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The role of mesenchymal stromal cells (MSCs) in the tumor microenvironment is
well described. Available data support that MSCs display anticancer activities, and
that their reprogramming by cancer cells in the tumor microenvironment induces
their switch toward pro-tumorigenic activities. Here we discuss the recent evidence
of pro-tumorigenic effects of stromal cells, in particular (i) MSC support to cancer
cells through the metabolic reprogramming necessary to maintain their malignant
behavior and stemness, and (ii) MSC role in cancer cell immunosenescence and in the
establishment and maintenance of immunosuppression in the tumor microenvironment.
We also discuss the mechanisms of tumor microenvironment mediated reprogramming
of MSCs, including the effects of hypoxia, tumor stiffness, cancer-promoting cells,
and tumor extracellular matrix. Finally, we summarize the emerging strategies for
reprogramming tumor MSCs to reactivate anticancer functions of these stromal cells.
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INTRODUCTION

Mesenchymal stromal cells (MSCs) are multipotent stem cells capable of differentiating into
various cell types of the mesodermal lineage, including adipocytes, endothelial cells, fibroblasts,
chondrocytes, osteoblasts, and myocytes (Dominici et al., 2006), and possibly into non-mesodermal
cell types, such as neural, pancreatic, hepatic, and gastric cells (Oswald et al., 2004; Cislo-Pakuluk
and Marycz, 2017; Luo et al., 2020; Xuan et al., 2020). They are a heterogeneous mesenchymal
cell population, which resides in the stroma of various tissues and organs and expressing the
membrane markers CD105, CD73, and CD90, but not HLA-DR, CD14, CD19, CD31, CD34, and
CD45 (Dominici et al., 2006; Nwabo Kamdje et al., 2011). MSCs are a key tool in tissue engineering
and regenerative medicine, because they are easily collected and thanks to their ability to migrate
and home into damaged tissues where they (i) interact with the microenvironment to drive
tissue repair; (ii) transdifferentiate into new cells to restore and/or replace damaged tissues; (iii)
rescue organ functions, thanks to their high proliferation, adhesion, migration, differentiation, and
immunoregulatory properties (Barberini et al., 2014; Chi et al., 2014; Li et al., 2015). MSC properties
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are mainly dependent of components of their secretome
including numerous factors favoring tissue repair, such as
angiopoietin-1 (Ang1), vascular epidermal growth factor (EGF),
endothelial growth factor (VEGF), transforming growth factor-
beta (TGF-β), hepatocyte growth factor (HGF), fibroblast growth
factor (FGF), granulocyte-colony stimulating factor (G-CSF),
platelet-derived growth factor (PDGF), interleukin 6 (IL-6) and
IL-12, chemokine (C-C motif) ligand 7 (CCL7) and CCL25,
and C-X-C motif chemokine 8 (CXCL8), CXCL9, CXCL16, and
CCL20 (Ishiki et al., 1992; Li et al., 2013; Wang et al., 2013;
Liu et al., 2014; Windmolders et al., 2014; Sesia et al., 2015;
Rolandsson Enes et al., 2016; Tsiklauri et al., 2018; Gyukity-
Sebestyen et al., 2019; Ozdemir et al., 2019).

However, MSCs also reside in the tumor microenvironment,
where they were reported to promote pivotal tumorigenic
processes such as: (i) malignant transformation; (ii) cancer cell
maintenance and stemness; (iii) cancer stem cell niche formation,
including angiogenesis and neovascularization; (iv) metastasis
formation; and (v) resistance to anticancer drugs [for review see
Seke Etet et al. (2013), Nwabo Kamdje et al. (2014), Atiya et al.
(2020), Osman et al. (2020)]. On the other hand, MSC-derived
stromal cells restraining cancer growth have been reported in the
tumor microenvironment (Bu et al., 2019; Mizutani et al., 2019;
Tew et al., 2019) and growing evidence supports that the pro-
tumorigenic effects of MSCs emerge from cell reprogramming
by the tumor microenvironment (Coffman et al., 2019; Mandal
et al., 2019; Al-Jawadi et al., 2020; Boada et al., 2020). Herein, we
provide an overview and discuss emerging data supporting MSC
reprogramming by the tumor microenvironment and recent
reports supporting the existence of stromal cells restraining
cancer growth in the tumor microenvironment.

MSC PRO-TUMORIGENIC EFFECTS:
IMMUNOSUPPRESSION AND
METABOLIC CHANGES

Some of the most reported pro-tumorigenic effects of MSCs
include their roles in the metabolic and cellular senescence-like
changes, typically observed in various cancers and in the tumor
microenvironment-mediated immunosuppression (Figure 1).

Cancer-Associated Metabolic Changes
The Warburg effect, a metabolic hallmark of tumor cells, is
the fact that cancer cells produce most of their ATP via
glycolysis, even under aerobic conditions, although it is a
less efficient pathway compared to oxidative phosphorylation
and despite their greater need for energy [for review see
Xu et al. (2015), Fu et al. (2017)]. For instance, pancreatic
cancer cells can utilize “metabolic reprogramming,” through the
enhancement of glycolysis with increased lactate production
and glycolytic enzyme overexpression, to satisfy their energy
demand and support malignant behavior, despite a hypoxic
and nutrient-deficient microenvironment (Yang et al., 2020).
Growing evidence supports that stromal cells trigger the Warburg
effect in cancer cells. For instance, the bone marrow (BM)-
derived MSCs co-cultured with leukemia cells under normoxic

conditions revealed reduced mitochondrial membrane potential
and pyruvate metabolism in the both cell types (Samudio
et al., 2008). Interestingly, mitochondrial membrane potential
reduction was mediated in leukemia cells by an uncoupling
protein 2 (UCP2)-dependent mechanism, suggesting that MSCs
facilitated the Warburg effect in cancer cells by activating highly
conserved mammalian UCPs. On the same hand, a study carried
out on bevacizumab-resistant glioblastoma, suggested that inside
the hypoxic microenvironment, chemoresistance in cancer cells
occurs through: (i) metabolic reprogramming, characterized
with suppressed oxidative phosphorylation and upregulated
glycolysis; (ii) perivascular invasiveness along remaining blood
vessels in a VEGF- and neo-angiogenesis-independent manner;
and (iii) enrichment of tumor-initiating stem cells residing in
the perivascular niche close to residual blood vessels (Chandra
et al., 2020). Such observations are the basis of studies aiming at
targeting signaling molecules pivotal for cancer cell glycolysis [for
review see Xu et al. (2015)].

