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Cellular senescence is a fundamental stress response that restrains tumour formation.
Yet, senescence cells are also present in non-cancerous states, accumulating
exponentially with chronological age and contributing to age- and diabetes-related
cellular dysfunction. The identification of hypersecretory and phagocytic behaviours
in cells that were once believed to be non-functional has led to a recent explosion
of senescence research. Here we discuss the profound, and often opposing, roles
identified for short-lived vs. chronic tissue senescence. Transiently induced senescence
is required for development, regeneration and acute wound repair, while chronic
senescence is widely implicated in tissue pathology. We recently demonstrated
that sustained senescence contributes to impaired diabetic healing via the CXCR2
receptor, which when blocked promotes repair. Further studies have highlighted the
beneficial effects of targeting a range of senescence-linked processes to fight disease.
Collectively, these findings hold promise for developing clinically viable strategies to
tackle senescence in chronic wounds and other cutaneous pathologies.
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INTRODUCTION

Senescence, a seminal discovery of Hayflick and Moorhead (1961), is a defined process that
globally regulates cell fate. Cellular senescence is traditionally described as a terminal stress
response, whereby cells are triggered to undergo stable and essentially irreversible cell cycle arrest
following initiation by a diverse range of stress-inducing stimuli (Hernandez-Segura et al., 2018).
Indeed, this process acts as an autonomous anti-tumour mechanism, halting incipient neoplastic
transformation (Faget et al., 2019). Yet, senescent cells can be found in non-cancerous tissues,
accumulating exponentially with increasing chronological age (Hudgins et al., 2018; McHugh and
Gil, 2018). These non-proliferative cells retain metabolic capabilities, exhibiting a hypersecretory
phenotype (Coppé et al., 2010). It has recently been shown that some senescent cells may even
engulf their neighbouring cells, for a survival advantage (Tonnessen-Murray et al., 2019). These
profound functional behaviours, identified in cells long thought to be non-functional, pose new
questions around their tissue roles and consequences. This review will explore emerging roles
for cellular senescence in normal and pathological wound repair, highlighting areas of potential
therapeutic opportunity.
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SENESCENCE AS AN
ANTI-PROLIFERATION MECHANISM

It was originally thought that only mitotic cells, which may be
highly proliferative, or spend large periods of time in quiescence,
undergo senescence (Campisi and di Fagagna, 2007). This
view has since been challenged, as features of senescence are
observed in some differentiated cells (Jurk et al., 2012; von
Zglinicki et al., 2020). The major age- and stress-related processes
that induce cellular senescence include replicative exhaustion
(Hayflick and Moorhead, 1961), mitogenic signals (Tchkonia
et al., 2013), oxidative stress (Passos et al., 2010), DNA breaks
(Di Micco et al., 2006), and epigenomic damage (Pazolli et al.,
2012). These stressors subsequently initiate anti-tumourigenic
networks, controlled by transcriptional regulators such as
p53 (Vousden and Prives, 2009). p53 directly transactivates
the cyclin dependent kinase (CDK) inhibitor, p21, to inhibit
CDK2, CDK4, and CDK6-mediated retinoblastoma protein
(pRb) phosphorylation (He et al., 2007). p16 similarly prevents
pRb inactivation, but in a p53-independent manner (Chen
et al., 2006). pRb naturally binds E2F/DP transcription factor
complexes to block transcription of E2F target genes, thus failure
to phosphorylate pRb halts cell cycle progression from the G1 to
S phase (Narita et al., 2003).

It is important to note that, while simplified here, the role for
p53 in cell survival is complex and somewhat contradictory, as
p53 activation can actually suppress senescence, instead causing
cell quiescence (Demidenko et al., 2010) or apoptosis (reviewed
in Salminen et al., 2011). In this regard, a cell’s fate might be
decided by the amount of damage sustained, and the expression
of other senescence-linked factors. Molecular understanding of
senescence is complicated further by the fact that the relative
contribution of p21, p16, and other cell cycle regulators is thought
to be context dependent (van Deursen, 2014).

SENESCENT CELL CHARACTERISTICS

Morphologically, senescent cells exhibit flattened, elongated
features, and may have multiple nuclei and enlarged vacuoles
(Rhinn et al., 2019). Senescence-associated beta galactosidase is
often used as an archetypal senescence biomarker (Dimri et al.,
1995; Debacq-Chainiaux et al., 2009), yet its specificity has come
under criticism (Krishna et al., 1999; Lee et al., 2006). For that
reason, it is most often used in conjunction with other key
biomarkers, such as p16 and p21, to confirm senescence (Baker
et al., 2016; Matjusaitis et al., 2016; Biran et al., 2017).

