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Accumulating studies have indicated that propofol may lead to neurotoxicity and its
effect on neural stem cells (NSCs) may play pivotal role in propofol-related neurotoxicity.
Previously, we found that propofol could promote NSCs proliferation and could
regulate several microRNA expressions. However, the underlying mechanism between
microRNAs and NSCs development after propofol exposure is still unclear. Our data
first observed that rat primary neural stem cells exposed to propofol exhibited a cell
cycle arrest status and an inclination to differentiate into GFAP* or S1008™ cells. This
phenomenon was accompanying with a lower miR-124-3p expression and could be
reversed via overexpression miR-124-3p in NSCs. Using bioinformatic predictions and
luciferase assay we confirmed that Sp1 (Specificity Protein 1) is the target gene of
miR-124-3p, indicating that miR-124-3p may regulate NSCs development through Sp1.
Further, knockdown of Sp1 rescue the effect of propofol on NSCs differentiation. Finally,
we demonstrated that Sp1 could bind cdkn1b promoter region through chromatin
immunoprecipitation assay, indicating that Sp1 affect NSC'’s cell cycle through cdkn1b
directly. Overall, our study highlights the miR-124-3p/Sp1/cdkn1b axis to be important
in propofol interfering the differentiation of NSCs.

Keywords: propofol, neural stem cells, cell cycle, differentiation, miR-124-3p, Sp1, cdkn1b

INTRODUCTION

Propofol is utilized worldwide as an intravenous anesthetic due to its rapid onset and minimal
negative postoperative effects (Glen, 2018). However, propofol is still an off-label choice in most
clinical pediatric practices (Chidambaran et al., 2015). The current dilemma is that there is a lack of
evidence to support the safe use of propofol and there are a growing number of pre-clinical studies
attributing neurotoxicity and neurogenic impairment to propofol (Krzisch et al., 2013; Bosnjak
et al., 2016; McCann and Soriano, 2019).

It has been suggested that propofol can disrupt neurogenesis by modulating apoptosis,
proliferation, or the differentiation of neural stem cells (NSCs) (Zou et al, 2013). The
potential mechanisms underlying these effects include regulation of the caspase-3 cascade
(Karen et al, 2013), calmodulin-dependent protein kinase II, or microRNAs (miRNAs)
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(Hebert and De Strooper, 2009; Liang et al., 2019). However, the
roles of miRNAs in the dysfunction of NSCs following propofol
exposure are not fully understood.

miRNAs are enriched in the nervous system and are
key post-transcriptional regulators within neurodevelopment
(Hebert and De Strooper, 2009; Liu and Xu, 2011). miR-
124 is abundantly expressed in the brain where it participates
in a complex relationship within central nervous system
functions and disorders (Sun et al., 2015). During embryonic
neurodevelopment, miR-124 is essential for cell survival in the
cortex and loss of miR-124 results in neuronal apoptosis (Sanuki
et al., 2011). Moreover, loss of miR-124 in the neural crest
cells results in apoptosis of sympathetic ganglia and midbrain
dopaminergic neurons (Huang et al., 2010). At the early postnatal
stage, miR-124 triggers the outgrowth of mossy fibers in the
dentate gyrus (Sanuki et al., 2011). While in the adult brain, miR-
124 functions as an important regulator of the transition from
transit amplifying cells to neuroblasts during neurogenesis in the
subventricular zone (Cheng et al.,, 2009). These investigations
suggest that the temporal and spatial equilibrium of miR-124 is
crucial to the development of NSCs.

Previously, ourselves and others have demonstrated the ability
of propofol to perturb the development of NSCs (Krzisch et al.,
2013; Tao et al, 2013; Qiliang et al., 2016). Once lineage
progression is initiated, NSCs acquire properties of differentiated
cells, such as fate specification and specific morphologies. This
switch requires potent regulators such as miRNAs, transcription
factors, and RNA-binding proteins, in order to modulate the
expression of multiple gene networks. Through bioinformatic
analyses, Marcia et al., reported that miR-124 can regulate
neurogenesis by targeting specificity protein 1 (Spl) (Santos
et al., 2016). Spl is a zinc finger structural transcription factor
involved in cell cycle progression (Billon et al., 1999; Opitz and
Rustgi, 2000; Cen et al., 2008), development, and differentiation
(Palazuelos et al., 2014; Lee et al., 2020). Studies have identified
that up-regulating Sp1 in mesenchymal stem cells could decrease
neuronal differentiation (Mondanizadeh et al., 2015), whilst
down-regulation could reduce the proliferation and neuronal
production of NSCs during neurogenesis (Santos et al., 2016).
However, there is still no direct evidence that miR-124 can
target Sp1 in NSCs.

