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Circulating tumor cells (CTCs) are accessible by liquid biopsies via an easy blood draw.
They represent not only the primary tumor site, but also potential metastatic lesions, and
could thus be an attractive supplement for cancer diagnostics. However, the analysis
of rare CTCs in billions of normal blood cells is still technically challenging and novel
specific CTC markers are needed. The formation of metastasis is a complex process
supported by numerous molecular alterations, and thus novel CTC markers might be
found by focusing on this process. One example of this is specific changes in the
cancer cell glycocalyx, which is a network on the cell surface composed of carbohydrate
structures. Proteoglycans are important glycocalyx components and consist of a protein
core and covalently attached long glycosaminoglycan chains. A few CTC assays have
already utilized proteoglycans for both enrichment and analysis of CTCs. Nonetheless,
the biological function of proteoglycans on clinical CTCs has not been studied in
detail so far. Therefore, the present review describes proteoglycan functions during
the metastatic cascade to highlight their importance to CTCs. We also outline current
approaches for CTC assays based on targeting proteoglycans by their protein cores or
their glycosaminoglycan chains. Lastly, we briefly discuss important technical aspects,
which should be considered for studying proteoglycans.

Keywords: cancer, circulating tumor cells, diagnostic, glycosaminoglycan, liquid biopsy, metastasis,
proteoglycan, VAR2CSA

INTRODUCTION

During cancer progression, metastatic spread occurs when cancer cells disseminate from the
primary tumor and travel to a distant site to form a metastasis (Micalizzi et al., 2017). This can
emerge through three major routes: the blood circulation, the lymphatic system, or via serosal or
mucosal surfaces (Fidler, 1978). However, cancer cell dissemination through the blood is thought
to be the main route of metastasis (Lambert et al., 2017), and the subset of cancer cells that have
entered the blood circulation is named circulating tumor cells (CTCs). Intravasation of CTCs
into the blood stream is believed to be one of the rate-limiting steps for metastasis formation
and can occur through either an active invasion or passive shedding of cells from the tumor
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(Cavallaro and Christofori, 2001; Bockhorn et al., 2007; van
Zijl et al., 2011). Only a minority of cancer cells reaching the
blood circulation manages to survive shear stress, escape immune
surveillance, avoid detachment-induced cell death, extravasate at
the distant site, and finally establish a metastasis (Massague and
Obenauf, 2016). Thus, the process of metastasis is both a complex
and inefficient process (van Zijl et al., 2011; Reymond et al., 2013).

In addition to representing the primary tumor, CTCs have
also been shown to exit from metastatic lesions (Kim et al.,
2009). Such cells have the potential to travel back to the
primary tumor site (called tumor self-seeding) or create another
metastasis (Mentis et al., 2020). Therefore, CTCs could represent
both the primary tumor and potential metastatic lesions (Kim
et al., 2009), making CTC analyses highly relevant even years
after surgical removal of the primary tumor. Hence, CTC
analyses could provide important information about disease
progression and relapse. Furthermore, molecular analyses of
CTCs including mutational profiling, could provide the basis for
personalized therapies in the future (Greene et al., 2012). Thus,
CTCs are currently evaluated for clinical diagnostics. However,
CTC analysis remains technically challenging, not only due to
the rarity of CTCs among billions of normal blood cells, but
also due to their inherent high degree of cellular plasticity
complicating the choice of detection markers (Alix-Panabieres
et al., 2017). Accordingly, CTC enrichment and detection
strategies must be based on highly specific biomarkers to
achieve the necessary assay specificity and sensitivity. Moreover,
targeting a broader CTC population would be beneficial to ensure
that the liquid biopsy better reflects the heterogenic cancer
cell population.

As a part of discovering novel CTC targets, many strategies
focus on proteins known to play an active role in metastatic
seeding. Although solid tumors differ in their metastatic
patterns, they share certain mechanistic similarities for metastasis
formation, which are summarized as the metastatic cascade
(Figure 1) (de Groot et al., 2017; Lambert et al., 2017; Riggi et al.,
2018). Notably, the majority of steps in this process concerns
the interaction between the cancer cells and the surrounding
extracellular matrix (ECM). Therefore, novel clinically relevant
CTC targets may be discovered within the pericellular layer called
the glycocalyx.

The glycocalyx is a thick network of carbohydrates bound
to glycoproteins, glycolipids, and proteoglycans (Figure 2A;
reused from Okada et al., 2017). It is present on cell surfaces
throughout the entire human body and constitutes a physical
barrier between the cell and the surrounding microenvironment
(Tarbell and Cancel, 2016). The glycocalyx plays a crucial
role for receptor–ligand interactions of cancer cells and
their surroundings, enabling migration as well as intra- and
extravasation. Furthermore, the composition of the glycocalyx
is thought to influence the transportation and survival of
CTCs in the bloodstream (Mitchell and King, 2014). However,
very few studies have investigated the glycocalyx of CTCs.
At present, it is best studied in endothelial cells, where it
serves as a physical and electrostatic barrier as well as a
mechanotransducer toward other cells, the extracellular matrix
(ECM), or shear forces of the blood (Reitsma et al., 2007;

Butler and Bhatnagar, 2019). To convey signaling, growth
factors, chemokines, and other interaction partners have to
navigate through this dense structure. The glycocalyx, which
extends beyond the length of most surface receptors, has a
dual role in signaling by creating a physical hindrance for
ligand receptor interactions or by promoting binding once
interaction partners are in close proximity to each other (Kuo
et al., 2018). Moreover, certain glycocalyx components are
involved in chemokine storage and oligomerization, which
strongly modulates their signaling strength (Salanga and Handel,
2011). Therefore, glycocalyx changes can have various effects on
cellular behavior and, not surprisingly, cancer cells show specific
alterations in their glycocalyx.

The cancer cell glycocalyx is a highly dynamic structure
from which most of the components have been linked to
the acquisition of oncogenic phenotypes (Daniotti et al., 2015;
Buffone and Weaver, 2020). For instance, aberrant glycosylations
including hypersialylation support immune evasion mechanisms
(Pearce and Läubli, 2016). Moreover, increased expression of
bulky glycoproteins like mucin-1 has been linked to aggressive
cancers (Paszek et al., 2014; Barnes et al., 2018) and associated
with poor survival outcome in patients (Kufe, 2009). This might
be explained by the bulkiness of the mucin-1 ectodomain shaped
by numerous glycosylations, which facilitates integrin clustering,
cell signaling, and cell proliferation (Paszek et al., 2014; Woods
et al., 2017; Kuo et al., 2018). Naturally, mucin-1 is of interest as a
target for therapy (Pillai et al., 2015), due to its high involvement
in cancer. Likewise, CTCs were found to express high mucin-1
levels (Paszek et al., 2014), and mucin-1 has also been explored
for CTC capture and detection (Muller et al., 2012; Strati et al.,
2013; Schehr et al., 2016).

Another important component of the glycocalyx are
proteoglycans (Figure 2B) with multiple implications in
metastatic dissemination of cancer cells and tumor cell growth
(Iozzo and Sanderson, 2011; Vitale et al., 2019). Proteoglycans
can be secreted into the ECM or located intracellularly as well
as on the cell surface either directly embedded in the plasma
membrane or anchored by a glycosylphosphatidylinositol
(GPI)-linker (Iozzo and Schaefer, 2015). Proteoglycans consist
of two functional units: protein core and glycosaminoglycan
(GAG) chains (Walimbe and Panitch, 2019). Most commonly,
the assembly of GAG chains occur from a tetrasaccharide linker
region covalently attached to serine residues within the protein
core (Esko and Zhang, 1996). The GAG family is classified by
their chemical composition and includes chondroitin sulfate
(CS), dermatan sulfate (DS), keratan sulfate (KS), heparan sulfate
(HS), and hyaluronic acid (HA) (Figures 2C,D) (Toole, 2004;
Bulow and Hobert, 2006). In general, GAGs consist of long
linear repeats of disaccharide units consisting of hexuronic
acids and hexosamines. The hexuronic acid epimers comprise
D-glucuronic acid (GlcA) for CS/HA and L-iduronic acid
(IdoA) for DS, whereas the hexosamine units consist of an
N-acetyl-D-glucosamine (GlcNAc) for HS/KS/HA, and an
N-acetyl-D-galactosamine (GalNAc) for CS/DS (Schaefer and
Schaefer, 2010; Ghiselli and Maccarana, 2016; Pomin and
Mulloy, 2018). The structures of GAGs are extremely diverse, as
their synthesis in the Golgi apparatus is not based on a precise
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FIGURE 1 | Schematic overview of the metastatic cascade. (1) Cancer cells start to proliferate uncontrolled and (2) tumor angiogenesis is mandatory to support
continued tumor growth, already early during carcinogenesis. (3) The process of epithelial-mesenchymal transition increases the migration and invasion capacity of
cancer cells. (4) Cancer cells intravasate into the blood circulation and (5) are then called circulating tumor cells (CTCs). CTCs are easily accessible by liquid biopsies
and are currently investigated as tool for cancer diagnostics and surveillance. (6) A subpopulation of these CTCs has the potential to extravasate and (7) form
metastasis in secondary organs. Clearly, the metastatic process is very complex and many of these steps are interconnected. Please refer to the main text for details
and references.

template, but on a redundant network of enzymes that seems
to be regulated based on tissue and cell types (Dick et al., 2012;
Mikami and Kitagawa, 2013; Chen Y. H. et al., 2018).

Besides the variation in the monosaccharide composition,
the molecular diversity of GAGs also results from varying
polymer lengths and extensive post-translational modifications
such as sulfations and epimerizations along the chain (Bulow
and Hobert, 2006). GAG sulfation patterns often determine their
biological function and serve as specific recognition motifs for
a wide variety of growth factors, cytokines, chemokines, and
pathogens (Xu and Esko, 2014; Mizumoto et al., 2015; Pinho and
Reis, 2015). Therefore, alterations in the GAG composition of
proteoglycans in cancers have received a lot of interest (Sweet
et al., 1976; Chandrasekaran and Davidson, 1979; De Klerk
et al., 1984). A well-studied example is the change in sulfation
patterns of GAGs, which likely depends on the specific cancer
type. Some studies have reported high expression of CS 4-O-
sulfotransferases in both ovarian and breast cancers, while a
study on cancerous lung tissues found elevated 6-O-sulfated
CS, compared to nonmalignant tissue (Cooney et al., 2011;
Oliveira-Ferrer et al., 2015; Li et al., 2017). Similarly, various
HS sulfotransferases have been found upregulated in different
cancers. These include 6-O-sulfotransferases in ovarian and
colorectal cancer; 3-O-sulfotransferases in breast and pancreatic

cancer; along with N-deacetylase and N-sulfotransferases in
hepatocellular carcinomas (Tatrai et al., 2010; Song et al., 2011;
Hatabe et al., 2013; Cole et al., 2014; Vijaya Kumar et al., 2014).
Moreover, several studies have reported increases in CS quantity
or in expression of CS polymerization genes in malignant tissues,
suggesting that CS polymers are pro-tumorigenic (Momose et al.,
2016; Li et al., 2017; Hou et al., 2019).