Senescent cells may also possess regions of highly condensed
chromatin (senescence-associated heterochromatic foci; Zhang
et al., 2007) and DNA damage-induced chromatin alterations,
including γH2AX and H3K9Me3 (Rodier and Campisi, 2011).
Loss of histones, centrosome aberrations and the breakdown of
the nuclear envelope (e.g., degradation of lamin B1) similarly
occur in many senescent states to enable rearrangement of
heterochromatin (Tigges et al., 2014; Wang et al., 2017).
These chromatin modifications sequester E2F target genes to
potentiate senescence (Shah et al., 2013). Moreover, senescence is

reinforced by microRNA-mediated silencing of E2F target genes
(Benhamed et al., 2012).

Experimental manipulation of epigenetic marks has
demonstrably shown their importance in controlling the
molecular induction of cellular senescence. H3K27me3, for
example, represses p16 and p14 expression by silencing the
INK4a-ARF locus (Kotake et al., 2007). Removal of H3K27me3,
by JMJD3-induced demethylation (Agger et al., 2009; Sui
et al., 2019) or pharmacological inhibition of the histone
lysine methyltransferase, EZH2 (Ito et al., 2018), promotes p16
expression and senescence. Inhibition of EZH2 also leads to SASP
production via enrichment of H3K27ac, and loss of H3K27me3,
at SASP-related loci (Ito et al., 2018). Overexpression of another
histone demethylase, UTX, can also silence H3K27me3 to
promote cellular senescence (Perrigue et al., 2020).

Stressed cells are repressed at the transcriptional level to
prevent the expansion of potentially harmful mutations. It
is therefore understandable that regulators, such as p53, are
not only responsible for initiating senescence, but also decide
whether cells should instead enter temporary quiescence or
undergo apoptosis (Salminen et al., 2011). Intriguingly, senescent
cells may actually retain heightened resistance to apoptosis,
first demonstrated in fibroblasts (Wang, 1995), possibly due to
altered p53 signalling (Childs et al., 2014) and upregulation
of pro-survival pathways (e.g., BCL-2 and ephrins, Zhu et al.,
2015). Indeed, senescent keratinocytes are resistant to ultraviolet
radiation-induced apoptosis (Chaturvedi et al., 2004) and
senescent fibroblasts to thapsigargin-induced apoptosis (Ryu
et al., 2007). Senescent endothelial cells, on the other hand,
are more likely to undergo apoptosis than their non-senescent
counterparts (Hampel et al., 2004). Clearly, this senescence trait
is situational, and not ubiquitous to all cell types.

The hypersecretory phenotype of senescent cells is most often
referred to as the senescence-associated secretory phenotype
(SASP), an attribute closely linked to the positive or negative
outcomes of tissue senescence that appears to be cell-type
and context-dependent. Even though studies have characterised
the SASP in multiple cell types, its detailed composition
remains elusive. Broadly, the SASP comprises a collection of
pro-inflammatory cytokines and chemokines, growth factors,
proteases, lipids and extracellular matrix components (Freund
et al., 2010; Elzi et al., 2012; Acosta et al., 2013; Lopes-
Paciencia et al., 2019). It is thought to mainly be a feature of
senescent cells that have undergone a DNA damage response,
as a SASP is not apparent in cells that naturally senesce
due to overexpression of p16 and p21 (Coppé et al., 2011).
However, a DNA damage-independent SASP can occur in
fibroblasts via p38MAPK phosphorylation, challenging previous
preconceptions (Freund et al., 2011). Collectively, the secretome
is the characteristic of senescent cells that confers most of
their biological effects, significantly contributing to age-related
functional decline (Rodier et al., 2009) and chronic disease (Zhu
et al., 2014) in autocrine and paracrine manners.

The SASP is dynamically regulated by a number of factors
that mostly converge on the NF-κB complex (Sun et al.,
2018). Inflammatory cytokines, such as IL-1α, can form positive
feedback loops with NF-κB and partner cascades to reinforce
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SASP release and senescence (Kuilman et al., 2008; Orjalo et al.,
2009). In fact, multiple authors have demonstrated activation
of NF-κB gene sets following senescence (Kuilman et al., 2010;
Lujambio et al., 2013), while p53 and NF-κB are linked in
coregulatory (in macrophages, Lowe et al., 2014) and antagonistic
(HeLa cells, Huang et al., 2007) manners. The importance
of NF-κB in senescence is highlighted by studies where NF-
κB suppression allows oncogene-induced IMR-90 fibroblasts to
bypass senescence (Chien et al., 2011) and reduces senescence in
osteoarthritic cartilage (Wu et al., 2015).

Indeed, the SASP (e.g., TGFβ) can potentiate senescence
in neighbouring cells (Acosta et al., 2013), but also promote
senescent cell clearance by attracting immune cells (Kang et al.,
2011; Tasdemir et al., 2016). The induction of senescence in,
and clearance of, premalignant cells consequently reinforces
tumour suppression. Paradoxically, the SASP can also drive
pre-cancerous development in proximal tissues as many SASP
proteins are potent mitogenic factors (e.g., VEGF, Coppé et al.,
2006, 2010; Collado et al., 2007). The plasticity of the SASP across
different microenvironments, cell types and stimuli (Campisi,
2013; Lupa et al., 2015; Maciel-Baron et al., 2016; Sun et al.,
2018) further complicates our understanding of its role within
tissues. However, it is clear that senescence, and the SASP, remain
important regulators of normal physiology and pathology. Tissue
consequences of senescent cells and their SASP are summarised
in Figure 1.

