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Background: DNA methylation is a common event in the early development of various

tumors, including breast cancer (BRCA), which has been studies as potential tumor

biomarkers. Although previous studies have reported a cluster of aberrant promoter

methylation changes in BRCA, none of these research groups have proved the specificity

of these DNA methylation changes. Here we aimed to identify specific DNA methylation

signatures in BRCA which can be used as diagnostic and prognostic markers.

Methods: Differentially methylated sites were identified using the Cancer Genome Atlas

(TCGA) BRCA data set. We screened for BRCA-differential methylation by comparing

methylation profiles of BRCA patients, healthy breast biopsies and blood samples. These

differential methylated sites were compared to nine main cancer samples to identify

BRCA specific methylated sites. A BayesNet model was built to distinguish BRCA

patients from healthy donors. The model was validated using three Gene Expression

Omnibus (GEO) independent data sets. In addition, we also carried out the Cox

regression analysis to identify DNA methylation markers which are significantly related to

the overall survival (OS) rate of BRCA patients and verified them in the validation cohort.

Results: We identified seven differentially methylated sites (DMSs) that were highly

correlated with cell cycle as potential specific diagnostic biomarkers for BRCA

patients. The combination of 7 DMSs achieved ∼94% sensitivity in predicting BRCA,

∼95% specificity comparing healthy vs. cancer samples, and ∼88% specificity

in excluding other cancers. The 7 DMSs were highly correlated with cell cycle.

We also identified 6 methylation sites that are highly correlated with the OS of

BRCA patients and can be used to accurately predict the survival of BRCA

patients (training cohort: likelihood ratio = 70.25, p = 3.633×10−13, area under

the curve (AUC) = 0.784; validation cohort: AUC = 0.734). Stratification analysis by

age, clinical stage, Tumor types, and chemotherapy retained statistical significance.
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Conclusion: In summary, our study demonstrated the role of methylation profiles in

the diagnosis and prognosis of BRCA. This signature is superior to currently published

methylation markers for diagnosis and prognosis for BRCA patients. It can be used as

promising biomarkers for early diagnosis and prognosis of BRCA.

Keywords: breast cancer, DNA methylation, DMSs, specific diagnostic biomarkers, prognostic markers, risk

stratification

INTRODUCTION

Globally, breast cancer (BRCA) is currently the most common
malignant cancer in women (Bray et al., 2018). Early detection of
BRCA can significantly increase the chance of effective treatment
and has a very important role in improving survival. If patients
are diagnosed early, the 5-year survival rate is>90%, while the 5-
year survival rate for patients with advanced BRCA is reduced
to ∼25% (Cardoso et al., 2018). From this, early detection of
BRCA can increase the chance of effective treatment and has
a very important role in improving survival. Cancer antigen
125 (CA125) is an ovarian-associated antigen found in tumors
such as ovarian epithelial cancer, endometrial cancer, and breast
cancer (Wang et al., 2017; Russell et al., 2019; Zang et al., 2019),
which has been used as a diagnostic marker of breast cancer.
The expression levels of bone sialoprotein (BSP) and osteopontin
(OPN) serve as markers for lung cancer, breast cancer and
prostate cancer (Fedarko et al., 2001). However, CA125 has a
specificity of 97.0% in the diagnosis of breast cancer, but its
sensitivity is relatively low at 25.6%. BSP (sensitivity 88.9%,
specificity 96.1%) and OPN (sensitivity 95.0%, specificity 84.5%)
can achieve a high accuracy rate for the diagnosis of breast cancer.
But their diagnostic threshold is very close to other tumors.
Therefore, it is very important to find specific diagnostic markers
for breast cancer.

Studies have shown that DNA methylation abnormality, an
epigenetic modification, is closely related to the occurrence
and development of cancer (Hahn and Weinberg, 2002; Gu
et al., 2006; Shen et al., 2017; Guo et al., 2019).The changes
of DNA methylation have been observed in various types of
cancers (Maruya et al., 2004; Aine et al., 2015; Nguyen et al.,
2017; Bian et al., 2018; Jurmeister et al., 2019; Majumder
et al., 2019; Norgaard et al., 2019). There are two patterns of
cancer gene methylation which are related to cancer occurrence:
genome-wide hypomethylation and promoter domain CpG
island hypermethylation (Cheng et al., 2018). DNA methylation

Abbreviations: BRCA, breast cancer; GBM, Glioblastoma multiforme; BLCA,

Bladder Urothelial Carcinoma; LIHC, Liver hepatocellular Carcinoma; HNSC,

Head and Neck squamous cell carcinoma; CESC, Cervical squamous cell

carcinoma and endocervical adenocarcinoma; LUAD, Lung Adenocarcinoma;