An early study aimed at determining whether the Warburg
effect is due mainly to the hypoxic microenvironment, or to
inherent metabolic alterations in transformed MSCs, revealed
that aerobic glycolysis results from MSC oncogenic adaptation
to bioenergetic requirements. Authors observed that in some
circumstances, transformed MSCs may also rely on increased
in oxidative phosphorylation (Funes et al., 2007). However,
the study revealed a reversible increase in the transcription of
glycolytic enzymes genes, in tumors generated by transformed
MSCs, indicating a metabolic support of MSCs for surrounding
cells of the tumor to its microenvironment. Similar observations
led to the development of a new hypothesis for stromal cell
support to cancer cell metabolism, the reverse Warburg effect [for
review see Xu et al. (2015), Fu et al. (2017)]. Basically, cancer cells
induce oxidative stress in neighboring stromal cells such as MSC-
derived fibroblasts by secreting reactive oxygen species (ROS). In
stromal cells, ROS trigger aerobic glycolysis and the production of
lactate, pyruvate, and other high energy metabolites. Finally, the
latter are transported to adjacent cancer cells where they sustain
the energy need and various signaling pathways driving tumor
progression, metastasis, and chemoresistance (Fu et al., 2017).
This new approach focused on tumor cell metabolism, pointed
out many targets in tumor microenvironment and cancer cell
machinery for anticancer therapy.

A wealth of other reports also supports the involvement of
stromal cells in the metabolic changes supporting tumorigenic
processes. For instance, In breast cancer, depending on ROS,
hypoxia, and glucose availability in the microenvironment,
tumor-initiating cells are capable to switch toward oxidative
phosphorylation and glycolysis. This adaptative metabolic switch
is controlled at least in part by stromal cells to confer a survival
advantage to malignant cells (Walsh et al., 2019). Lung et al.
(2019) reported that the expression of estrogen receptor-α (ER),
the target of endocrine therapies in breast cancer, is regulated
by the BM microenvironment. In this study, the induction
of ESR1 mRNA and ER protein downregulation, through a
MAPK-independent mechanism, was achieved by the treatment
of breast cancer cells with conditioned culture media from either
cancer-activated BM stromal cells or HS5 BM stromal cell line
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FIGURE 1 | Summary of mesenchymal stromal cells (MSCs) role in the tumor microenvironment. Normally, MSCs mediate anticancer effects but reprogrammed by
tumor microenvironment they display pro-tumorigenic effects.

(Lung et al., 2019). In addition, thyroid hormones, which are
well-established pro-tumorigenic players, may stimulate tumor
growth and neovascularization in various solid cancers by
activating MSCs through a non-classical integrin αvβ3 signaling
(Schmohl et al., 2019). Moreover, the EGF-like superfamily
member EGFL6 would promote tumor growth by mediating a
cross-talk between stromal and cancer cells that would contribute
to stemness and epithelial-mesenchymal transition (EMT), an
important tumorigenic mechanism where epithelial cells become
MSCs by losing their cell polarity and adhesion ability, and
by gaining migratory and invasive properties (An et al., 2019).
Altogether, these observations confirm that targeting cancer
cell energy metabolism is still a sound anticancer strategy,
and point out stromal cells as major players in cancer cell
energy metabolism.

Immunosenescence and
Immunosuppression
Immunosuppression and immunosenescence are two
major immunological phenomena observed in the tumor
microenvironment. Like aging processes, cancers environment
is characterized by a chronic inflammation (“inflammaging”)
and cellular senescence (“immunosenescence”). The role of

stromal cells’ immunomodulation in shaping a senescent
microenvironment in broad spectrum of human malignancies,
especially tumorigenesis, has been documented extensively [for
review see Salminen et al. (2020), Thomas et al. (2020)]. For
instance, BM stromal cells from patients with myelodysplastic
syndrome display a senescence phenotype induced by S100A9-
induced Toll-like receptor 4 (TLR4), NLRP3 inflammasome
activation and IL-1β secretion (Shi et al., 2019). Senescent
breast luminal cells promoted carcinogenesis by activating
MSC-derived fibroblasts through the inflammatory cytokine IL-8
(Al-Khalaf et al., 2019). Acute myeloid leukemia (AML) blasts
induced a senescence-associated secretory phenotype (SASP) in
BM stromal cells through a p16INK4a-dependent mechanism,
which encompassed the irreversible arrest of cell proliferation
and the secretion of a set of chemokines, proinflammatory
cytokines, and growth factors (Abdul-Aziz et al., 2019). MSCs
promoted the progression of gastric cancer cells through the
release of CXCL16, which activates STAT3-mediated expression
of Ror1 in the cancer cells (Ikeda et al., 2020). In oral mucosa
carcinogenesis, MSCs increased immunosuppressive functions
on T cell proliferation and pro-tumorigenic effects of tumor
resident MSCs correlated with higher expressions of cellular
proliferative status indicator Ki67 (Chen et al., 2019a). STAT4
over-expression in gastric cancer cells made normal fibroblasts
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acquire cancer-associated fibroblast (CAF)-like features through
wnt/β-catenin-dependent signaling (Zhou et al., 2019a). A recent
study using MSCs expanded from BM and prostate cancer
tissue from independent donors showed that tumor-infiltrating
MSCs are major drivers of the immunosuppressive tumor
microenvironment in prostate cancer (Krueger et al., 2019). The
authors reported the ability of prostate cancer-infiltrating MSCs
to suppress T-cell proliferation through immunosuppressive
properties comparable to canonical BM-derived MSCs. The
suppression of proliferation mediated by prostate cancer-
infiltrating MSCs was dose-dependent, and the expressions of
PD-L1 and PD-L2 were upregulated on T-cells in the presence
of IFN-γ and TNF-α (Krueger et al., 2019). In another study,
the transcriptome analysis of MSCs from multiple myeloma
patients revealed constitutive abnormalities in immune system
activation, cell cycle progression, and osteoblastogenesis that
were maintained even in the absence of tumor cells, thus strongly
suggesting that MSCs may contribute to the immune evasion and
bone lesions frequently found in multiple myeloma (Fernando
et al., 2019). Altogether, these observations also point out stromal
cells as major players in tumorigenesis and reveal more targets
for pharmacological anticancer therapy.