Interestingly, some proteoglycans may be modified with
different GAG types simultaneously, as seen for syndecans, which
can carry both CS/DS and HS, dependent on the structure
of the ectodomain (Kokenyesi and Bernfield, 1994; Iozzo
and Schaefer, 2015). Similarly, the HA-binding proteoglycan,
versican, undergoes alternative splicing of exons encoding
the GAG-attachment region resulting in altered GAG display.
Notably, expression of distinct versican isotypes was shown to
facilitate cancer progression in multiple cancer types (Dours-
Zimmermann and Zimmermann, 1994; Theocharis et al., 2015;
Zhangyuan et al., 2020). The protein cores of proteoglycans
are, however, not just scaffolds for GAG extension, since they
also directly bind ligands and mediate intracellular signaling in
GAG-independent manners.

In contrast to the rest of the GAGs, HA stands out by not
being covalently attached to a protein core (Figures 2B,D).
Instead, HA is synthesized as an unmodified polysaccharide
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FIGURE 2 | Schematic overview of proteoglycans in the glycocalyx. (A) The glycocalyx is a dense network of carbohydrates on the cell surface, here exemplified on
top of the endothelium. This transmission electron microscopic image with lanthanum nitrate staining was reused from Okada et al. (2017) under CC BY 4.0 license.
(B) The thick carbohydrate layer on the cell surface extends beyond the length of membrane proteins like integrins. One important glycocalyx component are
proteoglycans, which consist of a protein core (blue) and covalently attached glycosaminoglycans such as heparan sulfate (HS; in red) or chondroitin sulfate (CS; in
yellow). Depicted are some proteoglycans, which are mentioned and discussed throughout the review like chondroitin sulfate proteoglycan 4 (CSPG4). Hyaluronic
acid (HA; in green) is another important glycosaminoglycan component in the glycocalyx, but is distinct through the lack of a protein core. Hyaluronic acid is attached
to the cell surface via interactions with its receptors like CD44, which is itself a proteoglycan. Other glycocalyx components like glycoproteins are not shown due to
abstractification. Depiction of the disaccharides units for (C) glycosaminoglycans attached to proteoglycans (keratan sulfate/KS, heparan sulfate/HS, dermatan
sulfate/DS, and chondroitin sulfate/CS) and (D) of hyaluronic acid (HA), which is non-covalently attached to its receptors. Glycosaminoglycans can be subjected to
further modifications, such as sulfation or epimerization, which is not shown for simplicity. Please refer to the main text for details and references.

at the plasma membrane, where it is extruded from the cell
surface and cleaved off into the ECM (Weigel and DeAngelis,
2007; Itano, 2008). In most cells, HA is an abundant structural
component of the glycocalyx, where it interacts with receptors
and surface proteoglycans via their hyaluronan-binding motifs

and regulates the viscosity of the glycocalyx by its ability to
retain water (Toole, 2001, 2004). Upon binding, HA triggers
activation of a range of signaling pathways involved in cell
proliferation, differentiation, motility, and adhesion, thereby
influencing processes such as development, tissue homeostasis,
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and carcinogenesis (Turley et al., 2002; Toole, 2004; Liu et al.,
2019). Although HA is extensively involved in cancer, it will
not be discussed in detail throughout this review, as it is not
considered a proteoglycan due to its lack of a protein core.

Altogether, proteoglycans compose a highly heterogeneous
group of proteins that diverge by structural alterations of the
protein core as well as by differences in their GAGs with regard to
chain number, type, length, and post-translational modifications.
Notably, proteoglycans are important integrators for cell
signaling events with direct implications for carcinogenesis and
cancer progression (Iozzo and Sanderson, 2011; Pinho and Reis,
2015; Nikitovic et al., 2018). In spite of this, the functions
of proteoglycans and their GAGs in relation to CTCs are
currently understudied. Therefore, this review will highlight
examples of proteoglycans involved in the metastatic cascade
with potential links to CTC biology. More specifically, we
will discuss how proteoglycans play active roles in cancer
cell proliferation, migration, survival, plasticity, and invasion
with a dedicated focus on the function of both the protein
core and the GAG chains. Finally, we provide an overview of
proteoglycans that are currently evaluated for CTC technologies
and briefly highlight some of the technical aspects to consider
when studying proteoglycans.

PROTEOGLYCANS IN THE METASTATIC
CASCADE

Cancer Cell Proliferation
Cancers show deregulation of their cell proliferation by
various mechanisms. Proteoglycans can influence cell growth by
interacting with growth factors, either via their core proteins or
through their GAG chains, as observed for HS chains of heparan
sulfate proteoglycans (HSPGs) (Knelson et al., 2014). Enzymes
modifying GAGs may hence influence tumor growth (Morla,
2019) as demonstrated by sulfatases interfering with growth
factor signaling through HS desulfation (Ai et al., 2003; Peterson
et al., 2010; Vicente et al., 2015).

However, proteoglycans also influence tumor growth
by GAG–independent mechanisms. The transmembrane
chondroitin sulfate proteoglycan 4 (CSPG4) has been shown
to positively regulate cancer cell proliferation in various cancer
entities (Wang et al., 2011; Jamil et al., 2016; Hsu et al., 2018)
and is currently under investigation for CTC capture and
identification, as described in detail later. Studies have found that
CSPG4 is involved in growth signaling by interaction through
both its cytoplasmic domain and ectodomain (Yang et al.,
2009; Stallcup, 2017). Through the extracellular part, CSPG4
potentiates the mitogen-activated protein kinase (MAPK)
cascade by high-affinity, largely GAG-independent binding
of growth factors, which are thus likely presented to their
cognate receptors by CSPG4 (Nishiyama et al., 1996; Goretzki
et al., 1999; Stallcup, 2002; Price et al., 2011). In glioma cell
models, phosphorylation of the cytoplasmic CSPG4 domain
induced proliferation, which was mediated by interaction with
integrins (Makagiansar et al., 2007; Stallcup, 2017). Furthermore,
CSPG4-mediated activation of one of the same integrins induced

chemoresistance and survival in tumor cells (Chekenya et al.,
2008). Thus, CSPG4 is an example of a proteoglycan positively
regulating growth and survival via its protein domain.

The proteoglycan glypican-3 (GPC3) has also been shown
to increase cell proliferation. GPC3 influence several central
signaling pathways in hepatocellular carcinoma (Kolluri and Ho,
2019) and is also evaluated for CTC capture as described later.
GPC3 and other glypicans are GPI-anchored and known to carry
HS chains (Filmus et al., 2008; Yoneda et al., 2012), but were
also demonstrated to carry CS chains (Chen and Lander, 2001;
Toledo et al., 2020). Their GAG chains are located close to
the cell membrane due to their proximity to the C-terminus,
which is thought to be critical for their interaction with surface
receptors (Filmus et al., 2008). GPC3 overexpression increased
cell proliferation in vitro and in vivo for liver cancer cells by
enhancing Wnt signaling (Figure 3) (Capurro et al., 2005).
Mutagenesis of the GAG attachment site in GPC3 revealed that

FIGURE 3 | Glypican-3 signaling supports Wnt signaling and hepatocellular
proliferation. Glypican-3 (shown in blue) can carry two glycosaminoglycan
chains of heparan sulfate (HS; in red) or chondroitin sulfate (CS; not shown). It
has been determined that these glycosaminoglycan chains are essential for
interaction with Frizzled proteins, the Wnt receptors, but not for Wnt ligand
binding. The ternary complex of glypican-3, Frizzled, and Wnt ligand becomes
endocytosed as part of canonical Wnt signaling. This leads to nuclear
accumulation of β-catenin and subsequent gene expression changes,
stimulating cell proliferation. Details and references are given in the main text.
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the HS GAGs were not essential for binding of Wnt ligands
(Capurro et al., 2005). Supporting this, the Wnt binding site on
GPC3 has recently been located to a hydrophobic groove, which
works independently of GAG chains (Li et al., 2019). However,
the GAG chains of GPC3 are essential for direct interaction
with the Wnt receptors, the Frizzled proteins (Capurro et al.,
2014). Upon Wnt stimulation a ternary complex is formed and
endocytosed (Capurro et al., 2014). Generally, endocytosis of
Wnt signaling complexes seems to be important for canonical
Wnt signaling with final stabilization and nuclear accumulation
of β-catenin and subsequent gene expression changes (Brunt
and Scholpp, 2018). In addition, this signaling axis could
be a potential therapeutic target for hepatocellular carcinoma
based on a monoclonal antibody recognizing the HS chains of
GPC3 (Gao et al., 2014). Overall, it was suggested that GPC3
works as a bridging protein between Wnt and its receptor
thereby inducing cell proliferation (Li et al., 2019). The exact
interaction dependencies could rely on the expression levels
of all three partners (Wnt ligands, Wnt receptors, and GPC3)
(Li et al., 2019).

However, proteoglycans can also act as negative regulators of
cancer biology. One example for this is decorin, which is modified
with a single CS or DS side chain. Decorin can act as an inhibitor
of cell proliferation by hampering growth signaling. This
repression is thought to occur through growth factor sequestering
as well as receptor internalization and degradation, mediated by
binding to the decorin core protein (Jarvinen and Prince, 2015).
For example, de novo expression of decorin in breast cancer
cell lines suppressed proliferation and anchorage-independent
growth (Santra et al., 2000). Consistently, 30% of decorin-
knockout mice formed spontaneous intestinal tumors (Bi et al.,
2008), highlighting its potential role as tumor suppressor.

To sum up, proteoglycans appear to have a multi-facetted and
important role in cancer cell proliferation by diverse mechanisms,
which can vary across different cancer types. When CTCs reach
the metastatic site, they often go into an inactive dormancy
state (Sosa et al., 2014). Reactivation of cell proliferation is
therefore an important factor for establishment of clinically
relevant metastatic lesions, in which proteoglycans are actively
involved (Elgundi et al., 2019) and which will also be discussed
later in more detail.