ROLES FOR SENESCENCE DURING
DEVELOPMENT AND REGENERATION

Many crucial biological processes require cells to undergo
cell cycle arrest and differentiation to terminal states. For
example, developmental lineage-specification requires cells to
differentiate in a temporospatial manner in order to properly
form tissues (Da Silva-Álvarez et al., 2019). In the skin, basal
keratinocytes first proliferate, and then differentiate, transiting
through the epidermis to replenish the non-viable stratum
corneum (Fuchs and Byrne, 1994). In fact, to allow effective
keratinocyte differentiation, p21 is activated initially (Missero
et al., 1996), but then suppressed (Di Cunto et al., 1998). It is
therefore unsurprising that tumour suppressor genes also aid
development and regeneration through control of quiescence,
terminal differentiation, apoptosis and senescence (e.g., Di
Giovanni et al., 2006; Watkins et al., 2013).

Three main roles have been put forward for the presence
of senescent cells during embryogenesis: (1) to promote the
regression of transient structures; (2) to balance cell populations
and/or; (3) to act as a signalling hub to regulate tissue
morphogenesis (Da Silva-Álvarez et al., 2019). In embryonic
development, temporal induction of senescence is required for
tissue patterning in the developing limb bud. Here, p21 induction
leads to SASP factor expression (e.g., FGF), stimulating cell
proliferation and tissue formation. Resulting senescent (and
apoptotic) cells are then effectively cleared by macrophages,
prior to tissue remodelling. Indeed, genetic knockdown of p21
to attenuate senescence leads to mild patterning defects in

murine limbs (Storer et al., 2013). In a corroborating study,
p21 was shown to contribute to senescence-linked development
in a p53-independent manner in human and murine embryos
(Muñoz-Espín et al., 2013). In this case, however, loss of p21
was compensated for by increased apoptosis. Thus, p21-regulated
senescence and apoptosis can perform synergistic roles during
organismal development.

Akin to development, lower organisms and anamniotes are
able to regenerate their tissues to full form and function, either
as juveniles or throughout their lives (Brockes and Kumar, 2005).
In fact, it has recently been shown that senescence may play an
important role in these regenerative processes. In salamanders,
senescence induction occurs at the intermediate stages of limb
regeneration and then diminishes due to effective clearance by
macrophages (Yun et al., 2015). Senescence is similarly invoked
during pectoral fin regeneration in zebrafish, and impaired when
senescence is blocked with the senolytic compound, ABT-263 (Da
Silva-Álvarez et al., 2020). Given the importance of senescence
in regulating tissue formation throughout development and
regeneration, it is logical to ask whether senescence could play
a role in the reparative responses of higher vertebrates.

SENESCENCE IN NORMAL TISSUE
REPAIR

Tissue repair is necessary for all life. While it seldom leads
to full regeneration, the process prevents exsanguination and
infection, and aids structural and functional restoration required
for survival. Tissue repair is rapid and highly dynamic,
comprising multiple cell types and overlapping processes that
broadly include haemastasis, inflammation, cell proliferation and
dermal remodelling (Wilkinson and Hardman, 2017). During
haemastasis, an insoluble blood clot is formed and endothelial
cells from damaged vasculature enter the wound, depositing a
temporary fibrin scaffold and releasing factors to attract both
circulating immune cells and resident skin cells (Velnar et al.,
2009). Inflammatory cells are rapidly recruited to the site of
damage, first dominated by neutrophils and pro-inflammatory
macrophages to remove bacteria and necrotic tissue (Young
and McNaught, 2011). Later stage healing is characterised by
a switch to anti-inflammatory macrophages, which phagocytose
any remaining pro-inflammatory cells, supporting fibroplasia
and wound resolution (Korns et al., 2011). To allow effective
repair, keratinocytes undergo partial epithelial-to-mesenchymal
transition and begin migrating to close the wound gap,
a process known as re-epithelialisation (Shaw and Martin,
2016). Formation of new vasculature (angiogenesis) is essential
to provide sustenance during the highly proliferative stage
of healing (Baum and Arpey, 2005). Finally, the immature
matrix laid down during early healing is replaced by stronger
scaffold proteins, such as mature collagen fibres produced
and remodelled by fibroblasts (Li et al., 2007). Each stage
of wound repair involves extensive cellular communication,
orchestrated by cytokines, chemokines, growth factors and
components of the extracellular milieu. The plasticity of the
response, and the cellular behaviours that occur, are homologous
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FIGURE 1 | Characteristics of senescent cells and their tissue consequences. Senescent cells feature morphological changes (1), chromatin modifications (2), loss
of nuclear envelope lamin B1 (3), increased p16 and p21 (4), senescence-associated beta galactosidase activity (5) and production of a senescence-associated
secretory phenotype (SASP, 6). SASP components (red) alter cellular processes (e.g., inflammation and angiogenesis) within the microenvironment. A chronic SASP
causes negative outcomes, while a short-lived, transient SASP is beneficial.

to those observed in cancer (e.g., immune cell infiltration,
invasion and epithelial-to-mesenchymal transition, Schäfer and
Werner, 2008). It is therefore not unreasonable to suggest
that senescence, and associated mechanisms, could significantly
contribute to wound healing.

