerts these effects through VEGFR2 phosphorylation
enhanced by Gal-1/NRP1 binding (Hsieh et al., 2008). The
activation of NRP1/VEGFR1-dependent AKT signal by Gal-1
decreases endothelial-cadherin cell-cell junctions and increases
the vascular permeability (Wu et al., 2014).

EGF/EGFR
Epidermal growth factor receptor (EGFR) is a monomeric
transmembrane protein. EGFR mutations were described in
several forms of cancers, such as breast or lung cancers and it is
overexpressed in numerous tumors. EGFR activation stimulates
AKT signaling. NRP1 extracellular domain is necessary for
EGFR-endocytosis and AKT-dependent cancer cell viability and
tumor growth. Hence, reduced expression of NRP1 limits
EGFR endocytosis (Rizzolio et al., 2012). Furthermore, NRP2

is required, through WDFY1 (WD-repeat and FYVE-domain-
containing protein 1), to activate EGFR endocytosis in cancer
cells and to maintain EGFR activities (Dutta et al., 2016).

Hedgehog Signaling Pathway
This pathway is involved in embryogenesis and in adult’s
tissue healing. Its activation induces cell proliferation and
differentiation. Its overexpression or downregulation induces
cancer development and the epithelial-mesenchymal transition
(EMT). NRPs are major regulators of the Hedgehog signaling
pathway. A feedback loop exists between NRP1 and Hedgehog;
Hedgehog signaling induces NRP1 expression, which promotes
activation of Hedgehog targeted gene (Niland and Eble,
2019). A down-regulation of NRP1 by shRNA in ccRCC cell
lines reduces sonic hedgehog (SHH) and its activator Gli1
expressions. SHH signaling pathway inhibition promotes tumor
cell differentiation (Cao et al., 2008).

Integrins
NRPs also interacts with integrins. The intercellular interaction
between integrins α5β1 and α9β1 expressed on endothelial cells
and NRP2 expressed on tumor and endothelial cells increases
tumor spreading and metastasis through and integrin-dependent
mechanism (Cao et al., 2013; Alghamdi et al., 2020).

THE ROLE OF NEUROPILINS IN THE
IMMUNE SYSTEM (FIGURE 1)

Dendritic Cells
They are recruited to the tumor site. After their contact with
the antigen, they are maturated, which enables them to migrate
to the lymphoid organs to activate naïve T cells and to induce
the primary immune response. Two types of dendritic cells
(DCs) exists: (i) myeloid DCs (mDCs) that present the antigen
to T cells; (ii) plasmacytoid DCs (pDCs), generally involved in
immune suppression. Activated pDCs have an antigen presenting
capacity, they also activate T cells but to a lesser extent as
compared to mDCs.

NRP1 is expressed on mature DC and on naïve T cells. This
enables NRP1/NRP1 homophilic interaction and the formation
of an immunological synapse between these two cell types. Thus,
NRP1 mediates the primary immune response activation by
promoting antigen presentation by DCs through this synapse
(Sarris et al., 2008; Akkaya et al., 2019). NRP1 regulate
cytoskeleton rearrangements allowing their transmigration to the
lymphatics and lymphoid tissues to activate T cells. However,
at a late stage of T cell activation, SEMA3A is secreted. By
its interaction with NRP1 expressed on T cells, it disrupts
the formation of the immunological synapse with the DC
resulting in reduced T cell activation and immune tolerance
(Lepelletier et al., 2006).