In the current study, we provide direct evidence that miR-124
can directly interact with Spl to regulate the differentiation of
NSCs. Moreover, our study demonstrates that propofol exposure
alter the differentiation of NSCs via a miR-124/Sp1/cdknl1b axis.

MATERIALS AND METHODS
Culture of NSCs and Propofol Exposure

All experimental procedures were approved by the Southern
Medical University Administrative Panel on Laboratory Animal
Care, and experiments were conducted in accordance with
the guidelines of Animal Use and Care of Southern Medical
University. NSCs were harvested from both the cortices and
hippocampi of Sprague-Dawley rat embryos on embryonic
day 16-18 (E16-E18). Briefly, the brain tissue was collected

and dissociated mechanically into single cells. To form
neurospheres, cells were cultured in NSC basal medium
(Millipore, United States) containing basic fibroblast growth
factor 20 ng/mL (R&D, United States), then incubated at
37°C and 5% CO;. After 3-5 days in culture, neurospheres
of 150-200 pm in diameter were digested into single cells
using Accutase (Millipore, United States) and suspended to
a density of 5 x 10° cells/ml. Cells were then plated on
poly-L-ornithine and laminin-coated plates (Sigma-Aldrich,
United States) in NSC basal medium for 2-3 days. The culture
medium was then replaced with fresh and Dulbecco’s Modified
Eagle’s medium (DMEM)/F12 containing 2,6-diisopropylphenol
(propofol; Sigma-Aldrich) at a final concentration of 50 uM in
dimethyl sulfoxide (DMSO) (Sigma-Aldrich, United States) (Li
etal., 2018). The same volume of DMSO was added to the control
group. Cells were treated for 6 h prior to differentiation.

NSCs’ Differentiation

To induce differentiation of NSCs, cells were grown for 3 days in
DMEM/F12 and 10% FBS. NSCs were stained for neuronal and
glial cell markers using mouse anti-p-tubulin III (1:300 dilution;
Proteintech; China; Cat# 66375-1-Ig;RRID: AB_2814998) and
rabbit anti-GFAP (1:300 dilution; Abclonal; China; Cat# A14673,
AB_2761548), respectively.

Immunocytochemistry

Fluorescent staining of nestin using rabbit anti-nestin (1:200
dilution; ABclonal; China; Cat# A0484; AB_2757216) was to
identify NSCs. And fluorescent staining of anti-p-tubulin III and
anti-GFAP (mentioned above) was performed to confirm NSC
differentiation. Briefly, cells were washed once with phosphate-
buffered saline (PBS), fixed for 30 min in 4% paraformaldehyde
(Solarbio, China) at 37°C, and permeabilized with 0.5% Triton
X-100 (Sigma-Aldrich) for 10 min. After three 5 min washes
with PBS, the cells were blocked with 1% bovine serum albumin
(BSA; Solarbio, China) for 1 h at room temperature. Cells were
incubated overnight at 4°C with primary antibodies (diluted in
1% BSA). The cells were washed three times with PBS-Tween-
20 (0.1% v/v) and were incubated for 1 h at room temperature
with fluorescently labeled secondary antibodies including FITC-
conjugated goat anti-rabbit IgG [(1:100 dilution; Bioss; China;
Cat# bs-0295G-FITC; AB_10894349], Cy3 conjugated goat anti-
mouse IgG ((1:100 dilution; Bioss; China; Cat# bs-0296G-
Cy3; B_10892835), Cy3-conjugated goat anti-rabbit IgG (1:100
dilution; Bioss; China; Cat# bs-0295G-Cy3; AB_10892956) and
DyLight 405 goat anti-mouse IgG antibody (1:100 dilution;
Abbkine, United States; Cat# A23110; AB_2721248). After
washing, cells were counterstained with DAPI and analyzed
using laser-scanning confocal microscopy (Olympus, Japan). Cell
numbers in culture were counted in 5 fields per well (center
and at 3, 6, 9, and 12 o’clock positions) and summed for the
entire well. The percentage values of each positive cells were
calculated based on the sum of two positive cells. Four duplicated
wells in each group from five independent experiments were
analyzed. All results were confirmed by 2 researchers using
double-blind method.
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MicroRNA Target Prediction and

Screening

MiRWalk2.0', a collection of predictions and experimental
verifications of miRNA-targets (Dweep and Gretz, 2015) was
used in the current study to predict the target of miR-124-3p.
Target mRNA with predicted binding sites for miR-124-3p were
identified using the following databases: miRWalk, miRanda,
miRDB and TargetScan. The bioinformatics data was analyzed
using the DAVID Bioinformatics Resources 6.8 (Huang da
et al., 2009) for Gene ontology enrichment. Venn diagrams were
generated using online tools’.