Indeed, pertinent roles for senescence in tissue injury have
been emerging, largely focusing on the beneficial, transient
initiation of senescence during repair. Here, induction of
senescence following liver damage (Krizhanovsky et al., 2008)
and cutaneous injury (Jun and Lau, 2010) was shown to prevent
excessive fibrosis that would otherwise cause tissue dysfunction.
Krizhanovsky et al. (2008) confirmed that reduced fibrosis was
the result of senescence-linked fibrolytic enzyme production, and
immune-regulated clearance of injury-expanded cell populations
that would otherwise contribute to excessive matrix deposition.
Likewise, senescence decreased fibrosis in a model of cardiac
injury, where genetic ablation of p53 and p16 accelerated
fibrosis (Meyer et al., 2016). Ectopic expression of Ccn1, which
increased cardiac senescence, also limited fibrosis in this model.
Interestingly, Jun and Lau (2010), the first authors to observe
transient senescence during skin repair, revealed that Ccn1
causes fibroblast senescence via an oxidative-stress dependent
mechanism. Upregulation of Ccn1 was vitally important to
prevent excessive fibrosis. More recently, the same authors
demonstrated that topical application of another Ccn family
member, Ccn2, similarly actuates senescence and reduces fibrosis
in cutaneous murine wounds (Jun and Lau, 2017).

By contrast, when Demaria et al. (2014) ablated p16- and
p21-expressing cells in mice they observed impaired extracellular
matrix deposition and a decreased rate of wound closure.

Intriguingly, by day 15 post-injury, these senescent-deficient
wounds were excessively fibrotic. Similar to previous research
(Jun and Lau, 2010), transient senescence appeared limited
to fibroblast-like cells, which produced a PDGFA-enriched
SASP to stimulate appropriate skin repair (Demaria et al.,
2014). Studies continue to explore the importance of transient
senescence during acute wound healing, with Hiebert et al. (2018)
recently reporting that overexpression of nrf2 promotes fibroblast
senescence, which is accompanied by accelerated wound re-
epithelialisation and extracellular matrix deposition. Although
at present limited to murine models, these key investigations
provide clear evidence that temporal induction of senescence
is necessary for effective skin repair. Yet, many questions
remain unanswered. For instance, does transient wound-induced
senescence arise through intrinsic cell factors or environmental
influences? And how are these senescent cells so effectively
cleared once they are no longer required?

SENESCENCE IN AGED AND DIABETIC
WOUND HEALING

The above studies provide substantial insight into the importance
of senescence for the healing of experimental wounds. What
they do not address is the potential differential influences of
acute vs. chronic senescence to tissue repair, nor how senescence
could be involved in pathological healing. These are important
considerations for the clinical setting, where effective healing
can mean the difference between life or death (Han and Ceilley,
2017). Chronic, non-healing wounds are a huge socioeconomic
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burden, reducing quality of life and costing billions each year
to treat (Guest et al., 2015). Considered a “silent epidemic”
(Lindholm and Searle, 2016), chronic wounds display diverse
aetiology, with incomplete molecular and cellular understanding
(Frykberg and Banks, 2015). Inadequate current treatments
mean it is fundamentally important to further understand why
chronic wounds fail to heal, and ultimately develop more
effective therapies.

It has long been appreciated that chronic wound pathology is
almost entirely restricted to those who are elderly and/or diabetic.
This is fascinating, as the biological processes of ageing and
diabetes are themselves notably linked to senescence (Wilkinson
and Hardman, 2020). Senescence is both a characteristic feature
of Baker et al. (2013), Xu et al. (2015), and Helman et al. (2016)
and contributor to Baker et al. (2008, 2011) widespread tissue
ageing. Epigenetic modifications are one feature of ageing that is
linked to senescence. Genomic instability and DNA methylation
changes correlate with chronological ageing in mice (Stubbs et al.,
2017) and humans (Horvath, 2013). Interestingly, the repressive
mark, H3K27me3, showed altered DNA coverage on aged vs.
young stem cells (Liu et al., 2013; Sun et al., 2014), which may
contribute to their reduced renewal capacity.