Angiogenesis in Cancer
Oxygen supply is essential for cells and their metabolism. Ex vivo
measurement on xenografts revealed that oxygen perfuses only
to around 100 µm deep into the tumor tissue (Olive et al., 1992).
Therefore, cancer cells must secure sustained blood supply at an
early stage, which can happen by different mechanisms (Xu et al.,
2016; Lugano et al., 2020). Several proteoglycans are involved
in the complex process of tumor angiogenesis (Iozzo and
Sanderson, 2011; Chiodelli et al., 2015). Interestingly, increased
vascularization could be observed already in premalignant lesions
(Menakuru et al., 2008), possibly explaining how CTCs can
be shed already from early stage cancers (Husemann et al.,
2008; Stott et al., 2010; Rhim et al., 2012; Zhang et al., 2014;
Tsai et al., 2016; Murlidhar et al., 2017). Studies on early
cancer cell dissemination are of high clinical importance as

it enables the use of CTCs in screening programs for early
cancer detection.

One central molecule for angiogenesis is the vascular
endothelial growth factor (VEGF) (Ferrara et al., 2003), which has
been linked to different proteoglycans as for example biglycan.
Cancer cells have been shown to overexpress biglycan (Zhu et al.,
2013; Hu et al., 2014; Andrlova et al., 2017; Jacobsen et al., 2017),
which has two potential GAG attachment sites carrying either CS
or DS chains (Valiyaveettil et al., 2004). Interestingly, biglycan is a
homolog of decorin (Fisher et al., 1989), but seems to have tumor
promoting capacities by angiogenesis induction in contrast to
decorin (Schaefer et al., 2017). Indeed, elevated biglycan levels
induced higher density of blood vessels and increased tumor
growth in vivo of colorectal cancer xenografts via induction of
VEGF expression (Hu et al., 2016). In endothelial cells, biglycan
binds to Toll-like receptor 2 (TLR2) and TLR4 with activation
of the transcription factor family nuclear factor-κB (NFκB).
This subsequently leads to increased levels of hypoxia-inducible
factor 1-alpha (HIF1α), which drives VEGF expression (Hu
et al., 2016) and could finally lead to tumor angiogenesis. VEGF
can potentially regulate expression of another proteoglycan
linked to cancer and angiogenesis, namely endocan (Grigoriu
et al., 2006; Rennel et al., 2007; Roudnicky et al., 2013).
Indeed, endocan was detected in the tumor vasculature (Maurage
et al., 2009; Roudnicky et al., 2013) as well as in cancer cells
(Rennel et al., 2007; Maurage et al., 2009; Xu et al., 2019).
Interestingly, it was suggested by Rocha et al. (2014) that endocan
binding replaced VEGF from fibronectin in the ECM, creating
a positive feedback loop. In head and neck cancer, endocan
was strongly co-expressed with angiopoietin-2 (Xu et al., 2019),
which can regulate vascular permeability during intra- and
extravasation processes (Garcia-Roman and Zentella-Dehesa,
2013) and potentially affect the dissemination of CTCs during
metastasis. Importantly, endocan expression is associated with
poor survival rate and might also be used as serum biomarker in
cancer patients (Grigoriu et al., 2006; Roudnicky et al., 2013; Kim
et al., 2018). Biglycan and endocan are important proteoglycans
in angiogenesis and thus tumor progression. However, they
might not be ideal candidates for CTC technologies as secreted
proteoglycans might not be stable targets for cell analysis.

The neuropilins is another proteoglycan family involved in
angiogenesis (Ellis, 2006; Niland and Eble, 2019). Neuropilin-
1 helps to bind VEGF to the cell surface and forms a trimeric
complex together with VEGF receptor 2 (VEGFR2), which was
suggested to act as a potential bridge between cancer cells and
endothelial cells (Soker et al., 1998, 2002). Indeed, neuropilin-1
was detected in tumor cells of different cancer entities as well as
in endothelial cells of the tumor vasculature (Jubb et al., 2012).
Overexpression of neuropilin-1 increased xenograft growth
(Miao et al., 2000; Hu et al., 2007). Neuropilin-1 carries a single
GAG chain of HS or CS, dependent on the cell type (Shintani
et al., 2006; Frankel et al., 2008). However, the exact role of the
GAG chain is not fully understood. Mutagenesis of the GAG
attachment site in neuropilin-1 increased glioma cell invasion
(Frankel et al., 2008). Interestingly, global removal of CS by
chondroitinase ABC enzyme treatment led to decreased invasion
in the same cells. Neuropilin-1 is also physiologically expressed
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as a GAG-deficient splice variant (namely NRP1-17), which
attributes to 10–30% of total neuropilin-1 transcripts depending
on cell type or tissue (Hendricks et al., 2016). Importantly, NRP1-
17 acted anti-tumorigenic and diminished tumor vascularization
in prostate cancer xenografts in vivo (Hendricks et al., 2016).
Moreover, soluble neuropilin-1 isoforms with anti-tumorigenic
functions have been described, which block VEGFR signaling
(Gagnon et al., 2000; Cackowski et al., 2004). Overexpression
of soluble neuropilin-1 in cancer cells led to disturbed tumor
vascularization and cancer cell apoptosis in xenografts (Gagnon
et al., 2000). Overall, proteoglycans are connected to tumor
angiogenesis and to VEGF signaling with various effects.

Epithelial-to-Mesenchymal Transition,
Migration, and Intravasation
Another important milestone for cancer cells is to gain
migratory capacities to leave the primary tumor and invade
the surrounding tissue. During the gastrulation phase of
embryogenesis, epithelial-to-mesenchymal transition (EMT)
causes stationary epithelial cells to undergo major changes
into motile mesenchymal-like cells in order to form new
germ layers. Molecular changes in transcription factor networks
and gene expression facilitate the loss of cell polarity and
cytoskeletal reorganization, resulting in an increased migratory
capacity (Lim and Thiery, 2012; Lamouille et al., 2014). Cancer
cells imitate this developmental EMT program and several
studies suggest that proteoglycans are actively involved in this
part of cancer progression, thus supporting the relevance of
proteoglycans as targets for CTC capture. Situated in the
glycocalyx of cancer cells, proteoglycans provide a contact link
between the cell membrane and the surrounding ECM, thereby
playing a central role in regulating cancer cell adhesion and
migration. Some proteoglycans are downregulated in order to
enable detachment from the basement membrane facilitating
invasion, others are shed from the surface as a different mode
of regulation, and some maintain their function throughout
the invasive phase. Importantly, the current standard for
CTC isolation is based on antibodies against epithelial cell
adhesion molecule (EpCAM), which is often downregulated
during EMT (Gorges et al., 2012; Hyun et al., 2016). Thus,
understanding the process of EMT in terms of proteoglycan
regulation is important for their evaluation as alternative CTC-
target candidates.

One important modulator of EMT processes is transforming
growth factor β (TGFβ), which is known to drive progression
of late state malignancies by promoting invasion (Akhurst
and Derynck, 2001; Xu et al., 2009). Indeed, TGFβ regulates
a multitude of genes with potential cancer-specific effects
(Ranganathan et al., 2007; Kowli et al., 2013). Several
proteoglycans are connected to TGFβ-signaling. An example
of this is the expression of HS-carrying syndecan-4, which was
positively regulated by TGFβ in lung cancer A549 cells (Toba-
Ichihashi et al., 2016). Expression of this proteoglycan further
induced upregulation of the EMT transcription factor zinc finger
protein SNAI1 (sometimes referred to as snail) (Toba-Ichihashi
et al., 2016), thereby fueling the migratory behavior. This is

somewhat surprising, since syndecan-4 plays a well-established
role in focal adhesion sites together with integrins, thereby
promoting the adhesive phenotype of cancer cells (Echtermeyer
et al., 1999; Saoncella et al., 1999).

Syndecan-1 can also be affected by TGFβ and was suggested as
a poor prognostic factor in breast cancer (Hayashida et al., 2006;
Nikitovic et al., 2014). Incubation of mouse mammary epithelial
cells with TGFβ changed the GAG composition of syndecan-1
from being mainly HS modified to carry nearly equal amounts of
HS and CS (Rapraeger, 1989). Notably, increased CS display was
not only mediated by attachment of more GAG chains, but also
by increased length of individual CS chains (Figure 4). This is
in line with a later study showing that TGFβ induced expression
of CS synthase 1, a key enzyme involved in the elongation
of CS and DS GAG chains (Hu et al., 2015). In addition,
other GAG polymer-modifying enzymes have been shown to
be transcriptionally affected by TGFβ treatment (Tiedemann
et al., 2005; Mohamed et al., 2019), suggesting a role of specific
GAG modifications on proteoglycans in regulating the cellular
response toward this cytokine.

TGFβ signaling is mediated through heteromeric complex
formation of type I and type II receptors (Weiss and Attisano,
2013). However, co-receptors like type III TGFβ receptor, also
known as betaglycan, can modulate ligand presentation to the
type II receptor (Figure 4). Betaglycan is a cell membrane
proteoglycan which may carry both CS and HS GAG chains
(Cheifetz et al., 1988). Sulfated HS-modifications on betaglycan
have been proven to sequester the Wnt3a ligand and thereby
inhibiting proliferation by dampening Wnt signaling (Jenkins
et al., 2016). In contrast, TGFβ binding is mediated by the protein
core of the proteoglycan, and is therefore insensitive to point
mutations disrupting the GAG-attachment sites (Lopez-Casillas
et al., 1994). As any other membrane proteoglycan, betaglycan
can undergo ectodomain shedding (Weiss and Attisano, 2013).
A soluble form of the receptor was shown to result in reduced
ligand availability due to its high-affinity interaction with TGFβ

and thus decreased TGFβ signaling (Elderbroom et al., 2014).
In line with this, it was shown that increased betaglycan
expression decreased the invasive behavior of breast cancer cells
in vitro in response to TGFβ stimulation and that this effect
was abrogated when betaglycan was expressed in a shedding-
impaired mutant form (Elderbroom et al., 2014). Importantly,
metastatic lesions showed lower betaglycan expression compared
to matched primary tumors (Hempel et al., 2007). In ovarian
cancer cell lines this seems to be mediated through epigenetic
silencing, as expression was restored upon epigenetic-acting
drugs (Hempel et al., 2007). This indicates that betaglycan
might be involved in the dissemination processes and thus the
investigation of its biological function in CTCs and metastasis
formation would be interesting.