LUSC, Lung Squamous Cell Carcinoma; COAD, Colon adenocarcinoma; READ,

Rectum adenocarcinoma; TCGA, Cancer Genome Atlas; GEO, Gene Expression

Omnibus; OS, overall survival; DMS, differentially methylated site; CA125, Cancer

antigen 125; ctDNA, cell-free tumor DNA; FDR, false discovery rate; KEGG, Kyoto

Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis; KNN,

k-Nearest Neighbor; RSEM, RNA-Seq by Expectation-Maximization; PPI, Protein-

Protein Interaction; HR, hazard ratio; CI, confidence interval; AUC, area under the

curve; GO, gene ontology; FC, fold change.

affects genes involved in different cellular pathways, Including
cell proliferation, invasion and apoptosis (Gopisetty et al., 2006;
Shao et al., 2018). In addition, DNA molecules in tumor cells
are released into the blood as a result of apoptosis or necrosis
as cell-free tumor DNA (ctDNA), where the DNAmethylation of
ctDNA in cancer patients have been found to be different from
that in healthy individuals (Visvanathan et al., 2017). Therefore,
the methylation detection of ctDNA in the blood can be used for
cancer detection (Xu et al., 2017). More and more biomarkers
based onmethylation have been developed to help early diagnosis
of cancer (Shen et al., 2017; Cheng et al., 2018; Toth et al.,
2019). Wu et al. reported that DNA methylation with 4 CpGs
can distinguish the healthy people and BRCA patients, with a
sensitivity of over 97% and a specificity of nearly 91% (Wu et al.,
2019). Core et al. found that methylation can also distinguish
between BRCA patients and healthy people, with a sensitivity
of more than 83% and a specificity of more than 90% (Croes
et al., 2018). Both markers are good biomarkers for diagnosing
BRCA. However, cancers are heterogeneous diseases, none of
them considered whether other types of cancer had similar
methylation changes. In this study, we identified 7 BRCA-specific
methylation biomarkers by comparing BRCA to normal breast
and other cancer types. And we also identified 6 CpG sites that
could predict the survival of BRCA patients.

MATERIALS AND METHODS

Analysis of DNA Methylation and Gene
Expression Differences
DNA methylation, gene expression, and clinical BRCA data are
from the cancer genome atlas (TCGA) (International Cancer
Genome Consortium et al., 2010). The data are downloaded
from UCSC Xena (http://xena.ucsc.edu). DNA methylation
profile was measured experimentally using the Illumina Infinium
HumanMethylation 450 platform which contains 485,577 CpG
sites. The methylation level is expressed as β value. Poor
performing probes, cross reactive probes, Y chromosomes
probes and SNP probes have been excluded in our data
processing. Because the vast majority of breast cancer patients
are female, the X chromosomes probes have not been excluded.
R function “normalizeBetweenArrays” was be used to normalize
the data between arrays function. Methylation data of another
9 [Glioblastoma (two normal, 153 cancer), Bladder Cancer (21
normal, 413 cancer), Liver Cancer (50 normal, 379 cancer),
Head and Neck Cancer (50 normal, 530 cancer), Cervical Cancer
(three normal, 309 cancer), Lung Adenocarcinoma (32 normal,
460 cancer), Lung Squamous Cell Carcinoma (43 normal, 372
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cancer), Colon Cancer (38 normal, 309 cancer) and Rectal Cancer
(seven normal, 99 cancer) cancer tissues and adjacent tissues
were collected from the TCGA, and the 184 blood samples of
healthy people were collected from the database GSE69270 (the
profile of these cases in the Supplementary Table 1). Excluded
sites were related to gender (male and female, |1β| > 0.2, FDR
< 0.05) (Supplementary Table 2). The β values of methylation
sites with missing values over 10% were deleted. The remaining
missing values were estimated by the k-Nearest Neighbor (KNN)
estimationmethod. The “limma” package(Ritchie et al., 2015) was
used to calculate the methylation difference. The sites with an
FDR < 0.05 and an absolute of the β value difference >0.2 were
considered to be differentially methylated. The gene expression
profile was measured experimentally using the Illumina HiSeq
2000 RNA Sequencing platform. For the correlation analysis
of DNA methylation and gene expression, we used the R
package “ChAMP” to map sites assigned to a gene. Pearson
correlation test was used to obtain the correlation between them.
The correlation coefficient >0.3 and the p-value < 0.05 were
considered to be significant. The correlation coefficient of DMSs
was obtained by Pearson correlation test, and R package “corplot”
was used to plot the correlation between DMSs.

