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Hepatic stellate cells (HSCs) are a significant component of the hepatocellular carcinoma
(HCC) tumor microenvironment (TME). Activated HSCs transform into myofibroblast-
like cells to promote fibrosis in response to liver injury or chronic inflammation,
leading to cirrhosis and HCC. The hepatic TME is comprised of cellular components,
including activated HSCs, tumor-associated macrophages, endothelial cells, immune
cells, and non-cellular components, such as growth factors, proteolytic enzymes and
their inhibitors, and other extracellular matrix (ECM) proteins. Interactions between
HCC cells and their microenvironment have become topics under active investigation.
These interactions within the hepatic TME have the potential to drive carcinogenesis
and create challenges in generating effective therapies. Current studies reveal potential
mechanisms through which activated HSCs drive hepatocarcinogenesis utilizing
matricellular proteins and paracrine crosstalk within the TME. Since activated HSCs
are primary secretors of ECM proteins during liver injury and inflammation, they help
promote fibrogenesis, infiltrate the HCC stroma, and contribute to HCC development.
In this review, we examine several recent studies revealing the roles of HSCs and their
clinical implications in the development of fibrosis and cirrhosis within the hepatic TME.

Keywords: hepatic stellate cells, hepatocytes, hepatocellular carcinoma, tumor microenvironment, inflammation,
fibrosis

INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth leading cause of cancer related deaths in western
countries (Choo et al., 2016; Bray et al., 2018), accounting for up to 90% of all primary liver cancers
(Lozano et al., 2012). Although the percentage of HCC cases is dramatically higher in eastern Asia
and most African countries, HCC is on the rise in the United States (U.S.) (Rawla et al., 2018). This
trend is primarily due to increases in the incidences of chronic hepatic inflammation including fatty
liver disease (FLD) (Nordenstedt et al., 2010) and chronic hepatitis C (HCV) infection (Kanwal
et al., 2011). Although the distribution of HCC etiology varies between geographic regions, the
most common etiology worldwide is viral hepatitis. In developing areas, such as Sub-Saharan Africa
and Eastern Asia, hepatitis B virus (HBV) passed through vertical transmission at birth is the most
common etiology (El-Serag, 2012). In developed worlds such as North America, HCV infection
acquired later in life is endemic (Armstrong et al., 2006; Barazani et al., 2007; Wasley et al., 2008).
In addition to viral hepatitis and FLD, alcoholic cirrhosis is a major contributing etiology of HCC;
all of which can induce fibrosis, cirrhosis, and ultimately lead to development of HCC. This pathway
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to malignancy, driven largely through fibrosis, is supported by the
fact that 90% of HCC patients have cirrhosis (Parkin et al., 2005;
Ananthakrishnan et al., 2006).

One of the main components in the development of fibrosis,
cirrhosis and HCC (Wynn, 2008; Sokolovic et al., 2010) are the
liver-specific pericytes, known as hepatic stellate cells (HSCs),
which are located in the perisinusoidal space of the liver
(Tsuchida and Friedman, 2017). Under normal conditions,
HSCs exist in a quiescent state containing abundant lipid
droplets of vitamin A (Blaner et al., 2009), and are highly
sensitive to extracellular signals from fibrotic stimuli (Yin et al.,
2013) including hepatitis, inflammation, or tissue injury (Wynn,
2008). In the presence of liver injury, HSCs are activated,
transitioning from a quiescent to a myofibroblast phenotype
with proliferative, migratory and invasive capabilities (Coulouarn
et al., 2012; Carloni et al., 2014; Novikova et al., 2017). The
well-known sequence of HSC activation can be split into two
pathways. The first includes ‘initiation,’ which describes changes
in HSC gene expression and phenotype rendering them more
sensitive to paracrine stimuli. The second pathway includes
‘perpetuation,’ which amplifies the HSC-initiated phenotype
via enhanced proliferation and proinflammatory signaling (i.e.,
damaged associated molecular patterns, DAMPs), interleukins,
complimentary and growth factors from nearby damaged
hepatocytes, endothelial cells and immune cells, resulting
in promotion of fibrogenesis (Friedman, 2000) (Figure 1).
Extracellular matrix (ECM) molecules (ex, type I and III collagen)
are secreted by activated HSCs and accumulate to form scar
tissue in the space of Disse (Friedman, 2008a) (Figure 1). This
scar tissue functions to protect the liver from further damage;
however, sustained activation of HSCs leads to chronic fibrosis
and cirrhosis (Lee and Friedman, 2011; Friedman et al., 2013).

Activated HSCs play an essential role in fibrosis and
hepatocarcinogenesis (Tsuchida and Friedman, 2017).
Mediators in the activation of HSCs and the hepatic tumor
microenvironment (TME) consist of transforming growth factor
beta (TGFB), platelet derived growth factor (PDGF), connective
tissue growth factor (CCN2, previously CTGF), vascular
endothelial growth factor (VEGF), viral infection, focal adhesion
kinase-matrix metalloproteinase 9 (FAK-MMP9) signaling,
p53/21, phosphatidylinositol 3-kinase/protein kinase B (AKT)
(PI3K/AKT), mitogen-activated protein kinase/extracellular
signal-regulated kinase (MAPK/ERK), and interleukin 6/signal
transducer and activator of transcription 3 (IL-6/STAT3)
signaling pathways (Han et al., 2014; Fabregat et al., 2016;
Makino et al., 2018). Furthermore, previous studies have
shown HSC activation to be regulated by the tumor suppressor
phosphatase and tensin homolog deleted on chromosome
10 (PTEN) (Takashima et al., 2009; Bian et al., 2012). These
characteristics of activated HSCs and the role of the TME lay the
foundation for exploring the relationship between the hepatic
TME, activated HSCs, and hepatocarcinogenesis. This review
will focus on the mechanisms regulating HSC activation and
how they contribute to fibrosis, cirrhosis and HCC development
(Wright et al., 2014; Coll et al., 2015; Das et al., 2020) and
promising clinical therapies associated with HSCs (Dong et al.,
2018; Li et al., 2020).