Although it is well-established that MSCs are major
drivers of the immunomodulation observed in solid tumor
microenvironment, many others cell components can cooperate
with MSCs to modulate immune response. In AML,CXCL8
supports the survival and proliferation of leukemic cells
via the PI3K/AKT signaling pathway. In the affected BM
microenvironment CXCL8 is mainly secreted by MSCs (Cheng
et al., 2019). Study on other bone marrow disorders show
that and MSCs to shape the Microenvironment at least partly
by inducing suppressive monocytes and dampening NK cell
functions (Sarhan et al., 2020).

EVIDENCE OF STROMAL CELL
PROGRAMMING BY TUMOR
MICROENVIRONMENT

A growing body of evidence supports that stromal cells follow the
program dictated by their microenvironment.

Tumor Microenvironment Effects on
Stromal Cells
Early studies addressing the composition of the tumor
microenvironment, reported an atypical cellular and
molecular microenvironment supporting carcinogenesis
and chemoresistance (Garcia-Hernandez et al., 2017; Pelizzo
et al., 2018). Recently, Coffman et al. (2019) reported that
ovarian carcinoma-associated MSCs, which are critical stromal
progenitor cells promoting tumor cell growth, cancer stemness
and chemoresistance, arose from a process of tumor-mediated
reprogramming of local tissue MSCs. This study also provided
strong evidence that tumor-mediated MSC conversion is tissue-
and cancer-type dependent, requiring tumor-secreted factors and
hypoxia (Coffman et al., 2019). In other studies, gene expression

signatures and mesenchymal shift in quiescent glioblastoma
cells, a source of tumor recurrence in highly malignant
glioblastoma, was observed following their interactions with
niche microenvironment (Tejero et al., 2019). Breast tumor
microenvironment transformed naive MSCs into tumor-forming
cells in nude mice. Indeed, MSCs pre-exposed to conditioned
medium or purified exosomes derived from breast cancer cells
(MDA-MB-231) formed a tumor-like mass rich in stromal
tissue by 14 weeks when injected into mammary glands of
nude mice (Worner et al., 2019). Similarly, CCL5 secreted
by classic Hodgkin lymphoma cells recruited MSCs and
monocytes, enhancing MSC proliferation and CCL5 secretion.
Conditioned medium from these educated MSCs increased
tumor cell growth and monocyte migration (Casagrande et al.,
2019). Similarly TLR4 signaling educated MSCs to promote
tumor microenvironment transformation in multiple myeloma
(Giallongo et al., 2019).

Exosomes including extracellular vesicles (EVs) represent
a mean used by tumor cells to educate MSCs in the
microenvironment. In chronic myeloid leukemia (CML),
leukemia cells altered the cellular and immune-related properties
of BM-MSCs and macrophages in vitro by the mean of
exosomes (Jafarzadeh et al., 2019). Consistently, Zannoni et al.
(2019) reported that EVs released by monocytes from chronic
myelomonocytic leukemia patients conferred a procoagulant
state favorable for cancer progression, through a tissue factor-
dependent mechanism mediated by MSCs. In glioma, exosomes
from cancer cells induced a tumor-like phenotype in MSCs by
activating glycolysis (Ma et al., 2019). In gastric cancer, tumor
cell-derived exosomes affected the immunomodulatory functions
of MSCs by activating the NF-kB signaling pathway, which in
turn mediates support to tumor growth by maintaining the
inflammatory environment and enhancing the ability of MSCs to
activate immune cells (Shen et al., 2019).

In addition, pre-metastatic niche in distant organs may be
created, at least in part, by the transfer of EVs secreted by
tumor-associated macrophages (TAMs) to stromal cells, such as
fibroblasts, peritoneal mesothelial cells (PMCs), and endothelial
cells (Umakoshi et al., 2019). Long-term culture of human
MDA-MB-231 breast cancer cells with normal human MSCs
was associated with the formation of three-dimensional (3D)
tumor spheroids in vitro, with a 14-fold enhanced expression of
the breast tumor marker urokinase plasminogen activator (uPA;
Melzer et al., 2019). Similarly, MSCs cultured with colorectal
cancer cells showed increased invasiveness and proliferative
abilities due to increased TGF-β1 and decreased p53 levels (Oh
et al., 2020). In another study, TGF-β1 promoted the migration
and invasion of HCT116 and HT29 colorectal cancer cells,
and induced the differentiation of MSCs into CAFs through a
JAK/STAT3 signaling-depended mechanism (Tan et al., 2019).