In addition, proteoglycans might affect cancer cell migration
independently of TGFβ signaling. For example, a number of
studies have demonstrated a role of serglycin in malignant
transformation as described below. Serglycin can carry up to
eight CS or HS chains (Kolset and Tveit, 2008) and is widely
expressed by hematopoietic cells as well as embryonic stem cells,
where it serves functions in storage of intracellular granules and
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FIGURE 4 | Interplay of proteoglycans and transforming growth factor beta (TGFβ) signaling. The proteoglycan betaglycan is a co-receptor for TGFβ and brings it to
the TGFβ receptor (heterodimer of TGFβRI and TGFβRII). However, ectodomain shedding of betaglycan might attenuate TGFβ signaling. Furthermore, betaglycan
also dampens Wnt signaling by sequestering Wnt ligands with its heparan sulfate (HS) side chains (in red). Active TGFβ signaling can affect the expression of many
different genes such as SDC1 or CHSY1. Upregulation of the enzyme chondroitin sulfate synthase 1 (CHSY1) can potentially lead to elongation of chondroitin sulfate
(CS) chains on proteoglycans. Indeed, TGFβ can also upregulate one potential CHSY1 targets, namely syndecan-1, which can carry both chondroitin sulfate (CS; in
yellow) or heparan sulfate (HS; in red). Details and references are provided in the main text.

secretion of inflammatory mediators (Toyama-Sorimachi et al.,
1995; Schick et al., 2001; Abrink et al., 2004). Elevated serglycin
expression was reported for cancer cells in patient tissues and
has been linked to aggressive cancer cell phenotypes in vitro
(Korpetinou et al., 2015). Further, serglycin was identified as
an unfavorable prognostic factor in patients suffering from a
range of cancers, including glioblastoma (Roy et al., 2017), liver
(He et al., 2013), lung (Guo et al., 2017), and nasopharynx (Li
et al., 2011). Secreted serglycin from cancer cells was shown to
be primarily CS-modified, and transgenic expression of serglycin
lacking the GAG attachment site led to decreased migratory
capacity of breast cancer cells in vitro (Korpetinou et al.,
2013). This observed GAG-dependency was further supported
by another study focused on lung cancer cells (Guo et al., 2017).
Here it was demonstrated that serglycin exerts its functional role
during migration by binding to the cluster of differentiation 44
antigen (CD44) with downstream activation of EMT (Figure 5).
Blocking of the post-translational CS modification on serglycin
abrogated the effect on motility (Guo et al., 2020). CD44 itself
is a transmembrane proteoglycan expressed by various cell types
(Goodison et al., 1999; Gronthos et al., 2001; Domev et al., 2012)
and is normally involved in hematopoiesis, inflammation, and
wound healing (Johnson et al., 2000; Dimitroff et al., 2001b; Cichy
and Puré, 2003). CD44 is also involved in several important steps
during metastasis formation and has been explored as a CTC
target in several studies as described later.

When cells gain migratory and invasive capacity, this is
often associated with increased remodeling and breakdown of

the ECM, which finally enables breaching of the endothelial
basement membrane and intravasation into the blood circulation
(Eccles, 1999). One contributing factor is the secretion of
different proteases by cancer cells, including for example matrix
metalloproteinases (MMPs) (Lynch and Matrisian, 2002). MMPs
are produced in a catalytically inactive form, which requires
proteolytic cleavage for activation. Interestingly, CSPG4 has been
shown to facilitate assembly of a ternary complex consisting
of pro-MMP2, MMP-cleaving enzyme (MT3-MMP), and the
proteoglycan itself at the cell surface of melanoma cells, leading
to cleavage and thus activation of MMP2 (Iida et al., 2007).
While the interaction with MT3-MMP was shown to be mediated
through the core protein of CSPG4, the association with pro-
MMP2 was depending on the CS-modification (Iida et al., 2007).

Another enzyme playing an important role in accessing
the blood circulation is heparanase, which cleaves HS
polysaccharides located in the basement membrane and on
the cancer cell surface, leading to increased invasive behavior of
cancers (Sanderson et al., 2017; Masola et al., 2018; Elgundi et al.,
2019). Several studies have provided evidence that heparanase
plays a major role in progression of a variety of cancers including
liver cancer (Koliopanos et al., 2001), sarcomas (Cassinelli
and Lanzi, 2020), ovarian cancer (Zhang et al., 2013), breast
cancer (Maxhimer et al., 2005), and colon cancer (Nobuhisa
et al., 2005). In addition to this, it has recently been shown
that overexpression of heparanase promotes the formation of
cell clusters in MDA-MB-231 breast cancer cells, most likely
by modulating the level of intercellular adhesion molecule 1
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FIGURE 5 | CD44 is connected to several mechanisms of circulating tumor cell (CTC) survival and plasticity. The protein core of CD44 can carry chondroitin sulfate
(CS; in yellow), heparan sulfate (HS; in red), or dermatan sulfate (DS; not shown). Homophilic CD44 interactions allow clustering of CTCs, which supports seeding
and colonization at the metastatic site in mice. Moreover, expression of the standard CD44 protein form (CD44s) can be switched to expression of CD44 variants
(CD44v), which include additional exons via alternative splicing (depicted in green). Those CD44v forms may carry additional glycosaminoglycan chains in
dependency of the included exons and promote binding of cancer-related cytokines with downstream signaling for cell survival. The proteoglycan serglycin can carry
eight glycosaminoglycan chains of heparan sulfate (HS; in red) or chondroitin sulfate (CS; in yellow) and binds to CD44. Serglycin binding to CD44 induces
epithelial-mesenchymal transition (EMT) as well as cell motility and has been proven to be dependent on its CS chains. Moreover, the serglycin-CD44 interaction
prevents the induction of anoikis, a specialized form of apoptosis. For this, serglycin competes with hyaluronic acid, which has the same survival promoting effect.
Please refer to the specific subsections for details and references.

(ICAM-1) and phosphorylation status of downstream kinases
(Wei et al., 2018). Furthermore, the enhanced ability to form
clusters correlated with increased number of metastatic foci
in the lungs upon tail-vein injection into mice (Wei et al.,
2018). Together this data strongly suggests that invasion and
intravasation are mediated through HS degradation in the ECM
and possibly at the cell surface, leaving behind HS-associated
core proteins without this modification.

Surviving the Journey Through
Circulation
For normal cells, detachment from the extracellular matrix
leads to cell death through a mechanism of detachment-
induced apoptosis, called anoikis (Strilic and Offermanns, 2017).
Therefore, CTCs must overcome this major challenge in order
to survive in circulation. Studies have pointed toward several
cellular strategies to circumvent apoptotic signaling, some
involving proteoglycans as important players.

Increased syndecan-4 and heparanase expression have
been reported in anoikis-resistant rat endothelial cells

(Carneiro et al., 2014). Studying these cell lines, Carneiro
et al. (2014) also detected increased level of HS in the culture
medium, whereas cell lysates contained increased levels of CS.
As another example of proteoglycan involvement in anoikis
resistance, overexpression of serglycin in a lung cancer cell line
led to increased survival in an anchorage-independent growth
assay (Guo et al., 2017). This effect was dependent on CD44
expression. In line with this, increased CD44 expression caused
by EMT induction also led to anoikis resistance in immortalized
human mammary epithelial cells (Cieply et al., 2015). However,
in this study the ability of anchorage-independent growth relied
on the hyaluronan-binding capacity of CD44. Interestingly,
an early study indicated that serglycin and hyaluronan were
competing for the binding to CD44 (Figure 5) (Toyama-
Sorimachi et al., 1995). The prominent role of CD44 in escaping
anoikis was further strengthened by a study linking the CD44-
expressing subsets of two hepatocellular carcinoma cell lines to
anoikis resistance (Okabe et al., 2014). Importantly, this study
also observed increased CD44 expression in CTCs compared to
patient-matched primary tumor biopsies, again highlighting a
potential role of CD44 in CTC analysis.
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The ability of the cancer cells to establish an
immunosuppressive microenvironment, and thereby escape
elimination by the immune system, is considered one of the
hallmarks of cancer (Hanahan and Weinberg, 2011). Leaving the
primary tumor site and entering the hostile environment of the
blood circulation further elevate the requirement for immune cell
evasion. One specific strategy for suppressing an immune attack
is upregulation of CD47, which constitutes an anti-phagocytotic
“do-not-eat-me”-signal on the surface of cancer cells (Jaiswal
et al., 2009). CD47 is a proteoglycan carrying both CS and HS,
and is widely expressed on white blood cells, where it functions
as a receptor for thrombospondin-1 in a GAG-dependent
manner (Kaur et al., 2011). Interestingly, CD47 expression was
upregulated in colorectal CTCs compared to corresponding
primary tumor tissue (Steinert et al., 2014). In addition, Baccelli
et al. (2013) characterized the metastasis-initiating subpopulation
of breast cancer CTCs as positive for EpCAM, tyrosine-protein
kinase Met (cMet), CD44, and CD47 (Baccelli et al., 2013).
Another study found that blocking of CD47 on 4T1 mouse breast
cancer cells prior to tail vein injection significantly reduced the
number of lung metastases in mice (Lian et al., 2019).

Another proteoglycan-based mechanism was shown to
provide a strategy to avoid the secretion of lytic granules from
NK cells, which would be lethal to the cancer cells. Baccelli
et al. (2013) demonstrated that expression of telomeric repeat-
binding factor 2 (TRF2) controlled a cell-extrinsic pathway,
involving upregulation of HS glucosamine 3-O-sulfotransferase
4 (HS3ST4), thereby dampening immune surveillance by NK
cells (Biroccio et al., 2013). Further, it was revealed that
TRF2 overexpression led to upregulated expression of two HS-
carrying proteoglycans, glypican-6 and versican, both of which
were shown to decrease NK cell degranulation (Cherfils-Vicini
et al., 2019). However, whether TRF2 and associated changes
in HSPGs play a role for CTC survival in the circulation still
needs to be shown.

Extravasation and Colonization at the
Metastatic Site
To form metastatic lesions, CTCs must extravasate and enter
the distal tissue. This crucial step in the metastatic cascade
is highly inefficient, as the vast majority of CTCs undergo
apoptosis, and only a small fraction of the surviving cells succeed
in forming metastatic colonies (Massague and Obenauf, 2016;
Rejniak, 2016). During extravasation, CTCs adhere to and cross
the vascular endothelium in the process of transendothelial
migration (TEM) (Reymond et al., 2013). Indeed, multiple factors
influence cancer cell extravasation. For instance, capillaries lined
with fenestrated endothelial cells and a discontinuous basal
membrane in the liver and bone marrow facilitate CTC invasion
(Aird, 2007; Strilic and Offermanns, 2017) and contribute to the
high incidence of bone and liver metastases (Nguyen et al., 2009;
Budczies et al., 2015).