Luciferase Reporter Assay

HEK293T cells were seeded at 50% confluence 24 h prior to
transfection. Wild-type (WT) or mutant (MUT) Spl 3’-UTR
reporter constructs were co-transfected along with an miR-
124-mimic or negative control (NC) using Lipofectamine
2000 (Invitrogen). At 48 h post-transfection, luciferase assays
were performed using a Dual-Luciferase Reporter assay
system (Promega United States) according to manufacturer’s
instructions and analyzed on a multi-plate reader (BioTek,
United States). Relative light units were calculated by the ratio
of Renilla to firefly luciferase activity. The control psiCHECK-2
plasmid that carried the 3’-UTR region of Spl gene was used to
normalize to and correct non-specific effects. Three technical
replicates were performed for each condition.

miR-124-3p Overexpression

To determine the effects of miR-124 on the cells, they were
transfected with 50 nM of an miR-124-3p mimic (Genepharma)
or/NC with Lipofectamine 2000 reagent (Invitrogen,
United States) according to the manufacturer’s instructions.

RNA Extraction and Quantitative

Real-Time PCR (qRT-PCR)

Total RNA was isolated from primary NSCs using TRIzol
reagent (Thermo Fisher Scientific, United States) according
to the manufacturer’s instructions. Total RNA (1 pg) was
used to synthesize cDNA using a PrimeScript RT reagent Kit
with gDNA Eraser (TaKaRa, China). miRNAs were isolated
using RNAiso (TaKaRa, China) according to manufacturer’s
instructions. miRNA (5 pg) was polyadenylated and used to
synthesize cDNA using a MirX miRNA First Strand Synthesis
kit (Clontech, Japan). Expression of mRNA and miRNA was
determined by quantitative real-time PCR (qRT-PCR) using the
TB Green Premix Ex Taq II (TaKaRa, China) and MirX miRNA
qRT-PCR SYBR Kit (Clontech, Japan), respectively. qRT-PCR
was performed on the ABI 7500 system (Applied Biosystems,
United States). B-actin and U6 expression was quantified as
internal controls for mRNA and miRNA analysis, respectively.
The primers sequences used in these analyses can be found in
the (Supplementary Table 1). The results of the analyses were

'http://zmf.umm.uni- heidelberg.de/apps/zmf/mirwalk2/
*https://david.ncifcrf.gov/
Shttps://bioinfogp.cnb.csic.es/tools/venny/index.html

calculated and expressed according to an equation (274ACY)

which provides the amount of the target, normalized to an
internal reference. Ct is a threshold cycle for target amplification.
Each biological sample was tested in triplicate.

Lentiviral Vector Transduction

NSCs were transduced with Spl short-hairpin RNA (shRNA)
or NC lentivirus (Obio Technology). Virus-containing medium
was replaced with the differentiation medium mentioned above.
For lentiviral transduction, NSCs (4 x 105) were seeded in 6-
well plates and the lentivirus was added at a multiplicity of
infection (MOI) of 1:20. After 72 h, the transduction efficiency
was evaluated via fluorescence microscopy. Three shRNAs which
targeted different gene regions were explored to obtain the most
effective silencing. Sense strands used in this study can be found
in the (Supplementary Table 1).