NRP2 expression increases during the differentiation from
monocytes to dendritic cells (Schellenburg et al., 2017). Its
sialylation protects DC during their migration to lymph nodes.
In the lymph nodes, the polysialic acid is eliminated of NRP2 and
DC activate T cells (Curreli et al., 2007; Rey-Gallardo et al., 2011).
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FIGURE 1 | Role of NRPs in the activation or suppression of the immune system. (A) NRP1 homophilic interaction enhances the interaction between naive cytotoxic
T cells and dendritic cells inducing a prolonged antigen presentation and so T cell activation. (B) Expression of SEMA3A by mature cytotoxic T cells inhibits NRP1
localisation and induces T cell anergy. (C) Interaction between NRP1, expressed by Treg cells, with SEMA4A, expressed by dendritic cells maintain Treg functions.
(D) Interaction between NRP1, expressed by Treg cells, with VEGF, expressed by tumor cells, enable Treg cells infiltration into the tumor and induce an
immunosuppression. (E) NRP1+ helper T cells induce B cells differentiation to activate their immune response. (F) Interaction between NRP1, expressed by
macrophages, with SEMA3A, expressed by tumor cells, induce the formation of tumor associated macrophages (TAM) and so a tumor progression.
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Macrophages
They play a key role in immune surveillance, in cellular
debris elimination and in antigen presentation. M1
macrophages are pro-inflammatory and M2 are pro-angiogenic,
immunosuppressive, thus pro-tumoral particularly in hypoxic
zones. Hypoxia induces SEMA3A expression on tumoral
cells. It interacts with NRP1, and their receptors plexin
A1 and A4, expressed on macrophages. Tumor-associated
macrophages (TAM) reside in the hypoxic zones where they
exert their pro-tumoral role. If NRP1 expression decreases,
TAM remain in the normoxic peripheric zones of the tumor
resulting in the suppression of their pro-tumoral role (Casazza
et al., 2013; Chen et al., 2019). In the microglia, NRP1 plays
an immune suppressive role by inducing a M2 phenotype.
A NRP1/NRP1 homophilic interaction with the helper T cells
induces immune suppression. NRP1 expression on glioma-
associated macrophages (GAM) induces a pro-tumoral response.
NRP1 inhibition reduces tumor growth and a macrophages
polarization to an anti-tumoral role (Cherry et al., 2014;
Caponegro et al., 2018).

NRP2 expression increases during the differentiation of
monocytes to macrophages (Schellenburg et al., 2017) next to
inflammatory zones to induce phagocytosis. NRP2 sialylation
reduces phagocytosis capacity of the macrophages (Stamatos
et al., 2014; Roy et al., 2018), thus NRP2+ M2 macrophages
promote tumor progression (Niland and Eble, 2019).

T Cells
They are responsible of the adaptative immune response required
for the control and the elimination of pathogenic agents and
of tumor cells. Any dysfunctions in their development or
activation induce auto-immune diseases and cancers. NRP1 is
upregulated on active T cells (Chaudhary et al., 2014). Four types
of T cells exist.

Cytotoxic T Cells (T CD8+)
They destroy the infected cells presenting the specific antigen
through the class I major histocompatibility complex (MHC).
The NRP1 expression is increased on CD8+ effective and
memory T cells and promotes the antigen recognition (Roy
et al., 2017). However, the exact NRP1 role in this context
is unknown. NRP1 expression also correlates with PD1
expression on CD8+ T cells. Thus, NRP1 might represent
a relevant biomarker to determine the efficacy of anti-PD1
immunotherapies. Indeed, patients with non-small cell lung
cancer invaded with PD1-positive CD8+ T cells are highly
responsive to anti-PD1 immunotherapies and present a longer
survival (Leclerc et al., 2019).

Helper T Cells (T CD4+)
They are not cytotoxic but produce interleukin 2 and interferon
gamma. These cytokines stimulate T and B cell proliferation.
NRP1 is expressed on CD4+ T cells and induces B cells
differentiation (Roy et al., 2017). Induction of NRP1 on
regulatory T cells (Bruder et al., 2004) and on CD4+ T
cells (Campos-Mora et al., 2019) induces immunosuppressive
functions in vivo.

NKT Cells
They constitute a link between innate and adaptative immunity.
Once activated, they lyse the targets and produce anti- and
pro-inflammatory cytokines. NRP1 role on these NKT cells is
unknown (Roy et al., 2017).

Regulatory T Cells (Treg)
Tregs play a role in immune homeostasis, allergic responses,
auto-immune diseases, tumor immunity, and graft rejection.
Their accumulation in tumors induces cancer progression
and immune suppression (Sakaguchi et al., 1995). NRP1
is overexpressed by activated Tregs and promote their
immunosuppressive role. NRP1 expression maintains the
Tregs functions through the binding to SEMA4A, expressed
by dendritic cells. NRP1/SEMA4A binding stabilizes the
Treg by recruiting PTEN (Phosphatase and tensin homolog)
and by inhibiting AKT phosphorylation. NRP1 expression
on Treg induces their migration to the tumors where
they play an immune-suppressive role (Hansen et al.,
2012) by secreting IL-10 and IL-35, an anti-inflammatory
cytokine. NRP1 expressed by Tregs are also attracted to
tumors expressing VEGF where NRP1 acts as a VEGF
co-receptor. The stimulation by VEGF, enhances T regs
infiltration to tumors and an immunosuppressive response
(Hansen et al., 2012).