There is ample evidence that CTCs exert what has
become known as “leukocyte mimicry,” since many of the
adhesion and TEM mechanisms are shared with leukocytes
(Strell and Entschladen, 2008). Especially, the selectin family of

adhesion molecules, important for hematopoietic progenitor cell
homing to the bone marrow, have been implicated in cancer
cell extravasation (Dimitroff et al., 2001a, 2004). This is mainly
mediated by sialofucosylated carbohydrate ligands, particularly
the sialyl Lewis (sLeX) structures, which are primarily found
on leukocytes (Fukuda et al., 1999) as well as on various cancer
cells (Majuri et al., 1995; Renkonen et al., 1997). A particular
sialofucosylated glycoform of the proteoglycan CD44 termed
hematopoietic cell E-/L-selectin ligand (HCELL) mediates
selectin tethering (Sackstein, 2004). E-selectin is highly expressed
on endothelial cells in the bone marrow (Burdick et al., 2012). In
cooperation with carcinoembryonic antigen, HCELL facilitates
cancer cell rolling through binding to E-selectin (Hanley et al.,
2006; Thomas et al., 2008), strongly supporting the hypothesis
of HCELL-mediated CTC arrest in the vasculature, a crucial
step in CTC extravasation (Lee et al., 2014). Interestingly,
studies have investigated the presence of over-sulfated GAGs
as alternative ligands for selectins in cancer extravasation
mechanisms (Martinez et al., 2013), highlighting the importance
of altered display of GAGs.

Besides robust adhesion of CTCs to the endothelial wall,
CTC clusters also seem to be important for metastatic seeding
and outgrowth. In the circulation, CTCs can exist as single
cancer cells or as clusters of cancer cells. The prevalence
of polyclonal CTC clusters correlates with poor prognosis in
patients, and is believed to be an important component for
metastatic success (Aceto et al., 2014; Gundem et al., 2015;
Cheung et al., 2016). In a recent study, CD44 was identified as
a key component in clustering of cancer cells both in patient-
derived xenograft (PDX) models in mice and in metastatic breast
cancer patients (Liu et al., 2019). Mechanistically, CD44 formed
homophilic interactions independent of HA on the cancer cell
surface (Figure 5), which in turn triggered activation of a
serine/threonine-protein kinase 2 (PAK2) and focal adhesion
kinase (FAK) dependent signaling cascade. Knockout of CD44
resulted in loss of CTC cluster formation and reduced lung
colonization and metastasis in PDX models.

CD44 is a multi-functional proteoglycan for colonization and
priming of the metastatic niche (Zoller, 2011). The standard
CD44 (CD44s) comprises exons 1–5 and 16–20, while the splice
variants (CD44v) also include various combinations of exons 7–
15, whereas exon 6 is missing in humans (Naor et al., 2002).
In several cancers isoform switching via alternative splicing of
CD44 is frequently observed (Johnson et al., 2000). For example,
CD44v3, CD44v6, and CD44v10 have been implicated in cancer
and are the only CD44 isoforms that contain binding sites for
cancer-related cytokines and chemokines (Chen C. et al., 2018;
Wang Z. et al., 2018). In colorectal cancer, CD44v6 positive cells
are able to form metastatic lesions in the liver and lung through
interaction with osteopontin (Huang et al., 2012). Importantly,
the CD44 protein core can carry HS, CS, KS, or DS, but the GAG
content is highly dependent on the isoform and exons involved
(Bennett et al., 1995; Greenfield et al., 1999; Clark et al., 2004).
Furthermore, cytokines secreted in the tumor microenvironment
(e.g., hepatocyte growth factor and stromal-derived factor 1a),
increased CD44v6 expression, and assisted colorectal cancer
stem cells in colonization and survival through activation of
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the phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT)
pathway (Todaro et al., 2014).

Once the CTCs have managed to extravasate into the tissue,
the nature of the ECM at the secondary site dictates whether the
disseminated cancer cells will proliferate into overt metastases,
enter a dormant state, or undergo apoptosis (Ghajar et al., 2013;
Sosa et al., 2014; Peinado et al., 2017; Goddard et al., 2018). One
way in which cancers prime the pre-metastatic niche is through
exosome secretion, which facilitates organ-specific engraftment
of cancer cells (Simons and Raposo, 2009; Peinado et al., 2012;
Hoshino et al., 2015). Interestingly, HS has been shown to play
a role in the syndecan-1 mediated formation of the syntenin-
ALG2-interacting protein X (ALIX) complex (Baietti et al.,
2012; Thompson et al., 2013; Roucourt et al., 2015). Following
vesicular release, HSPGs also take part in exosome docking and
delivery of vesicular cargo to the recipient cell. This dual role of
HSPGs in exosome-mediated crosstalk between cells is fostered
by fibronectin that interacts with HS displayed on the surface of
exosomes and functions as a heparan sulfate/HS-binding ligand
on target cells (Purushothaman et al., 2016; Colombo et al., 2019).
Another study reported a correlation between the expression
of glypican-1 on the exosomal surface and the tumor burden
in pancreatic cancer patients (Melo et al., 2015), supporting
a prognostic value of proteoglycans associated with exosomes
in carcinogenesis.

At the metastatic site, proteoglycans also contribute by
promoting cancer cell engraftment and colonization (Fares
et al., 2020). The potential role of serglycin in metastatic
dissemination has been investigated in a mouse model of breast
cancer, where knockout of serglycin resulted in CTCs unable
to establish metastatic tumors although not affecting primary
tumor formation (Roy et al., 2016). Correspondingly, increased
serglycin expression was shown to facilitate liver colonization by
cancer cells in a patient-derived xenograft model of non-small-
cell lung cancer (NSCLC) (Guo et al., 2017) as well as to promote
hepatocellular carcinoma metastasis to the bone (He et al., 2014).

In summary, proteoglycans are connected to all steps of
the metastatic cascade. Notably, some proteoglycans appear
to play active roles in several aspects of cancer progression,
highlighting these as potential key players of the cancer cell
surface. One such proteoglycan is CD44, which is highly involved
in EMT, helps to prevent anoikis due to its HA-receptor
function, and furthermore takes actions in generating CTC
clusters and extravasation, thereby enabling a successful arrival
at the metastatic site (Figure 5). Another key proteoglycan
seems to be CSPG4, with important roles for the regulation
of cancer cell growth and invasion. Furthermore, the studies
on CSPG4 presented here demonstrate how transmembrane
proteoglycans possess multiple modes of action by engaging
with other receptors or signaling molecules through either their
cytoplasmic domain, ectodomains, or their GAG chains. With
this central role in metastasis and CTC biology, proteoglycans
could be an interesting target for CTC technologies. Indeed,
proteoglycans are already studied and partly utilized for
CTC identification and capture by different technologies. The
following section will hence provide a detailed overview on
proteoglycans as CTC targets.

PROTEOGLYCANS IN CIRCULATING
TUMOR CELL DIAGNOSTICS

Circulating tumor cell detection assays have spurred increasing
clinical interest since the prognostic value in progression-free
and overall survival was established in patients with metastatic
colorectal (Cohen et al., 2009), breast (Cristofanilli et al., 2004),
prostate (de Bono et al., 2008), and lung (Krebs et al., 2011)
cancer. CTC enumeration from patient blood samples has also
demonstrated clinical relevance for several other cancer types
such as pancreatic cancer (Kurihara et al., 2008; Bidard et al.,
2013; Effenberger et al., 2018) or hepatocellular carcinoma
(Schulze et al., 2013; Qi et al., 2018). The presence of detectable
levels of CTCs in the peripheral blood is associated with the
metastatic capacity of the disease (Allard et al., 2004; Cristofanilli
et al., 2004). However, low levels of CTCs have been reported
in non-metastatic disease for several cancer indications before
and after surgery (Thorsteinsson et al., 2011; Franken et al.,
2012; Gazzaniga et al., 2013). Additional studies suggest that
CTCs are even shed from premalignant lesions and this opens
the possibility for using CTC detection for early diagnosis
of cancer (Husemann et al., 2008; Stott et al., 2010; Rhim
et al., 2012; Zhang et al., 2014; Tsai et al., 2016; Murlidhar
et al., 2017). CTC assays might also have potential as a
tool for predicting treatment efficacy and monitoring disease
(Schochter et al., 2019; Yang et al., 2019), thereby providing
real-time, non-invasive information about the disease by liquid
biopsies. Furthermore, many CTC assays do not only enable
enumeration but also downstream analyses such as genomic,
transcriptomic, proteomic, or phenotypic characterization of
cancer cells. Therefore, studying CTCs can also bring novel
insight into aspects of metastasis formation, which are still
not fully understood (Chaffer and Weinberg, 2011). Despite
the interest and potential in analyzing CTCs, the methods are
rarely implemented in the clinical setting, as CTC identification
requires highly specific markers and an extreme assay sensitivity.
Many CTC methods struggle to reach the needed sensitivity, as
it is a technical challenge to detect few cancer cells in billions of
normal blood cells.

Several CTC enrichment technologies ranging in complexity
have been developed (Kowalik et al., 2017; Dianat-Moghadam
et al., 2020). From whole blood, CTCs can be enriched along
with leukocytes by density fractionation or a simple lysis of
the erythrocytes. The crude cell enrichment can be analyzed
by direct antibody staining and examined by, e.g., microscopy
(Hillig et al., 2015; Werner et al., 2015) or flow cytometry
(Hristozova et al., 2012; Watanabe et al., 2014; Lopresti et al.,
2019). Because of the rarity of the CTCs, an additional cancer
cell-specific enrichment step is, however, often preferred. CTCs
can be enriched from the leukocytes based on distinct biophysical
properties such as size, density, deformability, or charge (Liu
et al., 2015; Mitchell et al., 2015; Shaw Bagnall et al., 2015).
Following CTC enrichment, the detection of CTCs will still rely
on a staining step, distinguishing for example cytokeratin (CK)-
positive CTCs from the remaining CD45-positive leukocytes.
Other systems for CTC isolation use cancer- or tissue-specific
antibodies to enrich for CTCs (Coumans and Terstappen, 2015)
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or even leukocyte cell surface proteins like CD45 to deplete
for leukocytes (Ozkumur et al., 2013; Karabacak et al., 2014).
The positive selection of CTCs is evidently very dependent on
highly specific cancer or tissue markers. In order to demonstrate
high potential for clinical application, extensive validation of
CTC capture platforms must reveal robust clinical sensitivity
and specificity (Parkinson et al., 2012). Most pilot studies
do not present large-scale clinical data and should hence be
interpreted with caution. Inclusion of healthy controls becomes
crucial to demonstrate the specificity of the capture and/or
detection strategy. Alternatively, some studies apply downstream
molecular analyses to verify the tumor origin of detected CTCs,
e.g., by mutation detection, which supports the reliability of the
CTC assay (Gasch et al., 2013; Muller et al., 2014). From a more
technical perspective, pre-analytical conditions such as blood
tubes, storage time, and temperature as well as choice of antibody
clones can have a huge effect on assay performance (Qin et al.,
2014; Ilie et al., 2018; Wu et al., 2020), making comparisons
across studies difficult. Furthermore, in the light of exploring
proteoglycans as potential CTC targets, the consideration of
technical assay parameters become crucial for, e.g., sustaining
the GAG stability.