The available data also support detrimental cross-talks
between stromal and cancer cells. For instance, reciprocal
reprogramming of cancer stem cells (CSCs) and associated MSCs
may promote tumor progression in gastric cancer (Shamai et al.,
2019). Similarly, asporin, a factor secreted by MSCs following
cellular interactions within the tumor microenvironment, altered
the tumor microenvironment and inhibited MSC differentiation
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to drive metastatic progression through CD49d/CD29 signaling
(Hughes et al., 2019). Moreover, Dabbah et al. (2019) reported
that microvesicles derived from BM MSCs of multiple myeloma
patients increased the tumorigenicity of MM cells (Hughes
et al., 2019). In this study, CD49d and CD29 integrin
overexpression in MM-MSC microvesicles were associated with
patient staging and response to treatment. The concomitant
inhibition of these molecules resulted in reduced uptake of
EVs by MM-MSC (but not normal donor MSC microvesicles),
and downregulation of aggressiveness markers, thus enhancing
response to chemotherapy (Dabbah et al., 2019). Interestingly,
this study also suggested that the reciprocal interactions of
malignant cells and MSCs in breast cancer microenvironment
may result in the transformation of naive MSCs into cells capable
of forming explants in nude mice (Dabbah et al., 2019).

Overall, together with evidence of MSC role in cancer
metabolism discussed in section 1.1, these data suggest that
tumorigenesis is triggered and driven by a bidirectional
cross-talks between MSCs and tumor environment. Therefore,
unraveling the signaling molecules involved in these pro-
tumorigenic cross-talks may lead to the identification of novel
targets for anti-cancer therapy. Promising reports using this
approach include a recent study that addressed the potential
roles and mechanisms of long non-coding RNAs in EMT and
in the maintenance of CSC-like properties in non-small cell
lung cancer (NSCLC). Using A549 and H1299 human NSCLC
cell lines, L9981 and 95D highly metastatic NSCLC cell lines,
and NL9980 and 95C low-metastatic NSCLC cell lines., the
authors observed that knockdown of long non-coding RNA linc-
ITGB1 inhibited the expression of various markers of cancer
stemness and CSC formation by reducing the expression of
the EMT-related transcription factor Snail. Rewardingly, the
overexpression of Snail reversed the inhibitory effects of linc-
ITGB1 knockdown (Guo et al., 2019). Further studies should
characterize and target the signaling pathways supporting the
reprogramming of stromal cells by cancer cells, as well as other
interactions between these cells that support tumorigenesis.

Hypoxia and Tumor Stiffness
Tumor stiffness and hypoxia are key conditions of the solid
tumor microenvironment, known to promote tumor survival,
progression and metastasis. Hypoxia-driven phosphorylated
glycoprotein such as osteopontin, promoted stem cell-like
properties and EMT in pancreatic cancer cells in a paracrine
manner, through integrin αvβ3-Akt/Erk- forkhead box protein
M1 (FOXM1) signaling (Cao et al., 2019). Hypoxia-induced
EMT was observed in non-small-cell lung cancer (Chen et al.,
2019b) where hypoxia induced the acquisition of cancer stem
cell features through CXCR4 activation (Kang et al., 2019).
In fact earlier reports pointed out HIF-1 as a link between
hypoxia, inflammation, and cancer [for review see Balamurugan
(2016), Shi et al. (2018)]. Growing evidence suggests that stromal
cells mediate the pro-tumorigenic effects of hypoxia and tumor
stiffness. Notably, MSC-derived CAFs were suggested as the
link between biophysical forces and pro-metastatic signaling in
colon cancer, as they respond to increased stiffness of the tumor
microenvironment by activating TGF-β family members and

the signaling of the strong pro-metastatic cytokine activin A
(Bauer et al., 2020). On the same hand, microvesicles derived
from human BM-MSCs supported human osteosarcoma (U2OS)
cell growth under hypoxia conditions both in vitro and in vivo
through PI3K/AKT and HIF-1α-dependent mechanisms (Lin
et al., 2019). In addition, interactions of cancer cells and
stromal cells in hypoxic microenvironment were found to drive
EMT through NOTCH and c-MET signaling, inducing an
immunosuppressive response within the microenvironment in
pancreatic ductal adenocarcinoma (PDA; Daniel et al., 2019).

In a study addressing the end-stage of myeloma cell
mobilization from the BM into peripheral blood (PB), hypoxic
BM niches, together with a pro-inflammatory microenvironment
resulting from the interactions between tumor cells and BM
stromal cells, were able to induce an arrest in proliferation, thus
forcing tumor cells to circulate into the peripheral blood to
seek other BM niches (Garces et al., 2020). These observations
suggest that hypoxic BM niches are key players in metastatic
processes. In agreement with this view, it has been observed
in an in vivo mouse syngeneic tumor model, that hypoxic BM
stromal cells-derived exosomal miRNAs promoted metastasis
of lung cancer cells via STAT3-induced EMT (Zhang et al.,
2019a,b). Consistently, Saforo et al. (2019) described an in vitro
cell culturing system incorporating elements of the in vivo
lung environment, including physiological hypoxia (5% O2)
and lung fibroblast-derived extracellular matrix. Through this
culture system, a rapid expansion of stromal progenitors from
patient’s lung tumor resections was achieved. These progenitor
cells retained the secretion of factors associated with cancer
progression, the expression of pluripotency markers, and the
ability to enhance tumor cell growth and metastasis (Saforo
et al., 2019). The ability of hypoxia-conditioned MSCs to
promote cancer progression was also observed in hepatocellular
carcinoma but the effect was dependent of yes-associated protein
(YAP)-mediated lipogenesis reprogramming (Liu et al., 2019). In
Glioblastoma, the glioblastoma stem-like cells (GSCs) phenotype,
the worst prognostic marker of Glioblastoma, was reported to
persist due to hypoxic microenvironment-dependent release of
extracellular adenosine, which in turn, promote cell migration,
invasion and tumor recurrence through the activation of the A3
Adenosine Receptor (A3AR; Torres et al., 2019).