CD4+/CD8+ T cells over-express NRP2 but NRP2 expression
is lower on T cells expressing only CD8 or only CD4. The
interaction between NRP2, SEMA3F and plexinA1 inhibits
immature T cell migration.

Thus, the NRP have different roles in the immune system
either in cell migration, cell-cell interaction or in the regulation
of the immune response.

ROLES IN CANCER

Neuropilins expression level correlates with tumor growth,
invasiveness, angiogenesis, and poor prognosis. NRPs
over-expression is often observed in carcinoma, melanoma,
glioblastoma, leukemia, and lymphoma in which NRPs exert
diverse functions.

Functions of Neuropilins in Cancer
To grow over a few millimeters tumors turn into a pro-
angiogenic environment that induces the formation of new
blood vessels from the existing vascular network. This new
vascular network surrounding the tumor, supplies oxygen and
nutrients needed for tumors growth. Tumor cells, cells from
the microenvironment and NRPs expressed on both cell types
influence tumor angiogenesis (Niland and Eble, 2019). The roles
of NRP1 in the growth and invasiveness of prostate, colorectal,
kidney, lung, breast, . . . human cancers have been confirmed
with animal studies showing that exacerbated angiogenesis
and a poor prognosis is correlated with NRP1 expression
(Ellis, 2006). Only in pancreatic cancers, a high expression
of NRP1 correlates with reduced vascularized areas, decreased
tumor growth, and improved survival (Morin et al., 2018).
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Expression of NRP2 is mostly correlated to tumor progression.
In most cancers, the co-expression of NRP1 and NRP2
stimulates tumor growth and invasiveness (Rizzolio and
Tamagnone, 2011). SEMA3C, which binds to NRP1 and NRP2
with equivalent affinity, inhibits tumor lymphangiogenesis by
targeting immature vessels sprouting. However, its cleaved
form, p65-SEMA3C, stimulates tumor lymphangiogenesis and
metastatic dissemination of cancer cells expressing NRP2
(Mumblat et al., 2015).

Neuropilin 1 expression on tumor cells enhances cell
viability, proliferation, migration, metastasis and favors cancer
cell stemness. Since NRP1 promotes EMT through different
pathways (TGF-β, Hedgehog, HGF. . .), which explains NRP1’s
pro-tumoral role.

Neuropilin 1 is expressed on breast cancer cells, and
its interaction with VEGF165 inhibits apoptosis. Such
inhibition is counteracted by SEMA3B (Ellis, 2006). SEMA3F
competes with VEGF in binding to the NRPs and blocks
breast cancer cell migration. However, SEMA3F decreases
membrane E-cadherin, which promotes cell metastasis
(Ellis, 2006). SEMA3A expressed on endothelial cells,
antagonizes VEGF effects and correlates with a good
prognosis (Niland and Eble, 2020). It is generally lost
during tumor progression (Niland and Eble, 2019). In a
VEGFA+/SEMA3A+ environment, NRP1 binds preferentially
SEMA3A (Palodetto et al., 2017). Cells with a higher VEGF
expression as compared to SEMA3A expression have
promigratory characteristics.

In colon cancer, NRP1 expression correlates with increased
vessel number and poor prognosis, while NRP2 over-expression
stimulates tumor progression and the down-regulation of
NRP2 expression inhibits tumorigenesis and increases
apoptosis (Gray et al., 2008). In prostate cancer, elevated
NRP1 levels stimulated by VEGF inhibit tumor cell apoptosis
and angiogenesis and are synonymous of shorter survival. In
ccRCC, NRP1 down-regulation reduces migration, invasion,
and tumorigenesis (Cao et al., 2008), and NRP2 down-
regulation decreases cell extravasation in the lymphatic
network and the metastatic spread (Cao et al., 2013). NRP1
expression down-regulation in experimental model of lung
cancer reduces cell migration, invasion, and metastasis
(Hong et al., 2007).

Role in Cancer Stem Cells
A tumor is composed of cells differing in their morphology,
their capacity to proliferate and to form metastasis and in
their resistance to therapeutic agents. Among these different
cells, only cancer stem cells (CSCs) are able to initiate a new
primary tumor or metastasis. CSCs are cells that self-renew and
that induce the heterogeneous aspect of the tumors. CSCs are
resistant to chemo-and radiotherapy. As NRPs are less expressed
in epithelial tissues compared to carcinomas, NRPs might play a
role in stemness.