The current clinical standard for CTC enumeration is the
CellSearch R© platform, which is approved by the American Food
and Drug Administration (FDA) for monitoring patients with
metastatic breast, colorectal, and prostate cancer. CellSearch R©

relies on cell enrichment using anti-EpCAM antibody-coated
ferrofluid and CTC detection via fluorescent anti-CK antibody
labeling (Liberti et al., 2001; Allard et al., 2004; Coumans
and Terstappen, 2015). EpCAM-based capture approaches
are, however, rarely efficient for epithelial cancers with
downregulated EpCAM expression, likely due to EMT, or
cancers of mesenchymal origin. Therefore, several studies have
been focusing on finding novel markers, which can distinguish
EpCAM-low or -negative CTCs from normal blood cells with
high specificity and sensitivity to broaden the spectrum of
detectable CTC subpopulations (Lampignano et al., 2017;
Nicolazzo et al., 2019). As a part of this, multiple strategies using
proteoglycans for CTC enrichment or identification are currently
under investigation. See Table 1 for an overview on the most
used proteoglycans and their applications. Some of them are
highlighted in the following.

A well-known example is the CellSearch R© Circulating
Endothelial Cell Kit, which can be used for the enrichment
of circulating melanoma cells that are EpCAM-negative by
nature (Rao et al., 2011; Khoja et al., 2013). After capture
using ferrofluid coupled with antibodies against melanoma
cell adhesion molecule (MCAM), circulating melanoma
cells are identified by staining with antibodies against high
molecular weight melanoma-associated antigen (HMW-MAA),
also known as CSPG4.

As described earlier, CSPG4 has been linked to many aspects of
the metastatic cascade, including proliferation, migration, as well
as ECM-remodeling and is expressed across many cancer types
(Ilieva et al., 2018). Moreover, CSPG4 is expressed in a majority
of melanoma lesions (Real et al., 1985) and is a well-characterized
surface marker for melanoma (Ilieva et al., 2018). Multiple

retrospective studies using the MCAM/CSPG4 CellSearch R© Kit
have found that CTC levels detected at baseline correlates with
overall survival in late-stage melanoma (Rao et al., 2011; Khoja
et al., 2013; Bidard et al., 2014) (Table 1). Recently, two large
prospective studies also evaluated the prognostic significance
of MCAM/CSPG4-positive CTCs in cutaneous melanoma. In a
study of 93 stage IV patients, Hall et al. (2018) found that presence
of CTCs at baseline was associated with shorter progression-
free survival after 6 months compared to CTC-negative patients.
Later, the same research group showed that CTC-positivity at
baseline for stage III patients (n = 243) was an independent
predictor of relapse-free survival within 6 and 54 months (Lucci
et al., 2020). The CTC levels in these studies were not associated
with primary tumor characteristics, such as ulcerations, tumor
thickness, and mutational status. Therefore, MCAM/CSPG4-
positive CTC numbers may add additional information on top
of clinicopathological characteristics for clinicians to foresee the
disease course in the future.

Interestingly, CTC-negative melanoma patients have been
found to have better progression-free or relapse-free survival
compared to CTC-positive patients (Hall et al., 2018; Lucci et al.,
2020). However, a significant proportion of late-stage melanoma
patients still appear to have no CTCs detectable by CellSearch R©

(Rao et al., 2011; Roland et al., 2015; Hall et al., 2018). This
has also been reported for other CSPG4-based methods (Ulmer
et al., 2004; Ruiz et al., 2015) as well as for CSPG4-independent
isolation methods (Khoja et al., 2014; Aya-Bonilla et al., 2019).
This may simply be due to the rare nature of CTCs. However,
there could be CSPG4-negative CTC subpopulations, which are
not captured by CSPG4-dependent strategies. In fact, one study
found that of 31 melanoma patients with CTCs detectable by
other markers, only 42% had CSPG4-positive CTCs (Gray et al.,
2015), suggesting a need for multi-marker approaches.

During the past decade, multiple other studies investigated
the potential of CSPG4 for CTC capture and/or identification in
melanoma (Table 1). Up to 4 CTCs per mL blood was found using
CSPG4 immunomagnetic capture (Sakaizawa et al., 2012), which
is similar to the reported CTC numbers using the MCAM/CSPG4
CellSearch R© kit (Khoja et al., 2013). However, a study by Ruiz et al.
(2015) using a CSPG4-based immunofluorescent microscopy
approach without prior enrichment step identified a mean of
14.9 CTCs per 1 mL blood samples from melanoma patients
(n = 40), without potential CTC hits in healthy control samples
(n = 10). These variations in CSPG4-positive CTCs can be
explained to some extent by the use of different CTC enrichment
strategies, varying markers for CTC identification or other
technical differences in the assays.

Commonly mutated genes in melanoma, such as BRAF
and NRAS (Colombino et al., 2012), are upstream activators
of ERK signaling (Savoia et al., 2019). As CSPG4 expression
has been connected to ERK signaling (Ampofo et al., 2017),
these mutations might be particularly important in CSPG4-
positive CTCs. Indeed, a recent study found that CTCs
enriched by CSPG4-based method presented more RAS/RAF
mutated cells compared to CTCs isolated only by physical
properties (Gorges et al., 2019). Since some therapeutic
approaches target the serine/threonine-protein kinase B-raf
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TABLE 1 | Proteoglycans used for isolation or identification of clinical circulating tumor cells.

Indication Used for Finding References

Carbonic anhydrase 9
(CA9)

RCC Immunomagnetic capture Combined approach with CD147, captured
CTCs in 94% of patients. CTC amount
correlated with disease stage.

Liu et al. (2016)

CTC detection (On−chip
Sort R©)

CTCs were detected in 46% of patients
(combined CA9 and EpCAM staining).

Naoe et al. (2019)

CD44 BC/TNBC CTC detection (flow
cytometry)

NACT caused significant changes in the
quantity of the CTC subsets present in
patient blood samples.

Kaigorodova et al. (2018)

CTC detection (ns) CTC clusters were associated with poor
OS. CTC clusters showed higher CD44
expression.

Liu et al. (2019)

CRC CTC detection (flow
cytometry

CD133+CD54+CD44+ CTC subset was
significantly associated with liver metastasis
and had a prognostic value in CRC
patients.

Fang et al. (2017)

Gastric cancer CTC detection (FACS) The amount of EpCAM+CD44+ CTCs, but
not EpCAM+CD44− CTCs, correlated with
disease progression and venous invasion.

Watanabe et al. (2017)

Negative immunomagnetic
enrichment (anti-CD45)

CD44 was a marker for tumorigenic CTCs. Toyoshima et al. (2015)

NSCLC Immunomagnetic capture CD44+ CTCs were associated with
lymphatic invasion and tumor size. CD44+
CTCs were more sensitive to
TRAIL-induced apoptosis.

Yan-Bin et al. (2020)

OSCC Immunomagnetic capture CD44+ CTCs showed increased
self-renewal capability and
chemotherapy-resistance. Clinical
correlation between increased CD44v6 and
loco-regional aggressiveness and
recurrence.

Patel et al. (2016)

Chondroitin sulfate
proteoglycan 4
(CSPG4)

Melanoma Immunomagnetic capture Analysis of RNA suggested that CSPG4+
CTCs were distinct from CTCs enriched by
another melanoma marker, ABCB5.

Aya-Bonilla et al. (2019)

Immunomagnetic capture Significant difference between CTC
numbers in healthy controls, stage I/II and
stage III/IV, using multiple markers.
Decrease in CTC numbers during
treatments was associated with longer OS
and shorter response to treatment.

Freeman et al. (2012),
Klinac et al. (2014)

Immunomagnetic capture
(with subsequent depletion
of CD45+ cells)

1–20 CTCs found per 5 mL blood and
BRAF genetic heterogeneity was detected
among CTCs.

Sakaizawa et al. (2012)

Immunomagnetic capture ≥2 CTCs correlated with OS for stage III
and IV patients. CTC-positivity correlated
with stage.

Ulmer et al. (2004)

Immunomagnetic capture
and IF

MCAM/CSPG4-positive CTCs and
RAS/RAF mutational status were
associated.

Gorges et al. (2019)

CellSearch R© Melanoma Kit CTC positivity in early-stage disease
correlated with OS at 24 months.

Anand et al. (2019)

Strong correlation between CTC positivity
and PFS and OS; and between CTC
numbers and ctDNA-levels.

Bidard et al. (2014)

Prospective study of stage IV patients.
Baseline CTC-positivity independently
predicted poorer PFS after 180 days.

Hall et al. (2018)

≥2 CTCs at baseline was an independent
prognostic factor for poor OS.

Khoja et al. (2013)

(Continued)
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TABLE 1 | Continued

Indication Used for Finding References

CellSearch R© Melanoma Kit Prospective study of 243 stage III patients.
CTC-positivity at baseline independently
predicted poorer relapse-free survival within
6 and 54 months.

Lucci et al. (2020)

Retrospective study; baseline ≥ 2 CTCs
correlated with OS in stage III/IV patients.
95% of healthy subjects had no CTCs.

Rao et al. (2011)

Difference in CTC positivity for stage I/II vs.
IV. Only 2.9% of healthy subject had CTCs.

Roland et al. (2015)

CTC detection (flow
cytometry)

Early-stage CTCs expressed mainly one
marker, late-stage CTCs expressed more.
42% of CTCs expressed CSPG4.

Gray et al. (2015)

CTC detection (flow
cytometry)

CTCs were found in 14/22 patients. Liu et al. (2011)

CTC detection (IF) 5% of patients had ≥100 CTCs/mL. In
these, unique clonal populations were
identified.

Ruiz et al. (2015)

Characterization by
Surface-enhanced Raman
spectroscopy with αCSPG4

CTC surface marker levels, including
CSPG4, were altered during treatment.

Tsao et al. (2018)

C-X-C chemokine
receptor type 4
(CXCR4)

HCC CTC detection (RISH) CTCs were detected in 89.9% of all
patients and CXCR4 expression was
associated with different CTC subsets.