THE ROLE OF ACTIVATED HEPATIC
STELLATE CELLS IN HEPATIC FIBROSIS,
CIRRHOSIS, AND PROGRESSION
TO HCC

Hepatic fibrosis is a major risk factor for HCC development.
Furthermore, activation of HSCs is a driver of hepatic fibrosis,
cirrhosis and HCC (Tsuchida and Friedman, 2017). Due to
the lack of effective liver fibrosis treatments, there is a need
to better understand the molecular pathways and mediators
of HSC activation to develop advantageous, targeted therapies
for liver disease. Hepatic fibrosis is a result of chronic
inflammation (post liver injury) characterized by secretion of
excess ECM components, resulting in a wound healing response
that will produce a “scar” in the liver (Friedman, 2008b; Lee
and Friedman, 2011). Chronic inflammation can be induced
by HBV/HCV infection, alcohol abuse, FLD (including non-
alcoholic fatty liver disease and non-alcoholic steatohepatitis)
or other metabolic disorders of the normal liver (Higashi
et al., 2017). During post chronic liver inflammation, HSC
activation supports the development of fibrosis and later
cirrhosis, characterized by liver function impairment, portal vein
hypertension and jaundice (Gines et al., 1987; de Franchis, 2000;
D’Amico et al., 2006). Therefore, preventing the activation and
proliferation of HSCs in cases of hepatic fibrosis has the potential
to delay progression to HCC.

The Role of DNA Methylation in HSC
Activation
Recently, studies have begun focusing on the epigenetic
regulation of HSCs to uncover the complexity of HSC activation
(Tsuchida and Friedman, 2017). The tumor suppressor gene
PTEN is an important negative regulator of HSC activation,
which is silenced through promoter hypermethylation in tumors
(Cairns et al., 1997; Salvesen et al., 2001; Soria et al., 2002; Furuta
et al., 2004; Roman-Gomez et al., 2004; Mirmohammadsadegh
et al., 2006; Wiencke et al., 2007; Tao et al., 2011; van Eggermond
et al., 2011; Bian et al., 2012). Furthermore, the inhibition
of PTEN activity leads to a constitutive activation of HSCs,
which can perpetuate hepatic fibrosis (Bian et al., 2012). In
addition, activated HSCs have been shown to possess altered
DNA methylation and hydroxymethylation marks. For example,
Page et al. (2016) showed that activated HSCs lose their fibrogenic
phenotype when DNA methyltransferase 3a (DNMT3a) is
suppressed in a carbon tetra chloride (CCl4) rat model of liver
fibrosis in vivo. The continued discovery of novel mediators of
HSC activation, including epigenetic regulators, will help better
understand the role of activated HSCs in hepatic fibrosis.

Pro-fibrogenic Cytokines in HSC
Activation During Hepatic Fibrosis
Transforming growth factor beta is one of the key fibrogenic
cytokines that drive hepatic fibrosis and regulate HSC activation
(Fabregat et al., 2016; Tsuchida and Friedman, 2017; Dewidar
et al., 2019). The bona-fide TGFB signaling pathway requires
latent TGFB to be cleaved and activated by thrombospondin
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FIGURE 1 | Activation of quiescent HSCs contribute to a fibrotic liver. In a pre-fibrotic liver, quiescent HSCs in the Space of Disse receive inflammatory signals, such
as Damaged Associated Molecular Patterns (DAMPs) and Complimentary factors (CFs), from nearby hepatocytes and sinusoidal endothelial cells. In response,
HSCs become activated, adopting a myofibroblast phenotype and losing its lipid droplets containing Vitamin A. Activated HSCs induce growth factor receptor
signaling (TGFB, PDGF) and recruit immune cells such as NK cells and tumor associated macrophages (TAMs) from the bloodstream which produce more
inflammatory stimuli. These inflammatory signals stimulate HSCs to secrete excess ECM proteins (ex. Collagen fibers), creating a fibrotic environment.

1 (TSP1). Activated TGFB then binds to TGFB receptor 2
(TGFBR2), inducing phosphorylation of mothers against
decapentaplegic homolog 2 and 3 (SMAD2, SMAD3) which
translocate into the nucleus to regulate downstream gene
expression of pro-fibrotic genes (Breitkopf et al., 2006;

Friedman, 2008a; Liu et al., 2013; Meng et al., 2016; Tsuchida
and Friedman, 2017; Murphy-Ullrich and Suto, 2018). TGFB
can also activate the MAPK p38, ERK, and c-jun N-terminal
kinase (JNK) pathways to regulate HSC activation (Engel et al.,
1999; Hanafusa et al., 1999). Central to liver injury and HSC
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activation is a pathological increase in expression and activation
of TGFB in the ECM (Tsuchida and Friedman, 2017). During
HSC activation, TGFB targets and binds to HSCs, inducing
phosphorylation of SMAD3 to promote production of type I and
II collagen (Breitkopf et al., 2006; Friedman, 2008a). Activated
HSCs also promote increased production of TGFB1 and TSP1
further enhancing the profibrogenic activities of TGFB (Breitkopf
et al., 2005). Moreover, attenuation of TSP1 activated TGFB
can be achieved with a TSP1 antagonist peptide and has been
shown to decrease liver fibrosis in a dimethyl-nitrosamine liver
fibrosis model (Li et al., 2017; Murphy-Ullrich and Suto, 2018),
demonstrating the importance of this relationship. Along with
TGFB, the DNA demethylase tet methylcytosine dioxygenase 3
(TET3) is also upregulated in mouse and human fibrotic livers
(Xu et al., 2020). Xu et al. (2020) established TGFB1 stimulation
could increase TET3 levels along with increased profibrotic gene
expression in LX-2 cells, a human HSC cell line. Furthermore,
TET3 was shown to upregulate the TGFB pathway genes TSP1
and TGFBR2, suggesting a positive feedback loop between TET3
and TGFB1 to promote HSC activation and hepatic fibrosis (Xu
et al., 2020). In addition to TGFB signaling influencing HSC
activation, hepatocyte produced extracellular matrix protein 1
(ECM1) has been shown to suppress TGFB levels and prevent
HSC activation in an in vivo ECM1 knockout mouse model (Fan
et al., 2019). Although TGFB remains a strong mediator of HSC
activation and fibrogenesis, additional profibrogenic cytokines
contribute to this process as well.