Evaluation of Candidate Diagnostic
Biomarkers
The TCGA breast cancer DNA methylation data were randomly
sorted. Sixty seven percent of them (515 tumor tissues, 77
normal tissues) were used as training cohort and 33% (275
tumor tissues, 21 normal tissues) were used as validation cohort.
The Wilcox test was used to find differential methylated sites
(DMSs) in the training cohort (|1β|> 0.2, FDR < 0.05). Next,
Pearson correlation test was performed on these DMSs and
their corresponding genes to find sites that can drive gene
expression. Then, Wilcox test was used to screen the DMSs
in breast cancer samples and normal blood samples (|1β|>
0.2, FDR < 0.05) to eliminate the interference factors of
blood. Next, these DMSs that could drive gene expression were
subjected to Wilcox test (|1β| > 0.2, FDR < 0.05) in breast
cancer and other nine tumors and para-cancerous tissues to
discover breast cancer specific diagnostic biomarkers. Finally,
we used the WrapperSubsetEval evaluator, which used cross-
validation to evaluate the accuracy of each subset’s learning
scheme to assess the predictive power of each DMS and select
the most representative of the DMSs as diagnostic biomarkers.
The BaysNet model was built using the Weka software (version
3.8 at https://waikato.github.io/weka-wiki/downloading_weka/).
Weka is a machine learning software which tries and tests
open source. Our goal was to build a classifier from sample
information with known histological characteristics (whether it
is BRCA tissue) and use the classifier to predict whether the
sample to be tested is BRCA tissue. We constructed a classifier
based on the β value of the BRCA-specific DMSs of the training
cohort. The classifier compares the characteristics of the DMSs in
BRCA tissues and BRCA para-cancerous tissues. Thenwe learned
various thresholds or rules and stored them in the constructed
classifier. For learning Bayesian network, we leveraged the K2

algorithm (Lerner and Malka, 2011). Three other independent
data sets GSE66695, GSE60185 (Fleischer et al., 2014) and
GSE78754 (Mathe et al., 2016) are used as external test cohort.
We also organized the profile of the three external test cohort
(Supplementary Tables 3–5).

Prognostic Marker Selection
Prognostic markers were selected from 776 BRCA patients with
methylation data and clinical information. They are shuffled
and randomly reordered. Sixty seven percent of them were
the training cohort (517 cases) and 33% of them were the
validation cohort (259 cases). The univariate Cox proportional
hazard analysis was performed in the training cohort to find the
methylation sites significantly related to the survival of patients.
Then, in univariate analysis, the sites that were significantly
related to OS were included in the multivariate Cox regression
analysis, and a model containing all possible combinations of 2
to 6 factors was constructed to select the best combination of
biomarkers. The R-package “mass” was used for analysis.

Gene Ontology Enrichment Analysis and
Pathway Enrichment Analyzes for
Diagnostic Biomarkers
PPI (protein protein interaction) network, KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway analysis, and
GO (Gene Ontology) pathway were analyzed by the STRING
database. Line color indicated the type of interaction evidence,
minimum required interaction score was 0.70. The R-package
“ggplot” and “GOplot” was used for plotting.

GSEA Enrichment Analysis for Prognostic
Biomarkers
In order to explore the biological pathways of CpG markers,
Gene Set Enrichment Analysis (GSEA) was used (Subramanian
et al., 2005). The annotated c2.cp.kegg.v6.2.symbols.gmt gene set
is regarded as the reference gene set. The critical criterion was
p-value < 0.05 and q-value < 0.25

The Gene Expression Omnibus Dataset
Four DNA methylation datasets were collected from the Gene
Expression Omnibus (GEO) database: GSE66695 (80 breast
cancer, 40 normal), GSE78754 (Mathe et al., 2016) (80 breast
cancer), GSE60185 (Fleischer et al., 2014) (239 breast cancer, 46
normal), and GSE69270 (Kananen et al., 2016) (normal blood).

Immunohistochemistry
The assay was carried out according to the method mentioned
in the previous study (Song et al., 2020). We collected breast
cancer tissues of patients from the First Affiliated Hospital
of China Medical University for Immunohistochemistry (IHC)
assay. The IHC antibodys were ordered from BOSTER Biological
Technology co.ltd (USA).

Statistical Analysis
Differential methylation calculated frommean (β value- cancer)–
mean (β-value- normal). Wilcox test was used to determine the
different methylation sites between tumor and normal tissues.
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TABLE 1 | Clinicopathological characteristics of BRCA sample.

Sample

Characteristics Groups Total (n = 888) Training cohort Validation cohort

(n = 592) (n = 296)