Another attribute of normal metabolic ageing that is
experimentally linked to senescence is cumulative oxidative
damage. For example, human diploid fibroblasts (Duan et al.,
2005) and endothelial cells (Ruan et al., 2014) undergo senescence
in the presence of heightened reactive oxygen species (ROS),
while replicative lifespan can be extended in cell culture by
lowering oxygen tension (Parrinello et al., 2003). More notably,
exposure to ultraviolet radiation simulates photoageing by
increasing ROS production in skin (Herrling et al., 2006), while
ROS upregulates p16 in skin cells (Jenkins et al., 2011). Skin
ageing is also characterised by cell accumulation of p16 (Waaijer
et al., 2012) and senescence-associated beta galactosidase (Dimri
et al., 1995; Ressler et al., 2006). This association is causally
corroborated by Xu et al. (2018), who demonstrated that
transplantation of senescent cells to young mice accelerated
ageing, while Baker et al. (2011) revealed that eradication of p16-
positive cells alleviated features of premature ageing in a murine
progeroid model.

The link between diabetes and senescence is less well-
established, but is an area of intense current research.
As previously mentioned, senescent cells cause widespread
disruption to normal tissue architecture by virtue of their
SASP (Coppé et al., 2010). Major SASP constituents influence
senescence by targeting immunological pathways, such as NF-
κB (Salminen et al., 2011). This leads to matrix proteolysis and
increased inflammation, primary features of aged and diabetic
wounds (Makrantonaki et al., 2017; Wilkinson et al., 2019c).
Indeed, growing evidence suggests that a heightened intrinsic
immune response, or “sterile” inflammation, contributes to age-
and diabetes-related pathology (reviewed in Prattichizzo et al.,
2016). Characteristic features of diabetes that drive immune
cell accumulation, and therefore potentiate senescence, include
obesity and hyperglycaemia (Yokoi et al., 2006; Minamino
et al., 2009; Maeda et al., 2015; Schafer et al., 2016).
These processes most likely promote senescence via increasing

advanced glycation end-products and causing widespread
oxidative damage (Coughlan et al., 2011; Fang et al., 2016).

Turning specifically to the skin, it is clear that in diabetic
and aged tissue, accumulation of senescent cells extends to
both uninjured skin and wounds (Ressler et al., 2006; Waaijer
et al., 2012; Wilkinson et al., 2019a). Previous authors have
demonstrated that chronic venous leg ulcers harbour senescent
fibroblasts (Mendez et al., 1998; Vande Berg et al., 1998; Agren
et al., 1999; Wall et al., 2008). The presence of senescent
fibroblasts in chronic wounds may even exacerbate pathology,
where it was shown that ulcers containing over 15% senescent
cells were hard to heal (Stanley and Osler, 2001). We recently
reported a novel mechanistic link between senescence and
healing in diabetic wounds (Wilkinson et al., 2019a). Here,
intrinsically senescent macrophages were observed to promote
impaired wound healing in a non-aged, murine model of diabetic
pathological repair.

Indeed, many SASP factors attract monocytes and
macrophages (e.g., MCP-1; Kamei et al., 2006; Coppé et al.,
2008; Prattichizzo et al., 2018), often with a pro-inflammatory
phenotype (Mosser and Edwards, 2008; Lujambio et al., 2013).
Excessive immune cell recruitment and inappropriate retention
is a hallmark of chronic wound pathology. This may be even
be exacerbated by other local factors, such as iron, which
induces a pro-inflammatory phenotype in macrophages and
leads to fibroblast senescence in chronic venous leg ulcers
(Sindrilaru et al., 2011). Thus, macrophages are likely a
nexus for uncontrolled local inflammation in both diabetic
pathogenesis and senescence, ultimately delivering poor wound
healing. Moreover, the impaired function of macrophages
(and other immune cell types) in aged (Swift et al., 2001) and
diabetic (Wilkinson et al., 2019b) wounds likely contributes to
prolonged, rather than transient, senescence due to ineffective
clearance mechanisms.

Senescence in the wound environment is probably not limited
to fibroblasts and macrophages, as other wound cells, including
keratinocytes (Smirnov et al., 2016) and endothelial cells (Ruan
et al., 2014), are capable of undergoing senescence in response to
environment cues. Senescent keratinocytes are certainly observed
in aged skin (Velarde et al., 2012) and are suggested to
influence the reduced regenerative capacity of aged epidermis
(Zouboulis et al., 2008). Chronic wounds also harbour pathogenic
microorganisms (Kalan et al., 2019) that may contribute to
senescence by stimulating ROS production in keratinocytes and
exacerbating inflammation (Grange et al., 2009). Indeed, this may
occur via specific bacterial virulence factors, as pyocyanin from
Pseudomonas aeruginosa can induce senescence in fibroblasts
(Muller et al., 2009).