Another essential cytokine involved in HSC activation is
PDGF (Tsuchida and Friedman, 2017). PDGF levels are increased
in human cirrhotic livers compared to normal, healthy livers
(Pinzani et al., 1996; Ikura et al., 1997; Stock et al., 2007; Tsuchida
and Friedman, 2017). Upon liver injury in both humans and
rodents, PDGF receptor beta (PDGFRB) expression increases
in HSCs to drive HSC activation, proliferation and migration
(Wong et al., 1994; Borkham-Kamphorst et al., 2004). Pdgf-C,
a member of Pdgf family, is highly expressed on membrane
receptors of hepatocytes in a transgenic Pdgf-c mouse model that
resulted in dynamic liver fibrosis (Wright et al., 2014), suggesting
that HSC activation may include Pdgf-c signaling. Pdgf is further
supported as an effective activator of HSCs through the fibrotic
role of Agrin (Agrn), a secreted proteoglycan induced by Pdgf-
induced HSC activation in HCC in Diethyl nitrosamine (DEN)-
induced HCC Sprague Dawley rat model (Lv et al., 2017). In
this study the authors showed that Pdgf acts as an activator of
the HSCs, which was inhibited by blocking the binding of Pdgf
to its receptor. The authors also demonstrated that Agrin from
activated HSC supernatant increased proliferation, metastasis,
and invasion of SMMC-7721 (a human HCC cell line) and
promoted epithelial to mesenchymal transition (EMT) (Lv et al.,
2017). Overall, this study supports the role of PDGF-induced
HSC activation resulting in fibrosis and HCC.

The matricellular protein CCN2, known for mediating fibrosis
in various organs including the liver (Hall-Glenn and Lyons,
2011; Jun and Lau, 2011; Kodama et al., 2011; Lipson et al.,
2012), has also been shown to activate HSCs and promote
tumor progression via HSC secretion of the IL-6 and STAT3
in vitro (Makino et al., 2018). A potential clinical player in

the cellular crosstalk between HCSs and HCC cells is stroma-
derived fibroblast growth factor 9 (FGF9). Interestingly, a 2020
study conducted by Seitz et al. found that only activated
HSCs expressed FGF9 compared to HCC cells. In HCC tissues,
activated HSC overexpression of FGF9 reduced sensitivity to
therapeutic agents and was associated with poor prognosis (Seitz
et al., 2020), suggesting FGF9 as a potential therapeutic target and
prognostic tool for HCC. Altogether, these findings support the
notion of the growth factors PDGF-C and CCN2 as activators of
HSCs and FGF9 as a potential clinical target for HCC.

Association of Resident Liver
Lymphocytes With Activated HSCs
During Hepatic Fibrosis and Cirrhosis
Pathogenesis of liver fibrosis also involves resident liver
lymphocytes including Type I and Type II Natural Killer T
(NKT), Natural Killer (NK) cells and innate lymphoid cells (ILCs)
(Wang and Zhang, 2019). Specifically, the interaction between
activated HSCs and these hepatic lymphocytes is important
(Wang and Zhang, 2019). The innate role of NKT cells is to
defend against pathogens by recruiting circulating lymphocytes
(Racanelli and Rehermann, 2006). Once activated, NKT cells
can induce HSC activation via production of pro-inflammatory
cytokines and release osteopontin and Hedgehog (Hh) ligands
(Syn et al., 2012; Wehr et al., 2013) to aid in fibrosis development
(Wang and Yin, 2015; Bandyopadhyay et al., 2016). However, it
has been established that NK cells, along with NKT cells, protect
the liver by preventing infection, tumor formation (Racanelli
and Rehermann, 2006) and fibrogenesis (Melhem et al., 2006;
Radaeva et al., 2006) in liver fibrosis mouse models (Muhanna
et al., 2011; Gur et al., 2012; Hou et al., 2012) and HCV patients
in various clinical studies (Glassner et al., 2012; Gur et al., 2012;
Kramer et al., 2012). Furthermore, NK cells have an anti-fibrotic
effect on HSCs by inducing activated HSC apoptosis (Radaeva
et al., 2006). However, this is a temporary effect, and could result
in apoptosis- resistant activated HSCs (Radaeva et al., 2007).
Additionally, type 3 innate lymphoid cells (ILC3s) function as
pro-fibrotic effectors in the liver (Muhanna et al., 2007; Bjorklund
et al., 2016). Through co-culturing experiments with LX-2 cells,
ILC3s promoted fibrogenesis via Interleukin-17A (IL-17A) and
Interleukin-22 (IL-22), resulting in IL-22 inhibition of interferon
gamma (IFNG) to indirectly enhance fibrogenesis (Wang et al.,
2018). These data suggest an important role for resident liver
immune cells in liver fibrosis through interactions with activated
HSCs (Schon and Weiskirchen, 2014). Furthermore, they suggest
the involvement of the innate immune system in relation to HSC
activation in fibrosis; thus, warranting further study of the roles
of activated HSCs in enhancing and suppressing fibrosis.

Even though stimulation of innate immunity has been shown
to have a pivotal role in anti-viral and anti-tumor defenses
in addition to fibrosis suppression, the regulation of innate
immunity during chronic liver injury still needs to be elucidated.
In a CCl4 mouse model, Infg induced NK cell activation was
decreased in late liver fibrosis (advanced scarring) compared to
early fibrosis (minimal scarring) (Jeong et al., 2011). The authors
further demonstrated that the anti-fibrotic roles of NK cells
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are suppressed during advanced livery injury through increased
expression of suppressor of cytokine signaling 1 (Socs1) and Tgfb
(Jeong et al., 2011). This study also showed in vitro evidence of
early activated HSC (4 days co-culture of HSCs and liver NK cells)
induced NK cell activation via natural killer group 2 member D
(NKG2D), whereas this was abolished in intermediately activated
HSCs (8 days co culture of HSCs and liver NK cells) due to
increased levels of TGFB1 and downregulation of NKG2D (Jeong
et al., 2011). These results establish that although NK cells interact
with activated HSCs to mitigate liver fibrosis during chronic liver
injury, this process can be suppressed through increased TGFB
and SOCS1 produced by activated HSCs in vitro.

In a 2017 study, Shi et al. (2017) showed that in liver cirrhosis
patients, activated HSCs interact with purified NK cells through
HSC-derived TGFB regulation of emperipolesis (the presence of
an intact cell within the cytoplasm of another cell). This process
was mediated through TGFB and evidenced by significantly
reduced NK cell emperipolesis when activated HSCs were treated
with an anti-TGFB antibody. The NK cells inside activated
HSCs were also apoptotic as observed through positive terminal
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
staining which indicates DNA fragmentation, a trait of cellular
apoptosis (Kyrylkova et al., 2012). This suggests that activated
HSCs reduce the anti-fibrotic roles of NK cells in vitro through
activated HSC-derived TGFB and programmed death of NK cells
to promote fibrosis (Shi et al., 2017). This study demonstrates
that activated HSC-derived TGFB and NK cells work together to
diminish NK cell anti-fibrotic capabilities and promote fibrosis in
liver cirrhosis patients.