No % No % No %

T-staging T1-T2 653 73.54 430 72.64 223 75.34

T3-T4 133 14.98 83 14.02 50 16.89

Unknown 4 0.45 2 0.34 2 0.68

N-staging N0-N1 624 70.27 403 68.07 221 74.66

N2-N3 153 17.23 106 17.91 47 15.88

Unknown 13 1.46 6 1.01 7 2.36

M-staging M0 615 69.26 406 68.58 209 70.61

M1 13 1.46 7 1.18 6 2.03

Unknown 162 18.24 102 17.23 60 20.27

Stage Stage I-II 568 63.96 369 62.33 199 67.23

Stage III-IV 210 23.65 140 23.65 70 23.65

Unknown 12 1.35 6 1.01 6 2.03

ER Positive 575 64.75 373 63.01 202 68.24

Negative 170 19.14 111 18.75 59 19.93

Indeterminate or Not Evaluated 45 5.07 31 5.24 14 4.73

PR Positive 502 56.53 332 56.08 170 57.43

Negative 240 27.03 150 25.34 90 30.41

Indeterminate or Not evaluated 48 5.41 33 5.57 15 5.07

HER2 Positive 93 10.47 61 10.30 32 10.81

Negative 398 44.82 265 44.76 133 44.93

Indeterminate or Not evaluated 299 33.67 189 31.93 110 37.16

Normal tissue 98 11.04 77 13.01 21 7.09

Use the false discovery rate (FDR) method to adjust the p-value.
The sites with an absolute difference of β-value > 0.2 and FDR
< 0.05 are considered to be differentially methylated. The hazard
ratio (HR) and the corresponding 95% confidence interval (CI)
were evaluated by the Cox proportional risk model. The ROC
analysis was performed by the proc package to determine the area
under the curve (AUC). All data analyses were performed with R
(R version 3.5.4).

RESULTS

Analysis of Differential Methylation Profiles
and Identification of Candidate CpG Sites
for BRCA Specific Diagnosis
DNA methylation of 790 BRCA tumor samples and 98 adjacent
normal tissue samples obtained from TCGA were used for
differential methylation analysis. Sixty seven percent of the
samples were used as training cohort, and 33% were used
as validation cohort (Table 1). The Wilcox test was used to
find differential methylated sites (DMSs) in the training cohort
(|1β|> 0.2, FDR< 0.05). Pearson correlation test was performed
on these DMSs to find the DMSs that can drive gene expression (|
r |> 0.3, p < 0.05) (Supplementary Table 6). There were 2,362
hypermethylated and 2,322 Hypomethylated DMSs in BRCA

(Figure 1A), which correspond to 1,157 hypermethylation and
989 hypomethylated genes. We then analyzed the distribution of
DMSs in different genomic regions. The hypermethylation and
hypomethylation sites were mainly located in the opensea, and
the second hypermethylation sites were mainly located in the
island, while the hypomethylation sites island, shore and shelf
had obvious distribution (Figure 1B). From the point of view of
gene distribution, DMSs were mainly distributed on the body,
but the vicinity of the promoter region was mainly concentrated
by hypermethylation sites. The distribution of hypomethylation
sites was relatively broad (Figure 1C). This was consistent with
the general characteristics of solid tumor DNA methylated.

In order to find the specific diagnostic biomarkers of
BRCA, we designed a workflow (Figure 1D). Filtration was
performed using methylation data from healthy human blood
(GSE69270). Two thousand six hundred and forty three
DMSs that were differentially methylated between BRCA
(|1β| > 0.2, FDR < 0.05) and healthy individuals’ blood
were left. Secondly, we screened the differentially expressed
DMSs of the above breast cancers with other nine common
cancers and their corresponding adjacent tissues (|1β| > 0.2,
FDR < 0.05). There were still 17 DMSs with methylation
differences in BRCA and other cancers and adjacent tissues.
Finally, we used the WrapperSubsetEval evaluator, which used
cross-validation to evaluate the accuracy of each subset’s
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FIGURE 1 | Identifying BRCA-specific differentially methylated sites. (A) Heatmap of the differentially methylated sites, contains 2,362 hypermethylated and 2,322

Hypomethylated DMSs. Green are cancer tissues and purple are normal tissues. (B) Differential methylation sites distribution in CpG island, opensea, shelf, and shore.

The DNA methylation sites between genes have been omitted. (C) Differentially methylated the distribution of DMS based on the distance to the TSS. (D) Flowchart

for finding BRCA candidate diagnostic biomarkers. (E) Correlation between 7 DMSs. The square and circle symbols represent the one-to-one correlation coefficient.

Blue indicated the positive correlation, and red indicated the negative correlation. Each correlation coefficient was shown by the shadow intensity and increased

uniformly as the correlation value starts from 0 to 1. (F) Methylation level of 7 DMSs in BRCA and normal tissues. Pink represents normal tissue, purple represents

BRCA tissue. (G) The sites mean β value show the methylation levels of 7 BRCA markers in BRCA and nine other cancers.
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TABLE 2 | The 7 DMSs for BRCA diagnosis.