Altogether, these data suggest that hypoxia, tumor stiffness,
and inflammation are among the major drivers of the
pro-tumorigenic reprogramming of stromal cells in the
tumor microenvironment.

Extracellular Matrix Involvement
Emerging data strongly suggest that the tumor extracellular
matrix (ECM) also contributes to tumor microenvironment
effects on stromal cells. For example, after showing that multiple
myeloma (MM) cells, cultured with BM-MSCs, co-modulated the
phenotype of MM cells in a MAPKs/translation initiation (TI)-
dependent manner, Ibraheem et al. (2019) reported that even the
decellularized ECM of BM-MSCs from MM patients was able
to induce comparable pro-tumorigenic effects (Ref). A number
of changes in microRNAs was shown to affect MM phenotype
and the activation of MAPK/TI, EMT, proliferation, and CXCR4,
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with a role for BM-MSCs secretome and microvesicles. On
the other hand, the decellularized ECM of BM-MSCs from
normal donors mediated anticancer effects, including a rapid
and persistent decrease in MAPK/TI activation, proliferation,
cell count, viability, migration, and invasion (Ibraheem et al.,
2019). These authors also provided evidence of a synergism
between the ECM and microvesicles in the modulation of MM
cell response to chemotherapy as well as in the hierarchy and
interdependence of MAPKs/TI/autophagy/phenotype cascade.
These observations suggested that to reprogram MSCs for pro-
tumorigenic effects, the ECM also needs to be reprogrammed
by cancer-promoting cells. For example, senescent MSCs actively
remodeled the surrounding ECM to drive breast cancer cells to
a more-invasive phenotype (Ghosh et al., 2020). Consistently,
matrix metalloproteinase-9 (MMP-9) produced by leukemia
cells facilitated tumor progression via remodeling of the ECM
of the BM microenvironment. This is supported by the fact
that MMP-9-deficiency in the BM microenvironment reduced
leukemia-initiating cells and prolonged survival of mice with
BCR-ABL1-positive B-cell acute lymphoblastic leukemia (B-ALL;
Verma et al., 2020).

Three-dimensional culture studies with cancer and stromal
cells in ECM and multiplex quantitative analysis method,
reprensent majors tool to tacle signaling molecules and
mechanisms used by reprogrammed ECM to drive MSC pro-
tumorigenic effects, (Hwang et al., 2019; Maliszewska-Olejniczak
et al., 2019). Therefore, a recent study using such approach in
hepatocellular carcinoma (HCC), showed that cell repopulation
of cirrhotic scaffolds displayed a unique up-regulation of genes
related to EMT and TGF-β signaling as well as high concentration
of endogenous TGF-β1 in comparison to healthy scaffolds and
TGF-β1-induced phosphorylation of canonical proteins Smad2/3
(Mazza et al., 2019). This study characterized the inherent
features of ECM microenvironment from human cirrhotic liver
acting as key pro-tumorigenic components in HCC development.

Impact of Adiposity
It is well-established that fat tissue overgrowth in obesity
promotes tumor progression [for reviews of earlier reports see
Park et al. (2014), Iyengar et al. (2016), Quail and Dannenberg
(2019)]. Using a xenograft model of early multiple myeloma,
it has been shown that bone niche switching towards a
“fatty” marrow supports the development of malignant cells
during carcinogenesis. In this study, MSCs mainly gave rise to
adipocytes supporting tumor growth by increasing the survival
and chemoresistance of malignant cells (Berlier et al., 2019).
Su et al. (2019) compared lean and obese mice grafted with
prostate tumors and showed that obesity promotes EMT in
cancer cells and tumor invasion into the surrounding fat
tissue. In this study, adipose stromal cells induced EMT in
prostate cancer cells and rendered them more migratory and
chemo-resistant. By contrast, interference of adipose stromal
cell capabilities suppressed both EMT and chemoresistance to
docetaxel, cabazitaxel, and cisplatin chemotherapy in human
prostate cancer cells (Su et al., 2019). It has been suggested that
that adipose-derived factors may play a role in MSC-mediated
pro-tumorigenic effects. For instance, the adipokine chemerin,

a cell differentiation promoter and leukocyte chemoattractant
factor established as a major player in obesity-mediated support
of cancer progression, was reported to promote the growth,
proliferation migration, invasion, and metastasis of cancer cells.
The effects of the adipokine chemerin were achieved through
the recruitment of tumor-associated MSCs and the stimulation
of angiogenesis pathways in endothelial cells through chemerin
receptor 1 (CMKLR1), chemerin receptor 2 (GPR1), and CCLR2
signaling (Goralski et al., 2019). Interestingly, in a culture system
established to investigate the paracrine effects of MSCs on the
migration and invasion potential of this aggressive breast cancer
cell line, human adipose-derived MSCs promoted EMT in MCF7
breast cancer cells by cross-interacting with the TGF-β/Smad
and PI3K/AKT signaling pathways, suggesting that stromal cells
are key players in obesity-mediated tumor progression (Wu
et al., 2019). There is probably a pro-tumorigenic cross-talk
between adipose tissue and tumor stromal cells, particularly
in obesity-like contexts. Adipose-derived signaling molecules
might be among the drivers of pro-tumorigenic reprogramming
of stromal cells by cancer cells. The evidence of stromal cell
programming by tumor microenvironment suggest that non
programmed cells could mediate anticancer effects in contrast
with their educated counterpart.