Cellular Senescence of Activated HSCs
During Hepatic Fibrosis
Senescence of activated HSCs has been shown to suppress
liver fibrosis (Hoare et al., 2010; Jin et al., 2016; Nishizawa
et al., 2016). In cancer, cellular senescence is a known tumor
suppressive mechanism (Sager, 1991) activated by oncogenic
stress (Campisi and d’Adda di Fagagna, 2007) and may also
be essential for regulating liver fibrosis and cirrhosis (Tsuchida
and Friedman, 2017). Cancer cell senescence is maintained
by the tumor suppressor proteins p53/p21, p16Ink4a and
retinoblastoma (Rb) (Campisi and d’Adda di Fagagna, 2007;
Collado et al., 2007). Furthermore, transgenic p53−/− mice,
with p53 knocked out specifically in HSCs, that were treated
with CCl4 showed increased fibrosis compared to WT p53
mice. This phenotype indicates that activated HSCs have the
ability to undergo senescence resulting in decreased liver fibrosis
in vivo (Krizhanovsky et al., 2008). This study also revealed
retained fibrotic lesions in p53−/−; Cdkn2a/Arf−/−mice 20 days
post CCl4 treatment, along with increased smooth muscle
actin (Acta2), Tgfb, and Ki67 (marker of proliferative cells)
expression. These findings suggest that activated HSCs during
liver fibrosis can also evade cellular senescence to proliferate and
secrete ECM components to begin developing the hepatic TME
(Krizhanovsky et al., 2008).

HSC activation is one of the first responses to LSEC (liver
sinusoidal endothelial cell) injury in the liver. LSECs serve as a

permeable barrier between hepatocytes and the bloodstream and
are characterized by fenestrations and a disorganized basement
membrane, making them one of the most permeable types of
endothelial cells (DeLeve and Maretti-Mira, 2017; Poisson et al.,
2017). This permeability allows for efficient transport of solutes
and metabolites throughout the liver. In addition, LSECs are
an active contributor to the production of excess ECM proteins
during liver fibrosis (Natarajan et al., 2017). Recent data shows
that removal of senescent LSECs promotes liver fibrosis (Grosse
et al., 2020). Through genetic lineage tracing mouse models,
Grosse, et al. demonstrated that the majority of senescent cells
were vascular endothelial cells, mostly LSECs in liver sinusoids, in
addition to macrophages and adipocytes to a reduced extent. The
authors also showed that both continuous and acute elimination
of senescent cells disrupted blood-tissue barriers resulting in liver
and perivascular tissue fibrosis. Overall, this study establishes that
senescent cells involved in preventing liver fibrosis are primarily
LSECs, rather than hepatic stellate cells (Grosse et al., 2020).
While senescent LSECs serve as a barrier against fibrosis, the
activation, proliferation and transformation of HSCs caused by
liver injury, in addition to their ability to evade senescence once
activated, are important developmental processes that provide
a suitable microenvironment required for fibrosis, cirrhosis and
later HCC development (Lashen et al., 2020).

ACTIVATED HEPATIC STELLATE CELLS
WITHIN THE HEPATIC TUMOR
MICROENVIRONMENT

The interplay between liver tumor cells and the hepatic TME is
crucial to the initiation and progression of HCC (Hernandez-
Gea et al., 2013; Zhou et al., 2019). The TME is defined as
a peritumoral space (Alfarouk et al., 2011; Joyce and Fearon,
2015; Spill et al., 2016) contributing to the acquisition of
various hallmark traits of cancer, including sustained proliferative
signaling and activation of invasion, metastasis, and angiogenesis
(Hanahan and Weinberg, 2011). Furthermore, the TME can be
divided into two major components: (1) cellular and (2) non-
cellular. Activated HSCs are a part of the cellular component
and exhibit essential biological functions such as promotion of
fibrogenesis and ECM remodeling to positively influence HCC
tumorigenesis (Friedman, 2008a; Amann et al., 2009; Coulouarn
and Clement, 2014).

In addition to HSCs, cellular components of the hepatic TME
include stromal hepatocytes, immune cells such as myeloid-
derived suppressor cells (MDSCs) (Fu et al., 2007; Hoechst
et al., 2008), tumor associated macrophages (TAMs) (Budhu
and Wang, 2006; Budhu et al., 2006; Jeong et al., 2011), and
cancer associated fibroblasts (CAFs) (Yin et al., 2019). Non-
cellular components include cytokines such as Interleukin-
6 (IL-6) (Budhu and Wang, 2006; Budhu et al., 2006) and
Interleukin-22 (IL-22) (Jiang et al., 2011), growth factors such
as VEGF (Coulouarn et al., 2012), TGFB (Thompson et al.,
2015), PDGF (Tsuchida and Friedman, 2017), and CCN2
(Makino et al., 2018). Additional non-cellular components
include matrix metalloproteinases (MMPs), their inhibitors
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(Novikova et al., 2017) and proteoglycans (Theocharis et al.,
2010) (Table 1). The following studies will cover the different
roles activated HSCs play in HCC progression through their
interaction with the other cellular and non-cellular components
of the hepatic TME.

Cellular Crosstalk Between Activated
HSCs and Cellular Components of the
Hepatic TME
The hepatic TME consists of various immune cells to create
an immunosuppressed environment in order to maintain HCC
tumor growth (Lu et al., 2019). Activated HSCs contribute
to this immunosuppressed environment by secreting cytokines
which induce MDSC expansion (Maher, 2001; Hui et al., 2004;
Yu et al., 2004; Pan et al., 2008; Gabrilovich and Nagaraj, 2009;
Hsieh et al., 2013). In an orthotopic liver tumor mouse model,
activated HSCs significantly increased regulatory T cell (Treg)
and MDSC expression to benefit HCC growth in the spleen,
bone marrow, and tumor tissues (Zhao et al., 2014). Furthermore,
activated HSCs secrete angiogenic growth factors to form new
vasculature within the TME (Coulouarn et al., 2012; Heindryckx
and Gerwins, 2015). These functions of activated HSCs create
a link to the circulatory system for supplying nutrients to the
tumor. Immune cells may also regulate activation of HSCs
in vitro, demonstrated by Interleukin 20 (IL-20) activation of
HSCs, resulting in upregulation of TGFB1 and type I collagen,
and increased proliferation and migration of activated HSCs
(Chiu et al., 2014). The same study further indicated that these
fibrogenic phenotypes could be attenuated with an anti-IL-20
receptor (IL-20R1) monoclonal antibody, proposing IL-20 as a
significant activator of HSCs and fibrogenesis. Taken together,
activated HSCs may have an important role in promoting an
immunosuppressed and angiogenic hepatic TME to support
aggressive HCC cell growth.