CpG sites Gene Gene function Feature type

cg20383521 TUFT1 Tuftelin 1 opensea

cg09804858 TRERF1 Transcriptional regulating factor 1 opensea

cg06741896 CCND1 Cyclin D1 shore

cg01668352 SRGAP1 SLIT-ROBO Rho GTPase activating protein 1 opensea

cg10708955 PER1 Period circadian regulator 1 shore

cg06998282 ENPP2 Ectonucleotide pyrophosphatase/phosphodiesterase 2 opensea

cg04658021 PER1 Period circadian regulator 1 shore

learning scheme to assess the predictive power of each
DMS and select the most representative of the 7 DMSs
(cg20383521, cg09804858, cg06741896, cg01668352, cg10708955,
cg06998282, cg04658021) (Table 2). The 7 DMSs had a
significant correlation with the corresponding gene expression
(Supplementary Figure 1). These 7 DMSs were significantly
correlated with each other (p < 0.05), Among them, cg10708955
and cg04658021 had the strongest correlation (r = 0.803),
indicating that the 7 DMSs might jointly mediate the occurrence
of BRCA (Figure 1E). They were differentially methylated
between BRCA and normal tissues (Figure 1F). Unsupervised
cluster analysis revealed that BRCA samples were well-
differentiated from normal tissues, indicating the robustness
of our results (Supplementary Figure 2). Similarly, 7 DMSs
were also different methylate between BRCA and other cancer
tissues (Figure 1G).

Evaluation of Diagnostic Accuracy in
Independent Datasets
Next, we built a BayesNet model based on 7DMSs through the
TCGA training cohort data. We tested the model accuracy in
the TCGA validation cohort. Three independent methylation
data sets (GSE66695, GSE60185, and GSE78754) of BRCA were
used as external test sets. Our model had a training cohort
of AUC = 0.994 and a validation cohort of AUC = 0.974
(Figures 2A,B). We then compared our results to previously
published methylation markers, Wu et al. reported that DNA
methylation with four CpGs could distinguish BRCA patients
from healthy individuals (Wu et al., 2019). Core et al. found
that methylation could also distinguish between BRCA patients
and healthy people (Croes et al., 2018). The sensitivity and
specificity of distinguishing between normal breast and breast
cancer were high among different feature sets (Figure 2C).
Next, we examined the ability of different methylation markers
to distinguish between BRCA and other cancers. When our
BRCA-specific markers were used in our study, few tumors
and normal tissues of other cancers were predicted to be
BRCA (0–19.8%, median 13.4%). However, 89.5–100% (median
98.1%) of other cancers and normal tissue were expected to
be BRCA using markers from Wu et al. And markers from
Croes et al. (2018) 43.4–91.7% (median 66.5%) of other cancers
and normal tissue were expected to be BRCA (Figure 2D).
Therefore, our study found highly specific biomarkers for
BRCA diagnosis.

Altered Functional Characteristics Related
to the 7 DNA Methylation Signatures for
BRCA Specific Diagnosis
In order to further investigate the correlation between these 7
newly discovered DMSs and BRCA progression, we investigated
whether their corresponding genes are differentially expressed
in breast cancer in the TCGA gene expression data. The results
shown that the expression of TRRERF1, PER1, TUFT1, CCND1,
and ENPP2 genes was significantly different in breast cancer and
adjacent tissues (p < 0.0001) (Figure 3A). Considering potential
clinical significance and biologic implications, we performed
immunohistochemistry (IHC) to evaluate the expression of
CCND1 and PER1 in 14 paired BRCA and adjacent tissue.
The results confirmed that CCND1 was highly expressed in
breast cancer tissues and PER1 was low expressed in breast
cancer tissues, which is consistent with the results of our data
analysis (Figure 3B). To explore the biological behavior that our
markers may be involved in, we constructed a PPI expression
network using the STRING database for 6 DNA methylation-
driven genes mapped by the 7 DMSs. There were only four
genes: TRERF1, CCND1, PER1 and ENPP2 forming networks,
TUFT1 and SRGAP1 did not form networks with other genes.
The other genes in the network were all reported to be related to
these four genes (Figure 3C). KEGG pathway analysis indicated
these pathways were significantly correlated with these genes:
Cell cycle, p53 signaling pathway, Pathways in cancer, Breast
cancer, PI3K-Akt signaling pathway, Proteoglycans in cancer,
Transcriptional misregulation in cancer (p < 0.05) with the most
significant related pathway was “Cell cycle” (p = 9.79 × 10−09)
(Figure 3D). At the same time, GO pathway analysis shown that
the mitotic cell cycle phase transition was significantly correlated
with these genes (p < 0.05) (Figure 3E). Among them, a number
of biological processes were related to the cell cycle. This suggests
that our 7 DNA methylation signature may be involved in the
regulation of the cell cycle.

Identification of the Prognostic DNA
Methylation Signature in BRCA
We also designed a workflow to screen BRCA prognostic
biomarkers (Figure 4A). The clinicopathological characteristics
of BRCA patients in training cohort and validation cohort
are summarized in Table 3. By performing a univariate Cox
proportional hazards regression analysis in the training cohort,
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FIGURE 2 | Seven BRCA-specific differential methylation sites as a diagnostic biomarker. (A) model training cohort ROC curve area measurement. (B) Model

validation cohort ROC curve area measurement. (C) Four different source sets test the correct rate of the 7 DMSs model and other models. (D) Nine other cancers set

test the 7 DMSs model and other models correct rate.