The role of the VEGFs/NRPs pathways have been studied
in the triple negative breast cancer cell line MDA-MB-
231 and the hormone sensitive MCF-7 cell line. While

MDA-MB-231 have stemness characteristics MCF-7 cells have
low stemness properties. In these cells, the level of stemness
was correlated to the expression of VEGF and NRP1 (Zhang
et al., 2017). Down-regulation of VEGF and NRP1 in MDA-
MB-231 cells and overexpression of VEGF and NRP1 in MCF-
7 cells confirmed that the VEGF/NRP1 signaling pathway is
instrumental in driving stemness properties of breast cancer
cells (Zhang et al., 2017). The VEGFC/NRP2 pathway is also
involved in breast cancer stemness (Wang et al., 2014). The
VEGF/NRP2 pathways stimulates stemness through activation
of the YAP/TAZ signaling (Elaimy and Mercurio, 2018).
This pathway also mediates homologous recombination by
stimulating Rad51 expression leading to resistance to platinum
chemotherapy in triple negative breast cancers (Elaimy et al.,
2019). The NRP2/α6β1 integrin interaction activates the focal
adhesion kinase (FAK) involved in tumorigenesis and associated
to aggressive tumors (Goel et al., 2013). Furthermore, the
VEGF/NRP1 pathway induces CSCs in breast cancers by
activating the Wnt/β-catenin pathway (Zhang et al., 2017),
which is involved in the induction of CSCs. The implication
of VEGF/NRP1 pathway was also highlighted in glioma stem
cells (Hamerlik et al., 2012) and in medulloblastoma stem cells
(Gong et al., 2018).

Role in Cancer-Associated Fibroblasts
Fibroblasts are part of the tumor microenvironment and become
myofibroblasts (normal activated fibroblasts) under tumoral
conditions. By interacting with fibronectin, myofibroblasts
promote fibronectin fibril assembly, and tumor growth
through α5β1 integrin (Yaqoob et al., 2012). Fibronectin
fibril assembly is regulated determinant of matrix stiffness
involved in tumor progression. NRP1 induces integrin function
by binding to fibronectin and by activating the intracellular
kinase c-Abl (Yaqoob et al., 2012). Indeed, NRP1 intracellular
domain stimulates c-Abl that activates small GTPases (Rac
or Rho). These GTPases promote α5β1 integrin function
and so increase fibronectin binding and assembly (Yaqoob
et al., 2012). The NRP1 extracellular domain is O-linked
glycosylated via the serine 612 residue, which increases NRP1
binding to fibronectin resulting in enhanced fibronectin and
α5β1 integrin interaction (Yaqoob et al., 2012). Thus, NRP1
intra- and extracellular domains, through the activation of
c-Abl and α5β1 integrin, increase fibronectin fibril assembly
contributing to matrix stiffness and tumor progression and
invasiveness. Furthermore, cancer-associated fibroblasts
(CAFs) are one of the most expressed cells in the tumor
microenvironment, and the principal source of TGFβ1.
NRP1/TGFβ1 interaction stimulates endothelial-mesenchymal
transition (EndMT), an important source of CAFs (Matkar
et al., 2016). Finally, CAFs also promotes tumor migration
and invasion by inducing EMT of cancers cells (Shan et al.,
2017). This EMT induction is carried out through Hedgehog
signaling. As above described, NRP1 is a major regulator of
Hedgehog signaling. Thus, NRP1 expressed on CAF might
also stimulate EMT which increases tumor cell migration and
invasion worse prognosis.
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Prognostic Role of NRP1 and NRP2
Pathways
Neuropilins correlate with poor prognosis in many cancers.
Here are some examples. NRP1 is overexpressed in bladder
cancer and correlates with poor prognosis (Cheng et al., 2014). In
osteosarcoma, NRP1 is a prognostic factor of shorter progression-
free (PFS) and overall survival (OS) (Zhu et al., 2014). NRP2
contributes to laryngeal squamous cell carcinoma progression
and could serve as a new therapeutic target for this type
of cancer (Yin et al., 2020). In prostate adenocarcinoma,
NRP2 is a marker of bad prognosis (Borkowetz et al., 2020).
Some activator of the NRP2 pathway including VEGFC were
described as markers of good prognosis in non-metastatic
kidney cancers but of poor prognosis in metastatic kidney
cancers (Ndiaye et al., 2019). Thus, the level of expression
of NRP2 and their partners, has to be determined to adapt
a specific therapeutic strategy in tumors at different steps of
their development.