Crosstalk Between Activated HSCs and
Non-cellular Components of the Hepatic
TME
In addition to interacting with other hepatic TME cellular
components, HSCs also respond to the non-cellular components
of the liver TME (Hall-Glenn and Lyons, 2011; Jun and
Lau, 2011; Kodama et al., 2011; Lipson et al., 2012). An
example of such is the response to CCN2 produced from
hepatic tumor cells (Makino et al., 2018). Makino et al.
(2018) demonstrated that elevated CCN2 expression positively
correlated with activated HSCs, indicated by smooth muscle
actin (ACTA2) expression, in both mouse and human
liver tumors. Furthermore, the authors showed that anti-
CCN2 reduced IL-6 production in LX-2 cells and inhibited
STAT3 activation in HepG2 (human HCC cell line) cells
(Makino et al., 2018). This study was the first to establish
HCC-cell-derived CCN2 activates HSCs in the TME, thus,
accelerating the progression of HCC through cytokine
production. These results also support the need for further
exploration of CCN2 and other ECM proteins involved in the
activation of HSCs.

While HSCs respond to growth factors such as CCN2; once
activated, HSCs can also modulate the ECM through secretion
and upregulation of proteins such as MMPs (Lachowski et al.,
2019), which are needed for HCC tumor migration (Scheau
et al., 2019). Studies have shown MMP2 and MMP9 (the most
commonly studied MMPs in HCC EMT) to be important for
the invasive potential of HCC tumors through degradation
and remodeling of collagen in the ECM (Wang et al., 2014;
Sun et al., 2018). Moreover, signaling between FAK and MMP9
is considered to be one of the main pathways that promotes
HCC cell invasion and metastasis (Chen et al., 2010; Jia et al.,
2011). Thus, it is plausible to speculate whether this signaling
pathway is promoted through HSC activation. This hypothesis
was explored by Han et al. (2014), who investigated whether
activated HSCs promote FAK-MMP9 signaling in vitro. First,
elevated numbers activated HSCs were shown to associate
with tumor invasion of the portal vein, advanced tumor node
metastasis staging, and lesser tumor differentiation. Thereafter,
the number of activated HSCs, quantified by cytoplasmic
ACTA2 expression, were positively correlated with the expression
levels of phosphorylated FAK (p-FAK) and MMP9 in HCC.
Furthermore, the authors used a co-culture experiment to
demonstrate the activation of FAK-MMP9 signaling in HCC cells
in the presence of activated HSC conditioned medium and with
co-culture of activated HSCs. Additionally, inhibition of FAK-
MMP9 signaling via small interfering RNA (siRNA) for FAK
(siFAK) abrogated the migratory and invasive effects of activated
HSCs on HCC cells (Han et al., 2014). These data show that FAK-
MMP9 signaling is promoted by activated HSCS and plays a role
in modulating metastasis of HCC following activation of HSCs;
thus, highlighting the crosstalk between tumor cells and activated
HSCs in the hepatic TME.

Micro-RNA Involvement in HSC
Activation in the Hepatic TME
In addition to ECM components such as MMPs and growth
factors, recent advances have emphasized the significant
roles played by micro-RNAs (miRNAs) in the TME (Cheng
et al., 2015). This is demonstrated through the ability of
miRNAs in tumor cells to transform the microenvironment
by sustaining cancer hallmark traits and non-cell-autonomous
signaling pathways (Suzuki et al., 2015). miRNAs are small
non-coding RNAs (20-25 nucleotides in length) that regulate
gene expression by binding to target mRNA transcripts through
a seed sequence at the 5′ end of the miRNA (Bartel, 2004).
In cancer cells, miRNAs are aberrantly expressed compared
to normal cells, with expression patterns varying between
different types of cancer cells (Karube et al., 2005; Lu et al.,
2005; Merritt et al., 2008; Garzon et al., 2009). Additionally,
activation and inactivation of HSCs can be controlled by
profibrogenic and antifibrogenic miRNAs (Tsuchida and
Friedman, 2017). Interestingly, miRNAs have been shown
to possess dual roles as oncogenes and tumor suppressors
in cancer cells (Zhang et al., 2007). The following studies
investigate these dual roles in relation to the activation of HSCs
in the hepatic TME.
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TABLE 1 | Components of the hepatic TME.

Cellular References Non-cellular References

Stromal hepatocytes: connective tissue cells that provide
support to the epithelial cells of the liver

Tahmasebi Birgani and Carloni,
2017

ECM Proteins (Matrix
metalloproteinases, collagens,
proteoglycans, lamins): key players in
the invasive potential of HCC tumors by
modulating the ECM

Novikova et al., 2017

Hepatic stellate cells: mesenchymal cells found in the liver
that contribute to the hepatic TME by proliferating and
promoting fibrosis when activated

Friedman, 2008a; Coulouarn
and Clement, 2014

Growth factors (TGFB, PDGF, CCN2,
VEGF, HGF): signaling proteins that
stimulate the expression pathways of
pro-fibrotic genes; stimulate HSC
activation, proliferation and migration

Coulouarn et al., 2012;
Thompson et al., 2015;
Makino et al., 2018

Immune cells (Ex. Tumor Associated Macrophages and
MDSCs): components of the hepatic TME that interact with
activated HSCs by creating an immunosuppressed
environment promoting HCC tumor growth and
maintenance

Budhu and Wang, 2006; Budhu
et al., 2006; Fu et al., 2007;
Hoechst et al., 2008; Jeong
et al., 2011

Cytokines (IL-6, IL-8, IL-22): small
proteins involved in a range of cell
signaling that help drive fibrosis, HSC
activation, and contribute to
angiogenesis

Chiu et al., 2014; Sevic
et al., 2019

Cancer associated fibroblasts: type of cancer stromal cell
critical to tumorigenesis regulation by possessing the ability
to remodel the ECM and secrete proteins such as cytokines
and VEGF

Yin et al., 2019

Both cellular and non-cellular components cooperate in the hepatic TME to aid in hepatocarcinogenesis.