a total of 611 DNAmethylation sites were significantly associated
with OS in BRCA patients (p < 1×10−3), and they were used
as candidate markers (Supplementary Table 7). Subsequently,

these candidate markers were used to perform multivariate Cox
stepwise regression analyses. Finally, the 6 methylation sites
(cg04747226, cg04544154, cg16814416, cg03951219, cg17080504,
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FIGURE 3 | Association of 7 DNA methylation signatures with the cell cycle. (A) DMSs corresponding genes expression in TCGA. (B) CCND1 and PER1 protein

expression in 14 paired BRCA and adjacent tissue by IHC assay. (C) PPI expression network for six genes corresponding to the seven methylation sites. (D) The

KEGG pathway analysis of the mRNA of the PPI network map of the seven methylation sites corresponding gene. The vertical axis is the enriched pathway, and the

horizontal axis is the number of genes enriched in this pathway compared to the number of genes on this pathway. (E) GO enrichment analysis. The circle indicates

the correlation between the methylation-driven mRNAs and their gene ontology terms.
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FIGURE 4 | Derivation of prognostic DNA methylation markers. (A) The flowchart for finding BRCA candidate prognostic biomarkers. (B) General characteristics of

univariate Cox regression analysis of six methylation biomarkers. (C) methylation β values in short survival (OS <5 years) patients and long survival (OS > 5 years)

patients. (D) Pearson correlation test was used to evaluate the correlation between gene expression and methylation level.
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TABLE 3 | Clinicopathological characteristics of BRCA patients from TCGA database.

Patients

Characteristics Groups Total (n = 776) Training cohort (n = 517) Validation cohort (n = 259)

No % No % No %

Age at diagnosis ≤58 401 51.68 248 47.97 135 52.12

>58 375 48.32 269 52.03 124 47.88

T-staging T1-T2 642 82.73 434 83.95 208 80.31

T3-T4 131 16.88 80 15.47 51 19.69

Unknown 3 0.39 3 0.58 0 0.00

N-staging N0-N1 616 79.38 410 79.30 206 79.54

N2-N3 150 19.33 101 19.54 49 18.92

Unknown 10 1.29 6 1.16 4 1.54

M-staging M0 611 78.74 394 76.21 212 81.85

M1 13 1.68 11 2.13 2 0.77

Unknown 152 19.59 112 21.66 45 17.37

Stage stage I-II 560 72.16 373 72.15 187 72.20

stage III-IV 205 26.42 133 25.73 72 27.80

Unknown 11 1.42 11 2.13 0 0.00

ER Positive 565 72.81 381 73.69 184 71.04

Negative 168 21.65 112 21.66 56 21.62

Indeterminate or Not Evaluated 43 5.54 24 4.64 19 7.34

PR Positive 494 63.66 327 63.25 167 64.48

Negative 236 30.41 164 31.72 72 27.80

Indeterminate or Not Evaluated 46 5.93 26 5.03 20 7.72

HER2 Positive 92 11.86 55 10.64 37 14.29

Negative 393 50.64 263 50.87 128 49.42

Indeterminate or Not Evaluated 291 37.50 192 37.14 94 36.29

Metastasis Yes 19 2.45 14 2.71 5 1.93

No 757 97.55 503 97.29 254 98.07

Drug Yes 583 75.13 387 74.85 196 75.68

No 193 24.87 130 25.15 63 24.32

Race white 565 72.81 370 71.57 195 75.29

Black or African American 158 20.36 108 20.89 50 19.31

Other 38 4.90 29 5.61 9 3.47

Not Evaluated 15 1.93 10 1.93 5 1.93

Vital status Alive 676 87.11 447 86.46 228 88.03

Dead 101 13.02 70 13.54 31 11.97

cg19458602) was selected as the best prognosis model to predict
OS (Figure 4B). The risk scoring formula was as follows:

RiskScore = 1.78920 × cg04747226–1.97075 × cg04544154–
2.92310 × cg16814416 + 1.69264 × cg03951219 + 1.84526 ×

cg17080504–2.33118× cg19458602.
The risk score indicates the chance of belonging to low-risk

or high-risk group. Among the 6 methylation sites, cg04747226,
cg03951219, and cg17080504 had positive correlation
coefficients, indicating that their high DNA methylation
level may be related to the short OS. cg04544154, cg16814416,
and cg19458602 had negative correlation coefficients, indicating
that their high DNA methylation level might be related to the
longer OS. At the same time, for these 6 DNA methylation sites,
DNA methylation levels were significantly different between
patients exhibiting long-term (> 5 years) and short-term

(<5 years) survival. cg04747226, cg03951219and cg17080504
shown long-term survival in patients who tended to have
lower methylation levels, while cg04544154, cg16814416and
cg19458602 shown long-term survival in patients who tend to
have higher methylation levels (p < 0.05, Figure 4C). Then, we
analyzed the correlation between these 6 methylation sites and
their corresponding genes and found that they were significantly
associated with the corresponding genes (p < 0.05, Figure 4D).