Role in the Therapeutic Response
Resistances to targeted therapies are often related to the
activation of alternative tyrosine-kinase receptors-mediated
signaling pathways. As above described, NRPs interact with
several tyrosine kinase receptors and enhance their activity.

Resistance to Chemo- and Radiotherapies
Radio- and chemotherapy are widely used to treat cancers.

A high expression of NRP1 in non-small cell lung cancer
cells increases radio-resistance through an ABL-1-mediated
up-regulation of RAD51 expression (Hu et al., 2018). In
pancreatic cancer, NRP1 increases resistance to gemcitabine
and 5-fluorouracil by activating the MAPK signaling pathway
(Wey et al., 2005).

The NRP2/VEGFC pathway activates autophagy through the
inhibition of mTOR complex 1 activity which helps cancer
cells to survive following treatment (Stanton et al., 2013).
NRP2 overexpression, induced by SEMA3F in adenocarcinoma,
decreases integrin αvβ3 and enhances cell sensitivity to
chemotherapy (Zheng et al., 2009).

In some cancers, NRP targeted drug decreases resistance to
chemo/radiotherapies.

Resistance to Targeted Therapies
In pancreatic ductal adenocarcinoma (PDAC), an increase of
active integrin β1 activates AKT signaling and resistance to
cetuximab, an anti-EGFR monoclonal antibody (Kim et al., 2017).
NRP1-dependent JNK signaling leads to the overexpression
of EGFR and IGF1R, which induces resistance to BRAF
(melanoma targeted therapy), HER2 (breast cancer targeted
therapy) and MET (stomach and lung carcinomas therapy)
inhibitors (Rizzolio et al., 2018b).

Neuropilin 2 overexpression decreases EGFR expression and
resistance to MET-targeted therapies (Rizzolio et al., 2018a).

Thus, NRPs have become interesting biomarkers to determine
the patients’ responsiveness to radio- or chemotherapies or to
targeted therapies. Indeed, patients with low NRP1 expression

present a better OS than patients with high level of NRP1 (Van
Cutsem et al., 2012; Napolitano and Tamagnone, 2019).

Again, combination of targeted therapies to NRP1 inhibitors
increase the effects of therapies and reduces resistance.

CONCLUSION

Angiogenesis is one of the key mechanisms involved in
cancer growth and dissemination. Anti VEGF were approved
in combination with standard chemotherapies. Despite an
improvement of progression free survival in several types
of tumors by anti VEGF treatments, increases in OS were
reported. The elevated expression in tumor, endothelial, and
immune cells, makes NRP1 and 2 new relevant oncology targets
to improve the treatment of cancers. This review describes
the different roles and the expression level of NRPs in the
different cells constituting the tumor microenvironment. NRPs
form holoreceptors with many different receptors and, thus,
are involved in many biological phenomena: angiogenesis,
lymphangiogenesis, cell proliferation, migration, invasion, and
tumor growth. Moreover, NRPs are expressed by several immune
cells, in which they exert an activating or inhibiting role on
the immune response. In many cancers, NRPs over-expression
is synonymous of poor prognosis. This review highlights the
implication of NRPs in several hallmarks of cancer and the
relevance of targeting the NRPs for the treatment of cancers.
Several molecules targeting NRPs are in development: (i) anti-
NRP1 antibodies such as the MNRP1685A that has to be
optimized to improve the therapeutic window and to decrease
its toxic effects; (ii) cyclic, rigid or pseudo-peptides developed
by optimizing the sequence ATWLPPR, mimicking the VEGF
C-terminal domain interacting with NRP1; (iii) non-peptidic
inhibitors such as NRPa-308 that exerts anti-cancer effects in
triple negative breast cancer (Liu et al., 2018) and which is
currently tested in ccRCC.

Despite these different therapeutic pathways, NRPs targeting
must be improved to fight cancers that can benefit the most
of these treatments. The antagonist role of NRPs as beneficial
or detrimental markers depending on tumor stage suggests
cautiousness before administration of anti NRPs treatments.
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