Western Blot

NSCs were harvested and digested in RIPA extraction buffer
(Beyotime, China). Protein samples were separated by 10%
SDS-PAGE and transferred onto PVDF (polyvinylidene
difluoride) membranes (Millipore, United States) in tank transfer
system (Bio-Rad, United States). Membranes were blocked
with 5% non-fat milk in Tris-buffered saline containing 0.1%
Tween-20 (TBST) for 1h, washed three times in TBST, and
incubated overnight at 4°C with primary antibodies including
rabbit anti-Spl (1:1000 dilution; Abcam; United States; Cat#
ab13370, AB_300283), rabbit anti-cdknlb (1:1000 dilution;
Abcam; United States; Cat# ab32034, AB_2244732), rabbit
anti-GAPDH (1:2500 dilution; Abcam; United States; Cat#
ab9485; AB_307275), or rabbit anti-B-tubulin(1:1000 dilution;
Abcam; United States; Cat# ab6046; AB_2210370). After
incubation with the HRP conjugated goat anti-rabbit IgG
secondary antibody (1:5000 dilution; Bioss; China; Cat#
bs-0295G-HRP, AB_10923693), immunoreactive  bands
were detected by enhanced chemiluminescence (Millipore,
United States). The protein bands were quantitatively analyzed
using Image]J software 1.52a.

Chromatin Immunoprecipitation

Chromatin immunoprecipitation (ChIP) for the primary NSCs
was performed using a Pierce Magnetic ChIP Kit (Thermo
Fisher Scientific, United States) according to the manufacturer’s
instructions. An anti-Spl antibody suitable for ChIP (1:100
dilution; Cell Signaling Technology; United States; Cat# 9389;
AB_11220235) or rabbit IgG (1:250 dilution; Thermo Fisher
Scientific; United States; Cat# 31887; AB_2532177) was use.
qRT-PCR was performed to obtain quantitative data using
2 x Taq Plus Master Mix (Vazyme, China), and TB Green
Premix Ex Taq II (TaKaRa, China). The enrichment at the cdkn1b
promoter region was normalized to the amount of the total input.
The Primers for the cdknlb promoters can be found in the
(Supplementary Table 1).

Statistical Analysis
For data obtained via qRT-PCR or Western blot, two-way
ANOVA with repeated measures was used to analyze the
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differences between propofol-treated and control groups at
various time points. All other data were analyzed via one-way
ANOVA. p < 0.05 was considered statistically significant.

RESULTS

Propofol Exposure Promotes the
Differentiation of NSCs to GFAP* Cells

Immunocytochemistry identified that >90% of the cells isolated
from the rat embryonic cortex and hippocampus were nestin
positive (Figure 1A). In order to evaluate whether propofol
exposure had an influence on the differentiation of NCSs,
the cells were treated for 6h with 50 WM propofol before the
induction of differentiation. Antibodies against the immature
neuron marker P-tubulin III and glial marker GFAP were
used for immunocytochemical staining on day 0, day 1, and
day 3 after inducing differentiation. We found that NSCs had
differentiated into both B-tubulin III4+ and GFAP+ cells on day
1 and 3 (Figures 1B-D). However, following treatment with
propofol, the proportion of GFAP+ cells compared to DMSO-
treated or control cells significantly increased (Figures 1E,F).
Correspondingly, the proportion of B-tubulin III4+ cells
decreased (Figures 1E,F). Further, the fluorescence intensity
indicated that the expression of S1008, another astrocytes
marker, was upregulated in propofol and reversed in Spl
knockdown group in day3 (Supplementary Figure 2).

Propofol Downregulates miR-124-3p in
Rat NSCs

We then proceeded to investigate the mechanism by which
propofol induced the differentiation of NSCs into GFAP+
cells. Based on our previous research, we selected several
miRNAs involved in cell differentiation and assessed whether
propofol could modulate their expression. Among the
miRNAs investigated, only miR-124-3p was shown to be
down-regulated on day 1 and 3 of differentiation following
propofol exposure (Figure 2A). We then constructed an miR-124
mimic exogenously and transfected this into NSCs so that they
overexpressed this miRNA. Our results showed that the miR-124
mimic could moderately reverse the effects of propofol and
reduce the proportion of NSCs differentiating into GFAP+ cells
(Figures 2B,C). The effect of miR-124-3p overexpression were
confirmed at day 0, 1, and 3 (Figure 2D).

miR-124 Binds to the 3'-UTR Regions of

Sp1 mRNA

miRNAs target the 3'-UTR regions of mRNA to induce post-
transcriptional gene regulation. To predict the target mRNA
of miR-124-3p, we utilized four online miRNA databases,
miRanda, miRDB, miRWalk, and TargetScan (Supplementary
Table 2). Here, we took the candidates that were predicted by
all four databases and further analyzed these bioinformatically
(Figure 3A). Gene ontology enrichment analysis showed that
among targets within the molecular function, transcription
factors had the highest enrichment-score (Figure 3D). Among

the targets of top 20 enrichment-score involved in biological
processes, we found two terms contained Sp1 and were related to
development simultaneously (Figure 3C; Sp1 containing subsets
shown in red). Finally, among the miR-124-3p targets involved in
cellular component, targets involved in processes at the cell-cell
junction were enriched (Figure 3B).