Bai et al. (2020)

NSCLC CTC detection (flow
cytometry)

CXCR4 expression was increased on
EpCAM- CTCs.

Yin et al. (2015)

CTC detection (flow
cytometry)

CXCR4+ CTCs showed potential as a
predictive marker for OS in NSCLC
patients.

Reckamp et al. (2009)

Glypican-3 (GPC3) HCC Immunomagnetic capture
and CTC detection (flow
cytometry)

High GPC3+ CTC amount correlated with
shortened disease-free survival in
non-metastatic HCC patients.

Hamaoka et al. (2019)

Immunomagnetic capture Capture cocktail (together with
anti-ASGPR, anti-EpCAM) found higher
CTC numbers than each antibody alone.

Court et al. (2018)

CTC detection
(ImageStream R©)

12.5% of all found CTCs were GPC3+. Ogle et al. (2016)

HCC/CCA CTC detection (IHC) 1 out of 14 patients with CTCs had GPC3+
CTCs.

Nam et al. (2016)

Syndican-1
(SDC1/CD138)

MM Immunomagnetic capture CD138+ CTCs strongly correlated with
disease burden and treatment response.

Wang et al. (2019)

MM Immunomagnetic capture 20–184 CD138+ CTCs detected in patient
blood/mL (2–5/mL healthy blood). Patients
in remission had fewer CTCs than other
patients.

Qasaimeh et al. (2017)

+, positive; ABCB5, ATP-binding cassette sub-family B member 5; ASGPR, asialoglycoprotein receptor; BC, breast cancer; CA9, carbonic anhydrase 9; CCA,
cholangiocarcinoma; CD, cluster of differentiation; CK, cytokeratin; CRC, colorectal cancer; CSPG4, chondroitin sulfate proteoglycan 4; CTC, circulating tumor cell;
ctDNA, circulating tumor DNA; CXCR4, C-X-C chemokine receptor type 4; EpCAM, epithelial cell adhesion molecule; FACS, fluorescence-activated cell sorting; GPC3,
glypican-3; HCC, hepatocellular carcinoma; IF, immunofluorescence; IHC, immunohistochemistry; ISET, isolation by size of epithelial tumor cells; MCAM, melanoma
cell adhesion molecule; MM, multiple myeloma; NACT, neoadjuvant chemotherapy; ns, not specified; OSCC, oral squamous cell carcinoma; OS, overall survival; PFS,
progression-free survival; RBC, red blood cell; RCC, renal cell carcinoma; RISH: RNA in situ hybridization; SDC1, syndican-1; TNBC, triple-negative breast cancer; TRAIL,
TNF-related apoptosis-inducing ligand.

(BRAF) (Holderfield et al., 2014), it is possible that the CSPG4
expression might also decrease in response to this form of
treatment, which could affect the prospect of using CSPG4 alone
to monitor CTC numbers. Indeed, initial longitudinal study of
CTC heterogeneity in 10 stage IV melanoma patients suggested
that expression of CSPG4 on CTCs may be downregulated in
response to BRAF and mitogen-activated protein kinase kinase
(MEK)-inhibiting therapy (Tsao et al., 2018). However, to our

knowledge, none of the major studies on CSPG4-positive CTCs
in cutaneous melanoma have yet found any correlation between
CTC levels and BRAF-mutational status or adjuvant therapy.

Another recent study revealed that the transcriptomic profile
of CSPG4-enriched CTC populations from six patients was
dominated by up-regulation of tumor necrosis factor alpha
(TNFα)/nuclear factor kappa B (NF-κB) as well as signal
transducer and activator of transcription (STAT) pathways
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(Aya-Bonilla et al., 2019). Both signaling pathways have central
roles for cell proliferation as well as cell survival (Wu and
Zhou, 2010; Igelmann et al., 2019). Furthermore, in silico
analysis found other genes upregulated in the CSPG4-enriched
population to be connected to metastasis, tumor growth, and
melanoma biology (Aya-Bonilla et al., 2019), which indicates
an interesting biological role of CSPG4-positive CTCs for
melanoma progression.

Overall, CSPG4 is a relevant surface marker for melanoma
CTCs and is hence evaluated in many studies. Although little is
still known about the biological role of CSPG4-positive CTCs,
they might represent a specific subpopulation. This potential bias
should be considered when using only CSPG4 for CTC capture
or CTC identification.

CD44 has also been explored for CTC analysis. CD44 is
widely expressed (Goodison et al., 1999), and as previously
described it acts as a receptor for a variety of ligands. Particularly
well-described is the interaction with HA, which constitutes
a major part of the glycocalyx and ECM (Banerjee et al.,
2016). Upregulation of CD44 confers tumorigenicity, metastatic
capacity, and drug resistance to primary tumor cells as well
as CTCs (Naor et al., 2002; Fitzgerald and McCubrey, 2014).
The abnormal expression of CD44 splice variants is associated
with treatment refractoriness, recurrence, and prognosis (Katoh
et al., 2015), and overexpression of both CD44s and variants
serves a long list of biological functions across many cancer types
(Chen C. et al., 2018). Since isoform switching introduces new
cancer-related antigens, development of both anti-CD44s and
anti-CD44v antibodies has attracted much interest.

As a CTC isolation tool, anti-CD44 antibodies have been used
to capture CTCs from cancer patient blood (see Table 1). Yan-Bin
et al. (2020) investigated the CD44-positive CTC abundance in
NSCLC patients by immunomagnetic enrichment and evaluated
the correlation to clinical characteristics. None or very few
CD44-positive cells were detected in the 30 controls in contrast
to frequent CTC observations in the 128 patient samples.
Detected CTCs associated negatively with serum TNF-related
apoptosis-inducing ligand (TRAIL) levels, suggesting that CD44-
positive CTCs could be more vulnerable to TRAIL-induced
apoptosis through death receptor 4 and 5 signaling (Yan-Bin
et al., 2020). A small study on gastric cancer patients (n = 26)
and healthy controls (n = 10) associated increased prevalence
of EpCAM- and CD44-positive CTCs in patients with tumor
depth, disease progression, and venous invasion (Watanabe
et al., 2017). Consequently, CD44-based CTC detection was
suggested to reflect the malignant potential of the tumor. The
authors, however, disregard EpCAM-positive cells found in
all healthy controls and the few double positive cells found
in 2 healthy controls as either non-specific immunological
reactions or contaminating skin cells. Again, this discrepancy
highlights the demand for CTC validation, as for example
via genomics. Another study analyzed CD44-positive CTCs
isolated by immunomagnetic enrichment from 30 oral squamous
cell carcinoma (OSCC) patients and 15 healthy controls
(Patel et al., 2016). Self-renewal and proliferation capability of
the CD44-positive cells were observed by increased sphere-
forming capacity unlike the CD44-negative sorted population.

Moreover, cisplatin resistance assays confirmed a drug-resistant
phenotype associated with the CD44-positive population. This
was specifically associated with high transcript levels of CD44v6,
as opposed to CD44s, as well as elevated levels of the
stemness marker NANOG. Furthermore, the different expression
levels strongly correlated with the primary tumor profile and,
importantly, clinicopathological parameters such as late-stage,
loco-regional aggressiveness, and relapse. The findings suggest
that detection of CD44v6-positive CTCs could be used to predict
disease progression, therapy outcome, and recurrence.

In addition, CD44 is being evaluated for novel therapeutic
approaches against CTCs. For instance, in vivo homophilic
CD44-mediated CTC clustering of metastatic breast cancer cells
in mice was largely inhibited by the administration of anti-CD44
neutralizing antibody, leading to decreased metastatic capacity
(Liu et al., 2019). In summary, numerous studies of applications
to target CD44-positive CTCs underline its potential in therapy
and as a valuable marker for prognosis and treatment response.

Another interesting proteoglycan for clinical purposes is
glypican-3 (GPC3), which is upregulated amongst several
cancer entities with highest positive case rates in hepatocellular
carcinoma (HCC). Importantly, GPC3 has been reported to
discriminate between HCC and non-malignant lesions (Zhu
et al., 2001; Wang et al., 2008) or other liver-associated cancers
like cholangiocarcinoma (CCA) (Man et al., 2005). Nowadays
GPC3 is included in a diagnostic HCC panel together with
glutamine synthetase and heat shock protein 70, according
to guidelines of the European Society for Medical Oncology
(ESMO) (Vogel et al., 2019) and the American Association for
the Study of Liver Diseases (AASLD) (Marrero et al., 2018).
Furthermore, GPC3 might also be used as a serum biomarker
(Capurro et al., 2003; Hippo et al., 2004) and is exploited for
different targeted cancer therapy approaches (Sawada et al., 2012;
Feng et al., 2013).

Several studies have been utilizing GPC3 for analysis of
CTCs in HCC patients (Table 1). Anti-GPC3 antibodies have
been used for positive immunomagnetic enrichment of CTCs
(Court et al., 2018; Hamaoka et al., 2019). Hamaoka et al.
(2019) found in a prospective, single-institution study that most
of the 85 examined HCC patients had GPC3-positive CTCs
with a median of 3 CTCs in 8 mL blood samples, whereas
negative controls (in total n = 27) such as healthy individuals
(n = 12) or individuals with inflammatory diseases (n = 4),
only had a median of 1 GPC3-positive cell in the blood
samples (Hamaoka et al., 2019). Moreover, patients with 5 or
more CTCs showed shorter disease-free survival compared to
patients with fewer GPC3-positive CTCs. Another study by
Court et al. (2018) analyzed GPC3 in a capture cocktail together
with antibodies against asialoglycoprotein receptor (ASGPR) and
EpCAM. Importantly, the combined capture approach with all
three targets, isolated higher CTC numbers in patients than
each antibody alone. This approach detected CTCs in 96.7%
of all HCC patients (n = 61) with a median of 6 CTCs
per 4 mL blood. In contrast, in healthy controls (n = 8)
maximum one potential CTC hit was found. Moreover, CTC
numbers were increased in more advanced stages compared
to early stages. This effect was even more pronounced for the
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subfraction of vimentin-positive CTCs, which presumably are
generated by EMT processes. This highlights the importance
of CTC capture strategies independent of potential EMT
target proteins like EpCAM, which are often downregulated
during EMT. Indeed, varying or low EpCAM expression has
already been reported for CTCs originating from other cancer
entities (Hyun et al., 2016; de Wit et al., 2018) and should
be taken into consideration when designing or interpreting
CTC capture assays.