It is clear that the chronic ulcer milieu, which is rich in
pro-inflammatory factors, indirectly causes senescence via
exacerbating inflammation. However, as wound fluid from
venous leg ulcers directly induces senescence in neonatal
fibroblasts (Mendez et al., 1999), it is likely that the local
microenvironment also stimulates cellular senescence.
Intrinsically senescent wounds cells, such as fibroblasts,
are similarly capable of potentiating senescence across
neighbouring cell types in a paracrine manner, via their SASP
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(Acosta et al., 2013; Wilkinson et al., 2019a). Moreover, in local
environments where the SASP is insufficient to directly induce
cellular senescence, it may still promote pathological cellular
phenotypes, such as epidermal hyperproliferation (Albanesi
et al., 2018) and excessive dermal proteolysis (via MMPs; Caley
et al., 2015).

To add a further level of complexity, evidence for the
disparities between transient and chronic senescence is beginning
to emerge, with clear implications for wound healing. For
instance, stemness and reprogramming in keratinocytes is
promoted by a transient SASP, yet inhibited when the SASP
becomes chronic (Ritschka et al., 2017). Transient senescence also
encourages matrix deposition following tissue injury (Demaria
et al., 2014), but prevents excessive fibrosis (Jun and Lau,
2010), while chronic senescence is linked fibrotic disease
(Yanai et al., 2015). Taken together, published and emerging
studies are certainly challenging the dogma that senescence
is primarily limited to age-related dysfunction and cancer.
Indeed, evolving understanding of the concept of transient vs.
chronic senescence is likely to deliver important new insight into
the processes that occur during acute and pathological repair.
Current understanding of senescence contribution to normal and
pathological wound healing is summarised in Figure 2.

CELLULAR SENESCENCE AS A
THERAPEUTIC TARGET IN
PATHOLOGICAL WOUNDS

The widespread causative biological effects of cellular senescence
in tissue ageing pathology make the therapeutic modulation
of senescence an attractive target for a plethora of age-related
diseases. Genetic studies positively support this idea, with
inducible knockdown of p16 alleviating hallmark features of
ageing in progeroid murine models (Baker et al., 2011; Sato
et al., 2015). In fact, the well-documented effects of caloric
restriction, which both extends mammalian lifespan (Sohal and
Weindruch, 1996) and delays the onset of age-related disease
(Weindruch and Walford, 1982; Colman et al., 2014), may
be a physical manifestation of tissue senescence modulation.
Caloric restriction has been shown to reduce cardiac senescence
(Shinmura et al., 2011), and senescence in hepatocytes and
intestinal crypt cells in vivo (Wang et al., 2010). At the epigenetic
level, caloric restriction protects against age-related changes in
DNA methylation (Hahn et al., 2017). Caloric restriction also
decreases senescence partly by upregulating the epigenetically
linked sirtuin pathway, promoting anti-apoptosis and anti-
inflammatory mechanisms (Bonda et al., 2011). Subsequent
effects include slowing metabolic processes that contribute to
cellular ageing (e.g., oxidative stress, Yang et al., 2016), increasing
antioxidant production (Meydani et al., 2011), and increasing
autophagy to remove damaged and unimportant intracellular
components (reviewed in Cuervo, 2008). Moreover, sirtuins may
play important roles in preventing age-related decline in skin
repair, as SIRT1 deficiency exacerbates healing pathology in
diabetic wounds (Thandavarayan et al., 2015).

Although caloric restriction (without malnutrition) provides
a multitude of health benefits, it retains poor feasibility as a
clinical intervention, requiring high compliance and patient
discipline. Many lifestyle choices, such as obesity, are actually
strongly associated with social status (Drewnowski and Specter,
2004). Similarly, those suffering from uncontrolled type II
diabetes and severe chronic wounds are often from socially
deprived backgrounds (Anderson et al., 2018), a difficult
population in which to manage compliance. For all of these
reasons, a considerably more attractive proposition is the use
of senescence-targeted drugs, otherwise known as senolytics.
These drugs affect unique features of senescent cells, such as
resistance to apoptosis (Salminen et al., 2011). Senescent cells
upregulate prosurvival pathways, particularly BCL-2 (Ovadya
and Krizhanovsky, 2018). This opens up drug repurposing
opportunities around the numerous BCL-2 inhibitors that were
developed for the treatment of cancer (Roberts et al., 2016;
Montero and Letai, 2018). Results have been promising. Targeting
BCL-2 in vivo induces apoptosis and thus eliminates senescent
cells in the lung following irradiation (Yosef et al., 2016) and
throughout the body following irradiation or natural ageing
(Chang et al., 2016). Chang et al. (2016) further established
that senescent human and murine fibroblasts, and human renal
epithelial cells, are more susceptible to BCL-2 inhibitor (ABT-
263) than non-senescent cells, proposing potent and specific
effects. Unfortunately, traditional BCL-2 inhibitors possess
activity against other BCL class proteins, such as BCL-XL,
raising questions around off-target effects in the clinic, including
thrombocytopenia and neutropenia. As a result, more specific
BCL-2 inhibitors with lower toxicity are being tested (King et al.,
2017). It has even been suggested that low-dose, combinatorial
use of senolytics may be an effective and less harmful alternative
(Ovadya and Krizhanovsky, 2018).