We next used TargetScan and identified that the 3’-UTR
regions of Spl mRNA contains two predicted miR-124-3p
binding sites (Figure 4A). To verify these predictions, a dual
luciferase reporter assay was applied. First, we generated a
point mutation in the miR-124-3p binding site on Spl mRNA
(Figure 4B). We then cloned the miR-124-3p binding regions
from both the wild-type and mutated Spl into the Renilla
luciferase coding sequence of the psiCHECK-2 vector. The
miR-124-3p mimics or mimic NC were co-transfected with
psiCHECK-2-Sp1-3’-UTR-WT or psiCHECK-2- Sp1-3’-UTR-
MUT into HEK-293T cells. Compared with other groups, the
luciferase activity in cells co-transfected with the miR-124-3p
mimic and wild-type Sp1 was significantly reduced (Figure 4C).
We also performed qRT-PCR and confirmed that propofol
exposure significantly enhanced the expression of Spl mRNA on
day 1 and 3 after inducing differentiation (Figure 4D).

miR-124 Targets Sp1 to Differentiate
NSCs Into GFAP* Cells Following

Propofol Exposure

To further validate the effect of miR-124-3p on Spl,
we transfected the miR-124 mimic into NSCs and
quantified Spl mRNA and protein expression. qRT-PCR,
immunocytochemistry, and Western blots results showed that
Spl mRNA and protein was significantly increased following
propofol exposure (Figures 5A-D). And the increased mRNA
and protein expression could be reversed by the miR-124-3p
mimic (Figures 5B-D).

For further confirm the effect of Spl in NSCs’ differentiation,
we knock-down the Spl expression in NSCs using shRNA
(Figures 5E,F). And the results confirmed that knock-down of
Spl could limit the increase of GFAP+ cells following propofol
exposure (Figures 5G,H).

Sp1 Binding to the cdkn1b Promoter
Region Leads to Cell Cycle Arrest of
NSCs

Previous studies have shown that the cell fate of NSCs can be
modulated by cyclin-dependent kinases (including CDK4 and
CDK?2) (Li et al,, 2008), and cyclin-dependent kinase inhibitors
(including cdknla and cdknlb) (Andreu et al, 2015; Cheng
et al.,, 2015). Accordingly, we performed qRT-PCR to explore
the correlation between these cell-cycle proteins and propofol
exposure (Supplementary Figure 1). Among those proteins,
the mRNA expression of cdknlb was markedly increased after
propofol exposure (Figures 6A,B). Cell cycle detections showed
the percentage of cells in G1 increased in propofol group
compared to control group indicating a lengthening of the G1
phase in dayl and day3 (Supplementary Figure 3). Moreover,
when exposed to propofol, knock-down Sp1 could significantly
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decreased cdknlb protein expression level (Figures 6C,D). As
a transcription factor, Spl may regulate transcriptional activity
of several cell cycle regulatory proteins. Thus, we conducted
chromatin immunoprecipitation (ChIP) to test whether Spl
could directly regulate cdknlb. Our results exhibited that cdknlb
promoter region was enhanced enrichment in NSCs after
propofol treatment (Figures 6E,F).

DISCUSSION

In the current study, we investigated the effect of propofol on
the fate of rat NSCs and the role of the miR-124/Sp1/cdknlb
axis in this process. Our data first highlighted that NSCs

exposed to propofol exhibited a cell cycle arrest status and
then an inclination to differentiate into GFAP' or S100p™
cells. Moreover, propofol could decrease the expression of
miR-124-3p. Using bioinformatic predictions and biological
validation we demonstrated that miR-124-3p can interact with
the 3’-UTR of Spl. Further, interaction of Spl/cdknlb might
induce cell cycle arrest which might be relative to tendency
to differentiate into GFAPT or S100p™ cells of NSCs. This
inclination could be overturned by overexpression of miR-124 or
knockdown of Sp1.

In previous studies, the data indicated that propofol would
inhibit the proliferation of NSCs (Li et al., 2018; Liang et al,,
2019). In our present study, propofol lengthened the G1 phase
indicating a cell cycle arrest. Then we pay more attention to
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(B) Gene ontology enrichment analysis of target genes for miR-124-3p involved in cellular components (C) biological processes, or (D) in molecular functions.