Oncogenic miRNAs (oncomiRs) derived from the
extracellular vesicles (EV) of HCC cells mediate communication
between HCC cells and activated HSCs (Daugaard et al., 2017).
Interestingly, crosstalk between miRNAs and TME components
is partly mediated by exosomes, a type of EV produced in the
endosome of eukaryotic cells that can transfer DNA, RNA
and proteins to other cells (Zhang et al., 2015; Kosaka, 2016).
Results from Li J. et al. (2019) found that EVs released by HepG2
and Huh7 (human HCC cell line) cells contained elevated
oncomiRs. As a result, activated HSCs released their own EVs
which stimulated HCC invasion, epithelial to mesenchymal
transition (EMT) and activation of the AKT/ERK signaling
pathway (Li J. et al., 2019). This suggests a positive feedback loop
between exosomal oncomiRs of activated HSCs and HCC cells to
promote hepatocarcinogenesis. Moreover, the authors observed
upregulation of three specific oncomiRs: miR-21, miR-221, and
miR-151. These results are further examples of the crosstalk
between HCC cells and activated HSCs creating a pro-metastatic
phenotype (Li J. et al., 2019).

Likewise, miR-1426 is an oncomiR shown to promote
tumorigenesis, metastasis, and migration in multiple cancer types
(Xu et al., 2019). Recently, a miRNA expression microarray
study revealed a robust increase in miR-1246 in HCC cell
lines when co-cultured with activated HSCs (Huang et al.,
2020). These results reflect in vitro evidence that activated
HSCs induce miR-1246 expression in HCC cell lines to
promote metastasis. Moreover, miR-1246 and its target RAR
related orphan receptor alpha (RORA), promoted EMT in vitro
and in vivo in nude mice indicated by enhanced HCC cell
migration, decreased E-cadherin, and increased vimentin protein
expression. As a result of miR-1246 overexpression in PLC cells
(human liver hepatoma cell line), the binding of RORA and
beta-catenin (CTNNB1) in the cytoplasm was increased. This
process was reversed with RORA knockdown, suggesting that
the binding of RORA to beta-catenin prevents beta-catenin

nuclear translocation and activation of the Wnt/beta-catenin
signaling pathway. Furthermore, both miR-1246 and RORA were
effectively used as independent prognostic markers in HCC tissue
(Huang et al., 2020). This data suggests that miR-1246:RORA is
a key component in the tumorigenic influence of activated HSCs
on HCC cells, and that targeting the miR-1246:RORA axis may
slow HCC progression (Huang et al., 2020).

However, miRNAs can also function as tumor suppressors in
cancer cells (Zhang et al., 2007). For example, miRNA-212-3p
has been shown to suppress cancer cell growth in other forms
of cancer such as renal cell carcinoma (Gu et al., 2017) non-
small-cell lung cancer (Tang et al., 2017) and glioblastoma (Tang
et al., 2017). However, the effects, if any, in HCC remained
unclear. Thus, Chen et al. (2019) examined the relationship
between miRNA-212-3p and CCN2 in the hepatic TME. The
authors showed that microRNA-212-3p inhibited proliferation
of HCC cell lines through suppression of CCN2. Additionally,
miR-212-3p was downregulated in HCC cell lines and tissues, and
negatively correlated with vascular invasion and the absence of a
fibrous tumor capsule. This fibrous capsule is formed by host liver
mesenchymal cells, instead of HCC cells, and prevents possible
invasion of HCC to the host liver (Ishizaki et al., 2001). These
findings demonstrate a tumor suppressor role of miRNA-212-3p
through its interaction with CCN2, a significant ECM component
of the hepatic TME. Moreover, results from this study raise the
question of whether microRNA-212-3p also inhibits the CCN2
mediated cytokine production in activated HSCs, given that the
experiments from this study were carried out in HCC cell lines
and tissues only.

Activated HSC Regulation of
Angiogenesis Within the Hepatic TME
The effects of activated HSCs on angiogenesis in HCC have also
been investigated over the past decade. Angiogenesis within the
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TME is essential for tumor progression, metastasis and invasion
(Mittal et al., 2014). Zhu et al. (2015) identified Interleukin-8 (IL-
8) as a contributing factor to angiogenesis in HCC. Interestingly,
IL-8 was highly expressed in HCC stroma and was mainly
derived from activated HSCs rather than from HCC cells.
Furthermore, an IL-8 neutralizing antibody was demonstrated to
suppress tumor angiogenesis in Hep3B cells (a human HCC cell
line) treated with conditioned media from activated HSCs. The
authors also demonstrated similar results in vivo through a chick
embryo chorioallantoic membrane (CAM) assay. Most recently,
Lin et al. observed that activated HSCs are the primary source
of secreted angiopoietin-1 (Ang-1) in human HCC cells in vitro.
This not only describes the promotion of HCC angiogenesis
through activated HSCs and Ang-1 expression, but also opens
the potential of Ang-1 as an anti-angiogenic therapeutic target in
HCC (Lin et al., 2020). These findings identify angiogenic factors
produced by activated HSCs in the hepatic TME to promote
hepatocarcinogenesis.

Intriguingly, a 2019 investigation found that activated HSCs
induced angiogenesis in HCC via upregulation of glioma
associated oncogene 1 (Gli-1), a member of the Hh signaling
pathway (Yan et al., 2017). Furthermore, this study established
that 3,5,4′-trihydroxy-trans-stilbene (trade name: Resveratrol), a
polyphenol compound found in red-wine, grapes, berries and
peanuts and believed to act as an antioxidant, also hindered HCC
progression driven by HSCs through targeting Gli-1. Specifically,
activated HSC induced angiogenesis in HCC via upregulation
of Gli-1 expression, stimulated reactive oxygen species (ROS)
production and increased HCC cell invasiveness. Resveratrol
further abolished activated HSC-stimulated angiogenesis and
suppressed ROS production and IL-6 and C-X-C chemokine
receptor type 4 (CXCR4) expression in HepG2 cells by
downregulating Gli-1 expression (Yan et al., 2017). In a separate
study, Han et al. (2019) also described Resveratrol to possess
tumor-suppressive effects through tumor microenvironment
modulation across several types of cancers including HCC.
This suggests the possibility of Gli-1 as a potential target for
angiogenesis prevention in HCC.

QUIESCENT HEPATIC STELLATE CELLS

While activated HSCs play a major role in the formation of
fibrosis and the hepatic TME, recent studies have also delved
into the role of quiescent HSCs (qHSCs), as they are needed
to maintain a healthy liver (Coll et al., 2015; Das et al., 2020).
Uncovering the mechanisms preserving this phenotype could
increase the scope of HSC targeted therapies.