EVIDENCE OF STROMAL CELLS
MEDIATING ANTICANCER EFFECTS

Emerging data support that non-tumor associated MSCs
mediate anticancer effects and suggest the existence of
stromal cells mediating anticancer effects in the tumor
microenvironment, notably, MSCs slowing tumor progression
and cancer-restraining CAFs.

Naïve Stromal Cells Mediate Anticancer
Effects
To address the antitumor potential of non-tumor associated-
MSCs, Francois et al. (2019), treated immunocompetent rat
models of colorectal carcinogenesis with non-tumor BM-derived
MSCs, observing inhibition of cancer progression. This effect was
partially due to the control of the tumor microenvironmental
immunity as shown by (i) the modulation of effector cells,
such as regulatory T cells (Tregs), CD8+ cells and NK cells;
(ii)macrophage reprogramming into regulatory cells performing
phagocytosis with reduced production of proinflammatory
cytokines; (iii) the restoration ofTh17 activity and (iv) 50%
decrease in the infiltration rate of CD68+ cells, and two-fold
increase of CD3+ cells (Francois et al., 2019). In another study,
intra-BM but not the systemic administration of BM MSCs
from healthy donors reduced tumor burden and prolonged
survival of the leukemia-bearing mice (Xia et al., 2020). In this
study, the MSC senescence observed during disease progression
was stopped and the BM microenvironment was restored, with
functional recovery of host myelopoiesis and improvement
of thrombopoiesis. Moreover, in a bioluminescence imaging
study monitoring the effects of human umbilical cord-derived
MSCs in mouse hepatoma tumor models with H7402 cell
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line, MSC microenvironment effectively inhibited the growth of
cancer cells (Liu et al., 2019). Interestingly, human BM MSC-
derived exosomes overexpressing miR-34a inhibited glioblastoma
development (Wang et al., 2019). Two other microRNAs,
associated with the capacity of MSCs to attenuate cancer growth
have also been identified, namely miR-150 and miR-7 (Wang
et al., 2019). Mandal et al. (2019) reported that perinatal tissue
MSCs encapsulated with the sodium alginate biomaterial for
isolation from tumor microenvironment displayed: (i) increased
proliferation with enhanced expressions of pluripotency genes,
EMT, immune-modulation and angiogenesis; (ii) increased
expression of the tumor invasion suppressor protein E-cadherin;
(iii) and increased secretions of VEGF, TGF-β, TNF-α, IFN-
γ, IL-10 and IL-6, and IL-3β. Furthermore, treatment of CSCs
derived from MDA-MB-231 and MCF7 breast cancer cell lines
with encapsulated MSCs lowered CSC viability and migration,
with downregulation of markers related to angiogenesis, EMT
and proliferation, and upregulation of Wnt antagonists sFRP4
and DKK1 (Mandal et al., 2019). Taken together, these data
suggest that non-tumor associated MSCs mediate anticancer
effects and support that MSC pro-tumorigenic effects result from
tumor reprogramming.

Early clinical and experimental studies in mouse models
suggested the existence of at least two types of MSC-derived
CAFs: they extensively studied cancer-promoting CAFs and the
cancer-restraining CAFs, which were poorly investigated due
to the lack of markers [for review see Bu et al. (2019)]. In a
recent study using stromal cell lines derived from central nervous
system (CNS) metastasis of breast and lung cancer patients,
a cell population with tumor inhibitory functions, expressing
high levels of collagen and displaying gene expression signatures
of CAFs, MSCs, and EMT, was isolated and characterized
in cancer metastasis microenvironment (Tew et al., 2019).
Some very interesting recent reports have proposed markers to
identify cancer-restraining CAFs. The study of Mizutani et al.
(2019) has reported the glycosylphosphatidylinositol-anchored
protein Meflin as a potential marker of cancer-restraining
CAFs. These authors observed that the tissue infiltration of
Meflin-positive CAFs correlated with favorable patient outcome
in pancreatic ductal adenocarcinoma. Meflin deficiency or
downregulated resulted in markedly faster tumor progression in
a pancreatic ductal adenocarcinoma mouse model. Consistently,
the overexpression of Meflin in CAFs or the delivery of a Meflin-
expressing lentivirus into the tumor stroma were sufficient
to suppress the growth of xenograft tumors (Mizutani et al.,
2019). This new marker paves the way to isolation and further
characterization of CAFs exerting anti-tumoral effects.

Overall, in vitro studies and studies using naïve MSCs, i.e.,
MSCs that were not in contact with tumor microenvironment,
support the anti-tumor effects of MSCs. But these anti-cancer
functions can be markedly reduced by the direct crosstalk
with tumor bulk or tumor stromal elements. Interestingly,
Early studies addressing the immunological hallmarks of MSCs
in the tumor microenvironment revealed various molecular
mechanisms through which MSCs may modulate the immune
response in the cancer microenvironment. This indicated that
it may be possible to convert the microenvironment from

immunosuppressive to immunostimulant feature [for review see
Turley et al. (2015), Poggi et al. (2018)]. These reports paved the
way for studies attempting to reprogram tumor stromal cells for
anticancer effects.