Development-related subsets containing Sp1 are marked in red. Transcription factors (sky blue) had the highest enrichment-score in molecular function.

FIGURE 3 | miR-124 targets Sp1 by binding to the 3’-UTR region of Sp1 mRNA. (A) Venn diagram showing target mRNAs for miR
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the effect of propofol on cell fate, such as changes in the
direction of cell differentiation after cell cycle arrest. To better
illustrate the two tendency of cell differentiation we calculated
the percentage values of each positive cells based on the sum of
two positive cells, GFAPT and B-tubulin III". Propofol treatment
on NSCs, shows a tendency by differentiating into more GFAP™
cells, which could be a symbol of stemness or a symbol of
astrocyte. In addition to GFAP, S100B, another specific marker
for astrocytes differentiation, was up-regulated after propofol
exposure in day 3 as well.

NSCs are critical within neurogenesis whereby they can self-
renew and differentiate into neurons or glial cells (Kriegstein
and Alvarez-Buylla, 2009; Wegleiter et al, 2019). Previous
studies have shown that excessive gliogenesis during neural
differentiation underlies the pathophysiology of several neural
disease models (Bailey et al., 2013; Allen et al., 2017; Umezawa
et al., 2018). In these diseases, excessive production of GFAP+
cells are correlated to synaptic dysfunction and brain perivascular
abnormalities during neurodevelopment (Hussaini and Jang,
2018). Later in life, these pathophysiological changes will lead
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FIGURE 5 | miR-124 targets Sp1 to induce differentiation of NSCs into GFAP* cells following propofol exposure. (A,B) Protein and (C) mRNA expression of Sp1
could be inhibited in NSCs transfected with the miR-124-3p mimic. (D) Immunofluorescence images depicting Sp1 upregulation following propofol exposure. (E,F)
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to learning and memory deficits and social behavioral disorders
(Cai et al., 2019).

It has been well characterized that propofol affects
neurogenesis via its actions on NSCs. Propofol induces
autophagy in neural progenitor cells (NPCs) associated with
endoplasmic reticulum Ca?* release via InsP3Rs activation,
though direct mechanics of how propofol modulate InsP3Rs
is unknown. It is also known that propofol exposure regulates
cell-fate by triggering differentiation of human NPCs into
GFAP+- cells; which is similar to our observations here with rat
NSCs (Qiao et al., 2017). However, evidence is still lacking for
the link between propofol-induced differentiation of NSCs into
GFAP+- cells and alterations in neural function.

Several studies have implicated the importance of miRNAs
in the development of neural functions after propofol exposure.
It is reported that repeated exposure to propofol results in
down-regulation of miR-132 and significantly decreased numbers
of dendritic spines in the hippocampus (Zhang et al., 2017).
Furthermore, our previous study described the ability of propofol
to modulate miRNAs in NSCs (Fan et al., 2016; Li et al., 2018).
In this study we found that miR-124-3p was downregulated
and was a crucial regulator of NSC differentiation following
propofol exposure.

Given that miR-124-3p is the most abundant miRNAs in the
developing and matured brain (Sun et al., 2015), the lack of miR-
124-3p is related to the pathogenesis of several diseases. Similarly
to our research, in Parkinson’s disease, deficiency of miR-124-
3p delivery to the subventricular zone impairs neurogenesis and
neural cell differentiation due to reduction of silencing the target
cell-fate proteins Sox9 and Jagged1 (Saraiva et al., 2016). Besides
silencing cell-fate relative mRNA, it is also reported that the lack
of miR-124 will lead to the inability to precisely regulate the
epigenetic regulatory factors in neuroblastoma cells to regulate
the transition to neurons and astrocytes (Neo et al., 2014). During
neurodevelopment, miR-124 temporally regulates the transition
from transit amplifying cells to neuroblasts (Cheng et al., 2009).
By repression of polypyrimidine tract-binding protein (PTBP),
miR-124 can induce trans-differentiation of fibroblasts into
functional neurons (Xue et al., 2013). Accordingly, it is rational
to speculate that in our current study propofol led to cell arrest
and alteration in differentiated tendency is closely relative to
dysfunction of miR-124-3p and its target. Additionally, beside its
effects on neuronal fate, miR-124 also contributes to promoting
neurite outgrowth during neuronal differentiation (Gu et al,,
2018). However, the duration of propofol on miR-124-3p in
our study was within 3 days, which is not long enough for
neurite development.