Coll et al. (2015) conducted a study which examined these
mechanisms and included a miRNA microarray analysis of
isolated human qHSCs. The microarray revealed that HSCs
express 259 miRNAs. In contrast, when HSCs were activated
in vitro, 212 of these miRNAs were upregulated and the other
47 miRNAs were downregulated (Coll et al., 2015) suggesting
a role for miRNAs in maintenance of qHSCs. Furthermore, the
interactions between the miRNA target genes in qHSCs were
also associated with HSC activation. Specifically, miRNA-192 was

chosen for further in vivo study due to having 28 target genes
in qHSCs and demonstrating decreased expression in cirrhotic
liver samples compared to healthy samples. To elucidate the role
of miRNA-192 in qHSCs in vivo, HSCs were isolated from two
liver fibrosis mouse models and showed decreased miRNA-192
expression compared to healthy mouse HSCs. Furthermore,
miRNA-192 overexpression resulted in inhibited Tgfb1 signaling
and Pdgf-induced HSC migration in primary mouse HSC cells.
This data supports miRNA-192 as a regulator of qHSCs through
suppressing target genes needed for HSC activation (Coll et al.,
2015). Thus, these findings support additional study into the
miRNA-192 targeted genes involved in HSC activation to increase
the scope of HSC targeted therapies.

Further supporting the significance of qHSCs, Das et al.
demonstrated in vitro qHSC induction of cancer cell apoptosis
via a caspase-independent mechanism (Das et al., 2020). This
mechanism was established in rat hepatoma cells treated
with qHSC conditioned media. The study determined that
qHSC induction of apoptosis required increased apoptosis-
inducing factor (AIF) expression, nuclear localization and DNA
fragmentation, and resulted in eventual cell death (Das et al.,
2020). This data illustrates the ability of qHSCs to increase
toxicity and sensitivity to established chemotherapeutic agents,
such as doxorubicin (Das et al., 2020), and could lead to
augmentation of therapeutic strategies already in existence to
increase their success.

CLINICAL IMPLICATIONS AND
RELEVANCE

Incidence of HCC in the U.S. has increased substantially in
the past two decades (Singal et al., 2019; Das et al., 2020; Wu
et al., 2020), and the American Cancer Society estimates 32,107
new cases of HCC will be diagnosed in 2020 along with 22,620
deaths (Society, 2020). Additionally, HCC incidence is three
times higher in men than in women and the highest incidence
is observed amongst patients greater than 70 years old with
a steep mortality observed in patients ages 55–69 and older
(Beal et al., 2017; Society, 2020). Unfortunately, over 80% of
HCC patients present in advanced stages are not amenable to
potentially curative surgical therapy, which combined with a
paucity of effective systemic therapies, leads to a high morbidity
and mortality rate (Zhou et al., 2018; Li D. et al., 2019). Ongoing
investigation has focused on the process of tumor progression
and potential therapeutic targets to create clinically relevant
treatments for patients with HCC. Implicated in this research is
the critical role of activated HSCs, from which 80–90% of HCC
cells develop (Shiraha et al., 2020).

Metformin
As mentioned previously, TGFB and PDGF induce HSC
activation to contribute to the cellular crosstalk between
tumor and stromal cells (Zhang and Friedman, 2012; Tsuchida
and Friedman, 2017). GDF15, a member of the TGFB
superfamily, is a biomarker for stress responses as a result of
cancer treatment damage such as hypoxia and chemotherapy
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FIGURE 2 | The relationship amongst HCC tumor cells, tumor angiogenesis and HSCs in the hepatic TME. Quiescent HSCs are activated by numerous factors such
as liver damage, inflammation, PDGF and TGFB signaling, hepatitis and viral infection. Additionally, HSC activation can be epigenetically regulated by demethylation
of the tumor suppressor PTEN and IL-20 activation of HSCs via upregulation of TGFB1. Activated HSCs go on to produce ECM proteins and alter the ECM
accompanied by proteoglycans and VEGF. Cytokines such as IL-6 are released which promote HCC tumor cell proliferation. CCN2 produced from HCC cells can
activate HSCs, in contrast, CCN2 is inhibited through the oncogenic miRNA (oncomir) miR-212-3p which decreases HCC cell invasion in vitro. Other oncomirs
secreted by HCC extracellular vesicles can regulate signaling between HSCs and HCC cells. In addition, IL-8, MMP-9, and Ang-1 contribute to tumor-associated
angiogenesis. These factors allow for HCC tumor proliferation, invasion, and metastasis.

(Kelly et al., 2009; Corre et al., 2013) and may be a clinically
relevant target for HCC. Common liver cancer therapy
utilizes transarterial chemoembolization (TACE) that involves

chemotherapy embolization-induced hypoxia to damage HCC
cells; however, this therapy also induces stress in the surrounding
HCC tissue (Dong et al., 2018). As a result of the intense
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cellular stress, GDF15 is secreted by the treatment-damaged
HCC cells, and may have the ability to promote fibrosis
through activated HSCs (Dong et al., 2018). To elucidate this
process, Dong et al. (2018) demonstrated that HCC cells under
“TACE-like” conditions showed increased levels of GDF15 via
activation of the p38 MAPK, ERK1/2 and JNK pathways.
Metformin, a common FDA approved drug, is known to target
the JNK/p38MAPK pathway (Wu et al., 2011). Dong et al.
(2018) further illustrated that in activated HSC cells, GDF15
promoted HSC proliferation and collagen production indicated
by increased type I collagen protein levels cellular 5-Ethynyl-
2′-deoxyuridine (Edu) incorporation, a thymidine analog which
incorporates into the DNA of dividing cells (Salic and Mitchison,
2008). Conversely, Metformin was able to target the JNK pathway
and suppress GDF15 expression resulting in decreased collagen
synthesis and proliferation of activated HSCs in vitro and in vivo
(Dong et al., 2018). These results suggest an opportunity to
slow the progression of HCC by targeting activated HSCs with
Metformin, a widely available drug.