Other senolytics that have demonstrated experimental efficacy
include the tyrosine kinase inhibitor, Dasatinib, used to treat
leukaemia (Keskin et al., 2016), and the flavonoid p53 activator,
Quercetin (Khan et al., 2016). Combinatorial treatment with
Dasatinib and Quercetin extends lifespan, alleviates frailty (Xu
et al., 2018), and improves vasomotor function (Roos et al.,
2016) in aged mice. Dasatinib and Quercetin have also shown
promise in a phase I trial in diabetic kidney disease patients,
where reduced senescent cells and circulating SASP factors
were observed following administration (Hickson et al., 2019).
Alternative flavonoids are now being tested for their potential
senolytic effects, such as Fisetin, which is able to eliminate
senescent cells and, crucially, restore tissue function in aged mice
(Yousefzadeh et al., 2018).

The importance of transient senescence for effective healing
should not be underestimated. As noted previously, temporary
induction of senescence aids rapid tissue reformation (Demaria
et al., 2014; Hiebert et al., 2018). During a normal damage
response, these senescent cells are effectively cleared by natural
killer cells (Krizhanovsky et al., 2008) and macrophages (Yun
et al., 2015). Nevertheless, in chronic situations, senescent cells
persist, likely due to elevated immunosenescence and resulting
impaired immunological functions (Hall et al., 2016). It follows
that treatments to boost immune system function, for instance
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FIGURE 2 | Roles for senescence in acute vs. chronic wound repair. Late-stage wound healing is characterised by extracellular matrix (ECM) deposition, full wound
closure and blood vessel perfusion (left). Senescent fibroblasts appear during late-stage healing and contribute to ECM deposition by producing a pro-healing
senescence-associated secretory phenotype (SASP, blue stars) containing PDGFA. Senescent fibroblasts prevent excessive fibrosis via CCN1 and CCN2. The
senescent cells are then effectively cleared by anti-inflammatory macrophages (AI MFs) and the skin is restored. Chronic healing wounds feature wound edge
hyperproliferation and excessive inflammation (right). Here senescent fibroblasts and MFs (blue) exacerbate inflammation via a pro-inflammatory (PI) SASP of
cytokines and proteases. The SASP may also exert a paracrine effect, causing senescence in other wound cell types. High bacterial load stimulates further
inflammation and oxidative stress, which can cause hyperproliferation or senescence in keratinocytes. Senescent cells are not effectively cleared by the dysfunctional
chronic wound immune cells, thus tissue damage persists and the wound fails to heal.

by aiding senescent cell recognition, could be beneficial in the
context of transient senescence and tissue repair. Generally,
senescent cells express stimulatory ligands that bind to NK2GD
receptors on natural killer cells, thus initiating a killing response
(Sagiv et al., 2016). However, senescent fibroblasts in aged skin
have recently been shown to express HLA-E, which bypasses
recognition and clearance by natural killer and T cells (Pereira
et al., 2019). Here, approaches developed in the cancer field
may also be useful, for example engineering T cells to express
receptors that target specific cellular (tumour) proteins (reviewed
in June et al., 2018). Studies to identify and validate new senescent
cell receptors will be essential to the development and clinical
application of such immune-regulated approaches.

Indeed, the emergence of global profiling methodologies,
such as single-cell RNA sequencing, could provide the basis
to understanding senescence-linked changes in ageing and
pathology by identifying unique cell-based transcriptomic
signatures within tissues. Kimmel et al. (2019) used this approach
to compare cell frequency, heterogeneity and age-related
transcriptomic changes between aged and young murine tissues.
Similarly, Angelidis et al. (2019) combined transcriptomics and
proteomics to not only identify the epigenetic and transcriptional
consequences of ageing in the lung, but also determine their
functional implications. Future harnessing of these technologies
could therefore facilitate the identification and targeting of key
senescence-linked receptors and biomarkers in a tissue and
pathology-specific manner.

Alternative strategies to diminish or limit senescence
and alleviate pathology instead target the SASP or specific

senescence-linked receptors directly (summarised in Figure 3).
Certainly, the SASP is transcriptionally regulated by NF-κB
and others (Salminen et al., 2011), and contributes heavily to
tissue deterioration, both driving widespread destruction and
reinforcing senescence (Rodier et al., 2009; Acosta et al., 2013).
SASP inhibitors affect key transcriptional mediators, blocking
signalling and preventing SASP production (Moiseeva et al.,
2013). Interestingly, Metformin, a widely used anti-diabetic drug,
is an effective SASP inhibitor (reviewed in Rena et al., 2017) able
to directly accelerate healing in diabetic mice (Han et al., 2017).
Rapamycin, another SASP inhibitor, was the first drug revealed
to extend lifespan in mice (Harrison et al., 2009), and enhance
the replicative lifespan of human keratinocytes (Horvath et al.,
2019) and skin fibroblasts in vitro (Sodagam et al., 2017).
Although these studies suggest potential skin-related benefits
of SASP inhibitors, removal of the SASP could be deleterious,
impairing the healing response and preventing senescent cell
clearance (von Kobbe, 2019). Consequently, it may be more
advantageous to target particular SASP components known
to impact tissue function, either with antibodies (e.g., IL-1α,
Orjalo et al., 2009), or specific inhibitors (e.g., against CXCR2,
Wilkinson et al., 2019a).