Attempts to Reprogram Tumor Stromal
Cells for Anticancer Effects
A bulk of recent reports propose promising strategies for
reprogramming microenvironmental stromal cells to mediate
only anticancer effects. For instance, treatments with various
flavonoids and non-flavonoid polyphenolic compounds from
medicinal plants alleviated multidrug resistance in breast,
prostate, lung and colorectal cancer with survival benefits in
patients. These effects were achieve through the modulation
of inflammatory responses, their antioxidant capacity, and
the inactivation of oncogenes, the inhibition of angiogenesis,
proliferation, survival, and metastasis [for review see Costea
et al. (2020)]. On the same hand, unlike conditioned medium
from human adipose MSCs, eicosapentanoic acid-treated adipose
MSCs reduced mRNA levels of the tumor-associated genes
FASN, STAT3, cIAP-2 in MDA-MB-231 and MCF-7 breast
cancer cell lines. Functionaly, cancer cell lines treated in
these conditions displayed reduced glycolysis, inflammation
and motility in vivo (Al-Jawadi et al., 2020). In addition,
treatment with 5-Azacytidine restored IL-6-increased production
in MSCs collected from myelodysplastic patients (Boada
et al., 2020). Engineered human placenta-derived MSCs,
armed with a double fusion gene containing the herpes
simplex virus truncated thymidine kinase and firefly luciferase,
inhibited the tumorigenesis mediated by the HT29 colon
cancer cell line in nude mice (Yang et al., 2019). Similarly,
as compared to short-culture CAFs, prolonged culture of
heterogeneous prostatic CAFs resulted in marked decreases
in the expression of proliferative endothelial cell surface
marker endoglin (CD105), and loss of their tumor expansion
potential in 3D-cultures and patient-derived xenograft tissues
(Kato et al., 2019).

Furthermore, irradiated endothelial cells decreased the
malignancy of liver cancer cells in a culture system using
conditioned medium from endothelial cells, suggesting that
irradiated endothelial cells are key players in the therapeutic
effects of radiotherapy (Kim et al., 2019). Similarly, a study
addressing the response of human MSCs to low-dose
photodynamic therapy revealed that this treatment may
increase MSC immunogenicity and promote angiogenic
potential (Udartseva et al., 2019). In this in vitro study, low-dose
photodynamic therapy: (i) induced the reorganization of MSC
cytoskeleton, with decrease in cell motility; (ii) induced the
inhibition of GSK-3 and the activation of Erk1/2 signaling in
MSCs; (iii) significantly upregulated the secretion of VEGF-A,
IL-8, PAI-1, MMP-9, and other proangiogenic factors by MSCs;
(iv) dramatically inhibited the secretion of pro-tumorigenic
macrophage infiltration marker CCL2 (MCP-1) by MSCs
and decreased MSC viability and immunogenicity when
cultured with lymphocytes. In another study, MSCs loaded
with photosensitizer MnO2@Ce6 successfully shipped these
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nanoparticles into lung cancer tumor sites, enhancing the
effects of photodynamic therapy in vivo (Cao et al., 2020). In
sarcomas, tumor-initiating cells are thought to derive from
MSCs, modified MSC were successfully used to deliver TNF-
related apoptosis-inducing ligand (TRAIL) to induce tumor
apoptosis, open novel therapeutic opportunities (Grisendi
et al., 2015). Altogether, these observations confirm that it is
possible to reprogram tumor stromal cells to mediate anticancer
effects, and warrant further studies aimed at developing
therapies using this approach. We propose that reprogrammed
tumor MSCs loaded with photosensitizer MnO2@Ce6 or
other nanoparticles with anticancer effects could display
strong anticancer effects in vivo, as this approach will couple
the MSC anticancer effects with the anticancer effects of
nanoparticles (Ref).

CONTROVERSY SOURCES AND
IMPLICATIONS FOR MSC THERAPEUTIC
USE

Other Sources of Controversy on the
Roles of Stromal Cells in Tumorigenesis
Beyond the fact that MSC effects in the tumor microenvironment
depend on the interactions with the adipose tissue and
malignant cells (pro-tumorigenic when there are cross-talks
and anticancer effects when there are poor interactions) and
with the ECM programming (pro- or anticancer) to support
differences between in vitro and in vivo studies, controversies
on the roles of stromal cells in the tumor microenvironment
may also emerge from MSC origin and the cancer type.
This hypothesis is fully supported by a report of Quach
et al. (2019) where the inhibition of the glypican-1 (GPC-1)
prostate cancer biomarker in the aggressive prostate cancer
cell line PC-3 decreased cell growth and migration in vitro,
but increased PC-3 tumor size in NCr nude mice xenografts.
Authors also observed that GPC-1 inhibition in an aggressive
prostate cancer cell line, the DU-145 cells, increased cancer cell
proliferation and migration, suggesting that GPC-1 accounts
among the factors that drive cancer cell line-dependent responses
to stromal cells Reduced cell growth observed in GPC-1
knockdown PC-3 cells was rescued by culturing the cells with
MSCs and CAFs. Further, the treatment of these stromal cells
with tumor-conditioned media from PC-3 cells transfected
with GPC-1 shRNA increased the expression of extracellular
matrix components, endocrine and paracrine biomolecules, and
migration markers (Quach et al., 2019). In another study,
despite in vivo observations revealing the ability of IGF/IGF-
IR signaling to induce drug resistance and influence the ability
to form metastasis via the induction of EMT in pancreatic
cancer, the activation of this signaling pathway by stromal
cells failed to induce EMT in cultures with MiaPaCa-2, AsPC-
1, Capan-2, BxPC-3, and Panc1 pancreatic cancer cell lines
(Kopantzev et al., 2019), suggesting a key role for tumor
microenvironment for the pro-tumorigenic effects of this MSC-
activated signaling pathway.