Sorafenib
Another FDA approved drug, Sorafenib, is a multi-target anti-
angiogenic tyrosine kinase inhibitor (Hasskarl, 2014). Sorafenib
was the first systemic therapy approved for treatment of HCC
after it was shown to increase mean survival time by 2–3 months
(Llovet et al., 2008; Cheng et al., 2009). A recently published
study suggested that a novel system of biodegradable dendritic
polymeric nanoparticles loaded with Sorafenib enhanced HCC
therapy (Li et al., 2020). Through the MTT assay, this system
induced higher cytotoxicity of HCC cells than a PEG-conjugated
nanoparticle system containing Sorafenib and free-Sorafenib
in vitro. In addition, tumor growth was significantly subdued in
mice with HepG2 xenografts, with minimal side effects (Li et al.,
2020). Moreover, a previous nanoparticle related study published
in 2018 demonstrated that combined delivery of Sorafenib with a
mitogen activated protein kinase (MEK) inhibitor using C-X-C
motif chemokine receptor 4 (CXCR4)-targeted nanoparticles
reduced hepatic fibrosis and prevented tumor development
(Sung et al., 2018). This study further assessed the effects of
Sorafenib on activated HSCs and established that combined
delivery of Sorafenib and a MEK inhibitor through CXCR4-
targeted nanoparticles prevented ERK activation in activated
HSCs and had anti-fibrotic effects in the CCl4-mouse model
(Sung et al., 2018).

Bevacizumab
Continued interest in the critical role of activated HSCs in the
regulation of angiogenesis will likely increase in light of recently
released preliminary results of the IMbrave150 trial which
challenges the longstanding paradigm of first line Sorafenib
for advanced unresectable HCC. This study was a phase III
randomized control trial of 336 patients who received either
atezolizumab (PD-L1 inhibitor) plus Bevacizumab (VEGF-A
inhibitor) or Sorafenib. Preliminary results from the trial
demonstrated a significant overall survival benefit, with patients
in the combination arm not reaching a median survival versus
a median survival of 13.2 months with Sorafenib (p < 0.0001)

(Cheng et al., 2019). Bevacizumab has been shown in vivo to
decrease expression of profibrogenic genes TGFB and ACTA2, as
well as decreasing overall HSC activation, altogether attenuating
hepatic fibrosis in a CCl4-rat model (Huang et al., 2013).
Although final results of the study have not yet been published,
it is widely expected to be practice changing and highlights the
importance of both the immune and angiogenic crosstalk in the
hepatic TME and HCC progression.

Potential Alternative Therapies
Finally, there is an interest in therapeutically targeting the
cytokine-HSC interaction. An IL-8-neutralizing antibody (Zhu
et al., 2015) and an anti-CCN2 neutralizing antibody which
lead to reduced IL-6 production (Makino et al., 2018)
have both shown therapeutic potential in suppressing tumor
progression of HCC in vitro and in vivo with a xenograft
murine model. These neutralizing antibodies, which both
target interleukin cytokines, are potential clinical therapies
focusing on the relationship between activated HSCs and
TME. Additionally, a 2015 study established the angiogenin
inhibitor neomycin as a potential HCC therapy. This study
demonstrated that neomycin decreased HSC activation with
conditioned media or recombinant angiogenin in vitro (Barcena
et al., 2015). Furthermore, neomycin administration reduced
tumor growth of HepG2-LX2 cells co-injected into mice,
suggesting that angiogenin secretion by HCC cells favors
tumor development via induction of HSC activation and ECM
remodeling. These findings not only suggest that targeting
angiogenin signaling may be of potential relevance in HCC
management, but also establishes neomycin as a potential clinical
treatment for HCC.

DISCUSSION

Hepatic stellate cells activation is the central event of
hepatic fibrosis and the development of cirrhosis and HCC.
A fundamental gap in knowledge is the crosstalk between
activated HSCs, the hepatic ECM and HCC tumor cells. Recent
studies have focused on targeted molecular therapeutic strategies
for liver fibrosis and cirrhosis (van der Heide et al., 2019).
Thus, utilizing multiple biomarkers may lead to optimized early
detection of HCC (Ismail and Pinzani, 2011; Tuohetahuntila
et al., 2017). Data published in 2017 suggested a new therapeutic
option to target and increase NK activity in patients with chronic
hepatitis infection preceding hepatic fibrosis (Shi et al., 2017).
Other recent studies discussing potential targeted therapies
such as PDGF-C and TGFB are under exploration. Ultimately,
elucidating the mechanistic links between activated HSCs
through all stages of fibrosis and cirrhosis will lead to a better
understanding of HCC tumorigenesis.

Due to the intricate relationship between the hepatic TME,
tumor development and HCC progression, recent studies have
begun focusing on the role of activated HSCs, one of the
prominent factors involved in the hepatic TME. The hepatic
TME provides a niche which includes both cellular components,
such as HSCs and non-cellular components, being the ECM and
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ECM proteins. As activated HSCs become ECM producing cells
during liver fibrosis, secreted chemokines, cytokines, and growth
factors prime the overall TME for supporting HCC proliferation.

Owing to the complexity of the TME, it is difficult to
therapeutically target one pathway as they all have functional
redundancies; however, targeting a pivotal cellular component
of the hepatic TME, such as activated HSCs, may be more
feasible. Pertinent to this review, studies focusing on the
role of activated HSCs in the TME could lead to activated
HSC targeted therapies that may affect activated HSC related
factors such as TGFB, PDGF, MMP-9, CCN2, and oncogenic
miRNAs. Other targets that warrant further study and serve as
promising areas for therapeutic exploration include IL-8, Ang-
1, and Gli-1. A proposed schematic illustrating the relationship
between activated HSCs in the hepatic TME and HCC is shown
in Figure 2.

Collectively the literature covered in this review outline the
significance of activated HSCs in the hepatic TME. In addition
to cellular crosstalk within the TME, activated HSCs play a
crucial role in HCC progression through the TME’s non-cellular
components. These recent studies provide examples of cytokines,
growth factors, ECM components and microRNAs, which are all
crucial non-cellular components of the hepatic TME involved in
the relationship between activated HSCs and HCC development.

This review also concentrated on clinical implications
that highlight potential therapies for HCC through targeting
activated HSCs and their relationship with HCC cells. In
addition to enhancing the efficacy of current therapeutic agents

such as Metformin, Sorafenib, and Atezolizumab/Bevacizumab,
potential alternative therapies include neomycin and neutralizing
antibodies against IL-22 and CCN2.

A deeper understanding of how the hepatic TME, most
notably activated HSCs, interacts with the primary tumor and
non-tumor cells will propel advances in effective diagnostic and
prognostic tools. Ongoing investigations are imperative in order
to develop more effective treatments for HCC and augment
current therapies to increase their success.
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