In order to better understand the mechanism by which
propofol modulates differentiation of NSCs, we utilized
bioinformatics and reporter assays to discover and validate Sp1
as the direct target of miR-124-3p. Moreover, Spl could be
upregulated by propofol, while Spl knock-down reduced the
number of GFAP+ cells following propofol exposure. Thus,
highlighting Sp1 as an important factor in the differentiation of
NSCs by miR-124-3p.

Spl is a DNA-binding protein, which activates and inhibits
gene transcription in multiple physiological and pathological

processes (Vizcaino et al, 2015; Wei et al, 2016). During
gliogenesis, Spl was proven to binding to the promoter of GFAP,
the expression of which was enhanced (Yeo et al., 2013; Johnson
et al., 2016). The loss of Sp1 in astrocytes is linked to learning
and memory impairment in mice by GFAP decrease (Hung
et al., 2020). In our study, propofol increase the proportion
of GFAP™ cells after induced differentiation. It is reasonable
to believe that this alteration in differentiation tendency is
modulate by Sp1. On the other hand, Sp1 mediates neurogenesis
through the regulation of cell cycle-related proteins in multiple
cell types (Billon et al., 1999; Opitz and Rustgi, 2000; Cen
et al., 2008). Binding of Spl to Cyclin D orchestrates cell fate
decisions in human stem cells, represses neuronal differentiation
in mesenchymal stem cells (Mondanizadeh et al., 2015; Pauklin
et al,, 2016). Coincided with these researches, our presented
study suggested that Spl modulated cell cycle through binding
enhancement to cdkn1b promoter.

Previous studies suggest that cell fate can also be moderated by
cyclin dependent kinases inhibitors (CDKI) (Cunningham et al.,
2002; Andreu et al.,, 2015; Abbastabar et al., 2018), transcription
of which can be regulated by Spl (Cen et al., 2008). CDKIs
inhibit CDKs to delay or stop cell cycle progression (Besson et al.,
2008). One function of CDKIs is to control cell differentiation
and proliferation in tumorigenesis or neurogenesis (Besson et al.,
2008). Our data identified that Spl binding to the promoter
region of cdknlb (a key CDKI) elevates the protein level of
cdknlb. In neurodevelopment, it has been well demonstrated that
cdknlb accumulates in quiescent adult hippocampal neural stem
cells in vitro (Andreu et al.,, 2015). In our current study, NSCs
prone to differentiation into more GFAP™ cells (also known as
a neural precursor cell marker) could be a symbol of stemness
due to quiescent stage accumulate of NSCs. Further, cdknlb
induces cell-cycle arrest and facilitates neuronal differentiation
in the adult hippocampus (Andreu et al, 2015). Our results
also suggested a cell-cycle arrest probably resulted of cdknlb
increase after propofol exposure which therefore was prone to
differentiation into GFAP' or S1008™ cells. These could also
be a sign of astrocyte differentiation. In all, NSCs' cell-cycle
arrest mediated by cdknlb could possibly lead to the alteration
in differentiation inclination. But the in-depth mechanism needs
further investigation in our further research.

In summary, the present study demonstrates that propofol
exposure reduces miR-124-3p expression which results in
upregulation of Spl, increased cdknlb transcription. As such,
our research highlights the importance of the miR-124-
3p/Sp1/cdknlb axis in cell-fate modulation exhibiting a cell cycle
arrest status and an inclination to differentiate into GFAP* or
S100B cells after propofol exposure (Figure 7).

Interpreting the data presented in our study, some limitations
must be considered. Firstly, since multiple targets for propofol on
cells existing, the pathway through which propofol enters the cells
to perform its function is still a not clear. Therefore, it is difficult
to involved the exact mechanism by which propofol may affect
miRNAs in current study. Indeed, it will be more profound if we
verified the results in vivo. In order to expound the most concern
about whether propofol is toxic to developing brain, experiments
of propofol exposure in vivo are required to operate in fetal
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or neonatal animals. However, the related animal models are
still controversial, for the process of neurodevelopment in vivo
is regulated by a complex network. Exposed to propofol, the
phenotype in vivo is not necessarily clear. Therefore, the main
purpose of this study is to clarify the effect and mechanism of
propofol on neural stem cells to guide our further research in vivo.
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