The Prognostic Potential of 6 DNA
Methylation Markers for BRCA Training
and Validation Cohort
In order to understand the accuracy of 6 DNA methylation
markers in predicting the survival, the median of β-value of
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these sites were used as the cut-off point to distinguish between
the high and low risk groups, the value of AUC was calculated
by time-dependent ROC analysis, overall survival for outcome
variable. In the validation cohort, Kaplan Meier survival analysis
was performed on these six markers, and the AUCwas calculated.
The AUC of the 6 CpG sites in the validation set could reachmore
than 0.6, and the KM curve could effectively distinguish the high-
risk and low-risk groups (Figure 5A). However, after combining
them (the median of risk score as cutoff), the 6 DNAmethylation
markers had a good predictive ability for patient OS in the
training and validation cohort. the AUC = 0.784 (Figure 5B)
and 0.734 (Figure 5C), respectively. These results indicate that
the six methylation markers have high sensitivity and specificity,
the markers may have great potential in clinical application as
prognostic biomarkers.

In Terms of Clinical and Pathological
Factors, the Independence of the 6 DNA
Methylation Markers in OS Prediction
An excellent prognostic marker should be independent of the
current clinical pathological prognostic indicators or be able
to cooperate with them. Clinical and pathological features,
such as patient age, clinical stage, and tumor classification,
were also considered to be major predictors of prognosis in
breast cancer patients. In order to evaluate the independence
and applicability of 6 DNA methylation markers, patients
were recombined according to different clinicopathological
characteristics. Considering that the clinical staging, type, and
clinical medication of BRCA can affect the prognosis, we
regrouped patients based on different clinical characteristics.
According to the progress of breast cancer, we divided the
patients into early stage (stage I-II) and advanced stage (stage
III-IV). Although the disease progression of these two groups
of patients was markedly different, the OS between high-
risk and low-risk populations are significantly different (p <

1×10−3). AUC of the early and advanced stage cohorts were
0.752 and 0.796, respectively (Figure 6A). According to PAM50
classification, we divided the BRCA patients into four subtypes:
luminal A, luminal B, HER2+ and basal-like. Kaplan–Meier
and ROC analysis shown that there was too few results in no
statistical significance in Kaplan–Meier analysis without the cases
of HER2 patients, the survival rate of patients in the low-risk
group was greatly improved compared to the high-risk group (p
< 0.05), and the 6 DNAmethylation markers had high predictive
performance (AUC > 0.70) (Figure 6B). Chemotherapy is one
of the main treatments for BRCA. Considering the influence of
drug treatments on the phenotype of patients, we divided breast
cancer patients into chemotherapy group and non-chemotherapy
group. Our biomarker performed well in both groups, with the
patients in the low-risk group shown a better trend of OS (p <

1×10−3, AUC >0.65) (Figure 6C). In addition, many prognostic
markers of BRCA have been reported: CD24, EGFR, CXCR 4
genes can predict the metastasis and prognosis of breast cancer.
At the same time, Zhang et al. reported that the DNAmethylation
of 12 genes could be used as a prognostic marker of BRCA (Zhang
et al., 2015). Tao et al. reported that seven differentially DNA

methylation sites could be used as a novel prognostic biomarker
for BRCA (Tao et al., 2019). In order to determine whether
our biomarkers had a better ability to predict patient survival
than known biomarkers, ROC analysis of other biomarkers was
performed in the same way in the validation cohort. The results
shown that the AUC of these 6 DNA methylation markers
was higher than that of all other known biomarkers in the
validation cohort. The results of ROC analysis showing that the
6 DNA methylation sites are better markers and provide better
stability and reliability in predicting the OS of BRCA patients
(Figure 6D).

GSEA Analysis 6 DNA Methylation Site
Driven Gene Related Pathway
The above analysis shows that our 6 CpG sites could distinguish
between the high and low risk groups of breast cancer. In order to
explore the mechanism, we conducted the Gene Set Enrichment
Analysis (GSEA) KEGG analysis on high and low-risk individuals
to explore the possible pathways of 6 CpG sites. We found that
the gene expression of the high-risk population identified by
the 6 CpG sites model was mainly enriched in the biological
behaviors of DNA replication and cell cycle (Figure 7A). We
then calculated the correlation between these 6 CpG sites and
the genes in the two pathways and found that these 6 CpG
sites had significant correlation with many genes of the two
pathways (Figure 7B, Supplementary Table 8). This suggested
that the underlying biological mechanism of the 6 CpG sites
model we foundmay be related to DNA replication and cell cycle.