In summary, GPC3 is currently evaluated as a therapeutic
target, serum biomarker, and importantly for CTC analyses,
where it has been used both for capture (Court et al., 2018;
Hamaoka et al., 2019) and identification (Ogle et al., 2016) of
CTCs in HCC. Since only few studies have been performed,
further studies are needed to prove the feasibility of GPC3
for clinical CTC analyses. Although GPC3 is a well-established
diagnostic marker for HCC, further characterization or validation
of the potential GPC3-positive CTC hits, for example via
molecular analyses, is to our knowledge missing so far.

As described, there is a great diversity among the
proteoglycans associated with different cancer types. The
different proteoglycans facilitate distinctive processes in the
metastatic cascade and their universal expression suggests
that proteoglycans are an essential feature for all cancers. The
complexity is further expanded when considering the GAG
composition. An increasing number of studies indicate that at
least some of the functions of proteoglycans are exerted through
specific GAG chains. However, only a few studies focused on
targeting the GAG part or GAG composition of proteoglycans
when isolating CTCs.

A wide variety of qualitative and quantitative methods has
been developed for studying glycocalyx components. As the
biosynthesis of glycans is non-template driven and complex,
their analysis may often be challenging. Several approaches take
advantage of the large repertoire of glycan-binding proteins
and antibodies to distinguish between different glycan classes.
For large screenings, glycan microarrays have been developed
that may probe for different glycan classes or subclasses. This
approach has been used to screen breast CTCs for glycan
markers, which identified a specific O-glycan epitope as a
potential target (Wang et al., 2015). Microarrays and cell-
based libraries have also been developed to screen for GAG-
binding proteins (Rogers and Hsieh-Wilson, 2012) and these may
be useful for identifying GAG-based CTC targeting reagents.
However, microarrays for detection of cell-surface GAGs, which
could be useful for identifying GAG biomarkers on CTCs,
have not been constructed. CS and HS-specific antibodies, such
as CS56 and 10E4, and GAG-binding proteins, like fibroblast
growth factor, are also commonly used in flow cytometry
and microscopy-based assays (Figure 6A). These may assess
the relative levels of GAGs, however, they do not convey
specific structural information due to their low specificity or
affinity toward their targets (Yamagata et al., 1987; Smetsers
et al., 2004; ten Dam et al., 2007). For this, GAGs will have
to be isolated and analyzed, often by chromatography, mass
spectrometry, or nuclear magnetic resonance. The structural
characterization of GAGs is challenging due to heterogeneity of

the polymers. Hence, analysis is often limited to disaccharide
analysis, which does not allow for sequencing of intact GAG
chains. This is even more technical challenging for CTCs
because of the limited input material due to their low
abundance. Similarly, while different proteoglycan core proteins
can be probed with antibodies, fine structural analysis of their
GAG attachment sites is only achieved by glycoproteomic
methods. While these analyses may be laborious, they are
highly descriptive and may provide novel insight into structural
alterations on cancer cells, both on the protein and GAG
level. For example, one study found that several major
ECM proteoglycans had elevated levels of N-glycosylation in
pancreatic cancer tissues (Pan et al., 2014). In addition, another
study identified novel CS linkage region modifications in CS
glycopeptides from the inter-α-trypsin inhibitor complex, which
is abundant in plasma from cancer patients (Gomez Toledo
et al., 2015). To our knowledge, glycoproteomics has not
been used for analysis of CTCs, and could potentially help
identify novel targets.

If succeeding in finding specific binding moieties, the GAG
chains would be an alternative novel approach for CTC
enrichment or detection. We have previously shown the use
of the recombinant VAR2CSA malaria protein (rVAR2) as a
novel CTC-targeting reagent (Figures 6A, 7) (Agerbaek et al.,
2018; Bang-Christensen et al., 2019; Sand et al., 2020). rVAR2
binds to a distinct type of CS, termed oncofetal CS, expressed
by placental as well as cancer cells (Salanti et al., 2015). The
native VAR2CSA binds to a specific CS oligosaccharide motif
in the placenta during normal physiological conditions (Gowda,
2006; Ayres Pereira et al., 2016; Toledo et al., 2020). A study
using a library of cells with knockouts of GAG biosynthesis
genes, indicated that 4-O-sulfated CS is essential for rVAR2
binding (Chen Y. H. et al., 2018). The specific oncofetal CS-
carrying proteoglycans have been examined by screening of
rVAR2 binding to more than 3500 cell surface proteins (Salanti
et al., 2015) as well as by rVAR2-affinity chromatography coupled
to glycoproteomics, using tumor and placenta samples (Toledo
et al., 2020). These studies showed that the distinct oncofetal CS
is displayed on multiple proteoglycans such as CSPG4 or CD44
in cancer cells, indicating an important function of oncofetal CS
in the disease development. Moreover, rVAR2 binds to cancer
cells independently of tumor origin and oncofetal CS is expressed
both in primary and metastatic lesions (Salanti et al., 2015). This
has also been shown in a metastatic murine model, where rVAR2
binding furthermore inhibited integrin signaling and seeding
of CTCs (Clausen et al., 2016). As studies have also indicated
that rVAR2 binds to cancer cells independent of EMT processes
(Agerbaek et al., 2018; Bang-Christensen et al., 2019), oncofetal
CS could be an advantageous target for CTC enrichment. In
line with this, rVAR2-coated paramagnetic beads have been used
to capture CTCs from blood samples of different carcinoma
patients (n = 44) and glioma patients (n = 10) in small proof-
of concept studies (Agerbaek et al., 2018; Bang-Christensen
et al., 2019). Therefore, the rVAR2-based approach offers an
alternative capture approach, demonstrating how GAG-targeting
can allow the capture of CTCs independently of single target
proteins, like EpCAM.
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FIGURE 6 | Utilization of glycosaminoglycans for capture of circulating tumor cells (CTCs). (A) Glycosaminoglycans can be directly targeted as for example via
antibodies like 10E4, which binds to heparan sulfate (HS; in red) of heparan sulfate proteoglycans (HSPGs). However, to our knowledge, this approach has not been
explored for CTC capture. Furthermore, for CTC capture the recombinant protein VAR2CSA (rVAR2) can be used, which binds to oncofetal chondroitin sulfate (in
yellow) as for example identified on chondroitin sulfate proteoglycan 4 (CSPG4). (B) Glycosaminoglycans have been applied in the reversed approach as capture
agent for CTC enrichment. Here, glycosaminoglycan-based probes were used to capture CTCs. For example, a microfluidic chip has been coated with hyaluronic
acid (HA; in green) to capture CTCs via its interaction with the HA-receptor CD44. Similarly, the heparan sulfate-based probe SCH45 has been coupled to magnetic
beads to capture CTCs in hepatocellular carcinoma in a microfluidic setup, but the exact cellular target of SCH45 in these CTCs remains unknown. Generally, both
strategies are relatively new for CTC capture and clearly further extensive validation is needed. Please refer to the main text for details and references.

FIGURE 7 | Recombinant VAR2CSA (rVAR2) can be used for staining and capture of potential circulating tumor cells (CTCs). (A) Immunofluorescence staining of the
colorectal cancer cells COLO205 (marked with cross) with rVAR2 (green), anti-CD45 (in red) to mark normal blood cells, and DAPI (in blue) to mark cell nuclei.
(B) One potential CTC hit (green by rVAR2 stain; marked with white asterisk) in a blood sample from a colorectal cancer patient with the same staining as described
in panel A. (C) Magnetic beads coated with rVAR2 bind specifically to COLO205 cells, compared to non-rVAR2 control beads. Pictures were kindly provided by
Mette Ø. Agerbæk, Amalie M. Jørgensen, and Nicolai T. Sand.

Actually, the reversed approach can also be utilized for
CTC capture (Figure 6B). For example, Gopinathan et al.
(2020) coated a synthetic HS-based octasaccharide probe
(SCH45) onto magnetic beads, that were used in combination
with a microfluidic chip to isolate CTCs from 65 advanced

or metastatic cholangiocarcinoma patients. Single CTCs
or CTC clusters were detected in all samples with ≥ 1
CTCs per 1 mL blood, even in patients with no distant
metastases. Previous comparable CellSearch R©-based studies
found only 17% of CCA patients positive for ≥2 CTCs per
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7.5 mL blood (Yang et al., 2016). However, only three healthy
controls were included in the HS-based study. Moreover, the
authors reported that studies evaluating whether this approach
could be employed to capture EpCAM-negative CTCs are
currently ongoing (Gopinathan et al., 2020). In addition it would
be interesting to identify the binding target of the SCH45-coated
beads in order to characterize the captured CTC population.

Another approach exploited the GAG-receptor function of
CD44 in order to capture CTCs (Wang M. et al., 2018). Purified
HA, the ligand of CD44, was coated to a microfluidic chip and
showed 91% retrieval of CD44-overexpressing A549 cells spiked
into blood. Also other cancer cell lines from different cancer
entities were captured with comparable efficiencies. Although
also lacking healthy controls, the study found between 1–
18 putative CTCs per 1 mL blood from 9 of 10 NSCLC
and 5 of 5 breast cancer patients as detected through CK-
and DAPI-staining.

The utilization of GAGs for CTC technologies is a relatively
new approach. Most studies have been limited to smaller pilot
studies so far and further molecular characterization of the
putative CTC hits is needed to prove their cancer-origin and
thus the reliability of the CTC assay. Clearly, the establishment
of specific GAGs as biomarkers for clinical CTC diagnostics
needs extensive validation in large-scale studies in the future.
However, GAGs have the potential to capture or identify broader
and more heterogenous CTC populations as they are often
independent of a single protein and thus might be less prone
to gene expression changes associated with different or transient
cancer cell phenotypes.

CONCLUDING REMARKS

Circulating tumor cell analyses have the potential to allow
prognostic and predictive insights by convenient liquid biopsies.
However, novel biomarkers are needed to enable the necessary
assay sensitivity and specificity to detect CTCs. Another unsolved
problem is that most CTC assays introduce biases in regards
to which CTC subpopulations can be captured as they are
often based on single biomarkers. Therefore, a CTC capture

approach based on a combination of several biomarkers could
be beneficial. Another solution for this problem could be
the targeting of cancer-specific changes in the GAGs (the
“GAGome”), or other known glycocalyx components, which
should in principle, allow the capture of more heterogenous CTC
populations. Studies on clinical CTCs and their proteoglycans,
GAGs, or general glycocalyx structure are still not strongly
represented, probably due to associated technical challenges of
glycocalyx characterizations. However, structural insights would
be beneficial for improving or defining novel CTC capturing
strategies based on proteoglycans or their GAGs and to explore
whether these strategies then better reflect the heterogenic cancer
cell population.
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