We remain a long way from implementing senescence-
targeted treatments for pathological wound healing, yet it is
reassuring to see that current senolytic drugs display efficacy
across a wide range of tissues and pathologies. In a number
of studies, systemic senolytic treatments have been shown to
have clear effects in peripheral target tissues across a range of
treatment regimens. For example, a single dose of BCL inhibitor

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 August 2020 | Volume 8 | Article 773

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00773 August 7, 2020 Time: 19:2 # 8

Wilkinson and Hardman Targeting Senescence in Chronic Wounds

FIGURE 3 | Therapeutic targeting of senescence for chronic healing wounds. Senescent cells accumulate in chronic healing wounds, contributing to inflammation
and poor healing. Senescence can be targeted by: (A) inhibiting pro-survival pathways with BCL inhibitors and broad spectrum drugs (e.g., quercetin) to cause
apoptosis; (B) engineering chimeric antigen receptor (CAR) T cells to target senescent cell receptors, or modulating expression of natural killer (NK) cell receptors
NKG2A and NKG2D to increase clearance; (C) using Metformin or other SASP inhibitors to reduce NF-κB-mediated inflammation and bystander senescence and;
(D) inhibiting receptors known to potentiate wound senescence (e.g., CXCR2). Red arrows/left panels = negative outcomes. Green arrows/right panels = positive
outcomes. MF = macrophage. Senescent cells = blue.

(Yosef et al., 2016), and dosing over consecutive days (Chang
et al., 2016), was able to reverse irradiation-induced senescence
in different tissues. In the work by Xu et al. (2018), aged mice
showed improved physical performance following biweekly oral
treatments of Dasatinib and Quercetin for 4 months, yet reduced
SASP was observed in human ex vivo cultured adipose tissue
within 48 h of treatment. Moreover, a single 3 day oral treatment
of Dasatinib and Quercetin was able to reduce senescence in the
adipose tissue of diabetic patients in a phase I trial (Hickson et al.,
2019). These studies therefore suggest that senolytic treatments
not only have rapid effects in target peripheral tissues, but can
overcome established tissue senescence.

Experimental studies do show beneficial effects of modulating
senescence in the skin. For example, elimination of senescent
cells from the epidermis restored proliferative capacity in hair
follicle stem cells (Yosef et al., 2016), known to participate in
wound healing (Joost et al., 2018). Further, blockade of the
potential senescence receptor, CXCR2 (Acosta et al., 2008),
directly accelerated healing in human ex vivo skin wounds
and diabetic murine wounds in vivo (Wilkinson et al., 2019a).
Here, a CXCR2 antagonist was administered to wounds topically
(ex vivo) and subcutaneously (in vivo), suggesting direct delivery

to the wound site as a viable administration route. Indeed,
elevated CXCR2 has previously been observed in diabetic wounds
(Wetzler et al., 2000), and more recently in T cells from
human diabetic patients (Lau et al., 2019). We note with
interest that pharmacological inhibition of CXCR1/2 additionally
prevents inflammation-mediated damage to pancreatic islets,
thus prohibiting streptozocin-induced diabetes in mice (Citro
et al., 2015). Therefore, CXCR2 appears a common factor in
both the ontology and local pathology of diabetes. Senolytics
should certainly be considered for the treatment of human
chronic wounds characterised by high levels of senescence
(Stanley and Osler, 2001). However, given that knockdown of
CXCR2 (Devalaraja et al., 2000) and ablation of senescent cells
(Demaria et al., 2014) actually delays acute wound healing,
future senescence-targeted therapies should be reserved for the
treatment of chronic conditions.

CONCLUSION

Despite seemingly contradictory roles in many cancers, the
detrimental contribution of cumulative senescence to ageing
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and age-related disease is now well-established. By contrast,
the short-lived, transient senescence observed to benefit tissue
development, regeneration and repair, remains significantly less
well-characterised. In wound repair, a paradigm is emerging
where local transient senescence predominately constrains
fibrosis, while chronic senescence drives diabetic wound
pathology. Indeed, experimentally blocking the senescence-
linked receptor, CXCR2, in vivo reverses pathology and
accelerates diabetic healing. These observations now pave the way
to explore the beneficial effects of senescence-targeted therapies
for the treatment of chronic wounds.
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