DISCUSSION

Previous studies have suggested that mutations in genes leading
to changes in DNA sequences, activation of oncogenes, and
inactivation of tumor suppressor genes are major mechanisms
of tumorigenesis (Gough et al., 1990; Hahn and Weinberg,
2002; Domchek et al., 2013; Ablain et al., 2018; Poillet-Perez
et al., 2018). With the deepening of research on cancer,
researchers have found that abnormal regulation mechanisms
other than DNA sequences, that is, epigenetic changes also
play a key role in tumorigenesis and development (Berdasco
and Esteller, 2010). The occurrence and development of
breast cancer is a multi-step, multi-stage process, which is
considered to be the result of accumulation of genetic and
epigenetic variations (Widschwendter et al., 2018). Therefore, it
is reasonable and valuable to study the epigenetic mechanisms
in the progression of breast cancer to identify clinically
applicable biomarkers.

In this study, we systematically analyzed the whole genome
methylation data and gene expression data of breast cancer.
By comparing BRCA, normal tissue and non-BRCA cancer, we
identified seven methylation sites as BRCA specific diagnostic
biomarkers. BayesNet model was constructed to predict the
diagnosis of BRCA. The sensitivity was 94.2%, and the accuracy
was 95.2%. Our 7 CpG sites diagnostic biomarkers had better
sensitivity and specificity than most of the previously reported
biomarkers and had been verified in a variety of databases.
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FIGURE 5 | The prognostic potential of the 6 DNA methylation markers. (A) single site of methylation of breast cancer predicted and Kaplan-Meier survival analysis of

the AUC of the ROC curve area. (B) Kaplan-Meier survival analysis and sensitivity and specificity for ROC analysis of predictive the power of 6 DNA methylation

markers in predicting OS in patients in the training cohort. (C) Kaplan-Meier survival Analysis and ROC analysis in validation cohort.

Finally, the abnormal expression of several related genes
was verified through experiments. These results provide new
insights into the role of DNA methylation in the diagnosis of
breast cancer.

Ideal diagnostic biomarkers should be highly sensitive to
detect BRCA at an early stage; specific to BRCA and not found
in other cancers; measured by non-invasive and cost-effective
techniques; and in different populations authenticating. Here,
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FIGURE 6 | Independence of 6 DNA methylation markers in OS prediction, and comparison with reported markers. A Kaplan–Meier and ROC analysis were

performed on patients with different stages of BRCA. Stage I-II (N = 560, 72.16%), Stage III-IV (N = 205, 26.42%). (B) Kaplan–Meier and ROC analyses were

performed on BRCA patients with different phenotypes. According to their tumor phenotype, luminal A breast cancer (N = 277, 35.70%), luminal B breast cancer (N

= 126, 16.24%), HER2+ breast cancer (N = 29, 3.74%) and basal-like breast cancer (N = 85, 10.95%). (C) Kaplan–Meier and ROC analysis were performed on

BRCA patients with different treatment regimens. Grouped according to whether they were undergoing chemotherapy. After chemotherapy (N = 583, 75.13%), no

chemotherapy (N = 193, 24.87%). (D) The ROC curve shows the sensitivity and specificity of our 6 DNA methylation markers and other known biomarkers in

predicting patient OS based on the TCGA validation data set.
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FIGURE 7 | GSEA analysis 6 DNA methylation site driven gene related pathway. (A) GSEA KEGG Pathways enrichment analysis genes of high-risk individuals. (B)

The correlation between 6 CpG markers and genes in the enrichment pathway.

we found 7 BRCA specific differentially methylated sites, which
are superior to the widely used serum biomarker CA125 in
sensitivity and specificity. However, we have not used non-
invasive biological samples to verify their diagnostic ability. In
order to solve this problem, we will continue to develop a
technique for detecting the methylation level of cell-free ctDNA
in serum. Then we will verify the consistency of methylation in
tissues and blood and verify the prediction ability of biomarkers
by detecting DNA methylation in blood.

In routine clinical practice, some clinicopathological
features are used to assess possible prognosis in breast
cancer patients, such as tumor size, histological grade,
tumor stage, lymph node metastasis, etc. Second, different
molecular subtypes of breast cancer also suggest different
prognosis. Studies have shown that triple-negative breast
cancer tends to have higher tumor grades, higher risk of lymph
node metastasis or distant metastasis, and relatively lack of
effective treatments, resulting in lower tumor-free survival rate
(Liedtke et al., 2008). The results shown that our signature
was in dependent of the tumor stage, molecular subtype,
or medication.

In addition, Cox regression analysis was carried out on six
different methylation sites. Kaplan Meier and ROC analysis
shown that each DNA methylation site could also distinguish
high-risk and low-risk patients, but the prediction performance
was lower than the combination of these 6 DNAmethylation sites
in the validation cohort, suggesting that a single methylation site
may play a role in prognosis prediction, and the combination of

methylation sites may provide a better potential to predict OS in
BRCA patients.

In summary, our study demonstrated the role of methylation
profiles in the diagnosis and prognosis of BRCA. We identified
BRCA specific methylation markers to distinguish BRCA tissues
from normal tissues. Moreover, our study can also distinguish
breast cancer from other cancers. At the same time, we found the
BRCA prognostic markers, stratification analysis by clinical stage,
tumor types, and chemotherapy retained statistical significance.
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