When assessing how breast cancer cells from different
stages of the metastatic cascade convert MSCs into tumor-
associated MSCs, it was observed that only MDA-MB-231 breast
cancer secretomes, but not MCF-7 cells or sublines isolated
from bone, lung, and brain metastases, converted MSCs into
tumor-associated MSCs in bioengineered 3D microenvironments
(Blache et al., 2019). These observations further confirm that
MSCs from tumor microenvironment are reprogrammed by
cancer-initiating cells and primary tumor ECM to mediate
pro-tumorigenic effects, and that without such reprogramming
the stromal cells may rather mediate anticancer effects. On
the same hand, in co-cultures with stem cell-like (CD133+)
cells from urinary bladder cancer cell lines, adipose-derived
MSCs produced soluble mediators that: (i) increased the
phosphorylation of molecules involved in cancer progression
and drug resistance, such as p70 S6K, ERK1/2, and AKT1/2/3
in CD133+ cells (5,637 cell line); but instead, (ii) decreased
the phosphorylation of those involved in PI3K/Akt and MAPK
signaling molecules in CD133+ cells (HB-CLS-1 cell line; Maj
et al., 2019). In this study, there seemed to be a controversy on the
effect of MSCs on urinary bladder cancer lines in vitro, as MSCs
induced pro-tumorigenic effects in culture with 5637 cell line and
anticancer effects in culture with HB-CLS-1 cell line. However,
this difference may actually suggest that unlike the first, the latter
cell line was not able to reprogram MSCs for pro-tumorigenic
effects, hence, MSCs mediated anticancer effects.

However, considering that naïve MSCs promoted anticancer
effects in most reports, treatment of MDAMB231 and MCF7
human breast cancer cells with medium containing EVs from
naïve MSC cultures promoted the in vitro proliferation and
migration of cancer cells through ERK signaling (Zhou et al.,
2019b). We hypothesize that these effects may be due to
differences in the origin of MSCs, as unlike in most reports, in
this study human umbilical cord MSCs, and not BM or adipose-
derived MSCs were used. A comparative study of subcutaneous
and visceral adipose-derived MSCs revealed various functional
similarities and differences, despite similar surface markers
(Ritter et al., 2019). Notably, visceral MSCs secreted higher
levels of inflammatory cytokines (IL-6, IL-8, and TNF-α) and
had more active sonic hedgehog pathway than subcutaneous
MSCs. Moreover, fetal and adult lung MSCs possess lung-specific
properties, unlike BM MSC (Rolandsson Enes et al., 2016).
A study profiling the transcriptomes of 361 single MSCs derived
from two umbilical cords (UC-MSCs), harvested at different
passages and stimulated with or without inflammatory cytokines,
revealed that UC-MSCs are a well-organized population with
limited heterogeneity, as compared to other MSC types (Huang
et al., 2019). These data support strong differences between
MSC lines based on their origin, and even raise caution for the
therapeutic use of some MSC lines in cancer context.

Implications for MSC Use for Tissue
Regeneration in Cancer Patients
Because MSCs are able to increase cancer cell malignancy in vitro,
early studies raised the danger of the application of human
MSCs in regenerative medicine for patients with history of
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breast cancer, small cell ovarian cancer and other malignancies
(Kucerova et al., 2011; Yang et al., 2015). Although subsequent
reports from in vitro studies provided encouraging results
for potential use of MSCs from patients for post-anticancer
therapy tissue regeneration, there are still some concerns. For
instance, an in vitro biosafety profile evaluation of MSCs derived
from the BM of sarcoma patients showed that the in vitro
expansion of MSCs from osteosarcoma (OS) and Ewing sarcoma
(EWS) patients does not favor malignant transformation, but
instead of that these MSCs displayed comparable morphology,
immunophenotype, differentiation potential, proliferation rate,
and telomerase activity to MSCs from healthy donors, indicating
that OS and EWS patients may benefit from an autologous
MSCs-based bone reconstruction after anticancer chemotherapy
(Lucarelli et al., 2014). However, these promising findings,
which need to be confirmed in vivo, were mitigated by
the observation of chromosomal aberrations in MSCs after
culture, raising caution and confirming the need for rigorous
phenotypic, genetic and functional evaluation of the biosafety
of MSCs from patients before clinical use. Interestingly, reports
from exploratory studies in mice confirmed the therapeutic
potential of MSCs for repairing damaged tissues after anticancer
chemotherapy in vivo, thus after elimination of most of the
primary tumor tissue that could have reprogrammed MSCs
to mediate pro-tumorigenic effects [for review see Bussard
et al. (2016), Baghban et al. (2020)]. Notably, human adipose-
derived MSCs displayed repairing properties in damaged thymus
following chemotherapy in mouse models of blood cancer,
with improvements in the thymic structure and functions,
as shown by the proportion of circulating and splenic Treg
cells and the recovery of T-cell subpopulations (Zhan et al.,
2019). However, the caution remains, not because of the
possibility of reprogramming of MSCs for pro-tumorigenic
effects, considering that anticancer chemotherapy normally
eliminates most of the primary tumor tissue, but because we still

need studies proving phenotypic, genetic and functional biosafety
of MSCs in cancer context. Autologous MSC use may require
a biosafety evaluation for each patient considering the clinical
implications of using damaged MSCs.

CONCLUDING REMARKS

The available data support that stromal cells normally have
anticancer cancer effects. MSCs reprogrammed by cancer cells
in the tumor microenvironment undergo a switch towards
pro-tumorigenic activities, including their support to cancer
cells in part through the metabolic reprogramming necessary
to satisfy the energy demand and malignant behavior of the
latter in a hypoxic and nutrient-deficient microenvironment.
Tumor microenvironment reprograms MSCs thanks to
hypoxia and the extracellular matrix cross-talks with MSCs.
Interestingly, promising emerging reports suggest strategies for
reprogramming microenvironmental stromal cells, which in
turn switch back to naïve MSCs capable to function as anti-
cancer agents. These reprogramming treatment include MSCs
treatment with polyphenolic compounds from medicinal plants,
with eicosapentanoic acid, or with 5-Azacytidine. . .. Taken
together, the available data suggests that targeting the tumor
microenvironment could be a promising therapeutic strategy
in cancer, and that it is possible to reprogram tumor stromal
cells to revert back to anticancer effects. These strategies should
be further developed in the search for anticancer therapies, in
particular for refractory cancers.
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