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Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide,
with high morbidity, relapse, metastasis and mortality rates. Although liver surgical
resection, transplantation, chemotherapy, radiotherapy and some molecular targeted
therapeutics may prolong the survival of HCC patients to a certain degree, the curative
effect is still poor, primarily because of tumor recurrence and the drug resistance of
HCC cells. Liver cancer stem cells (LCSCs), also known as liver tumor-initiating cells,
represent one small subset of cancer cells that are responsible for disease recurrence,
drug resistance and death. Therefore, understanding the regulatory mechanism of
LCSCs in HCC is of vital importance. Thus, new studies that present gene regulation
strategies to control LCSC differentiation and replication are under development. In
this review, we provide an update on the latest advances in experimental studies on
non-coding RNAs (ncRNAs), oncogenes and oncoproteins. All the articles addressed
the crosstalk between different ncRNAs, oncogenes and oncoproteins, as well as their
upstream and downstream products targeting LCSCs. In this review, we summarize
three pathways, the Wnt/β-catenin signaling pathway, phosphatidylinositol 3-kinase
(PI3K)/protein kinase B (Akt) signaling pathway, and interleukin 6/Janus kinase 2/signal
transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, and
their targeting gene, c-Myc. Furthermore, we conclude that octamer 4 (OCT4) and
Nanog are two important functional genes that play a pivotal role in LCSC regulation
and HCC prognosis.

Keywords: hepatocellular carcinoma, liver cancer stem cells, non-coding RNAs, oncogenes, oncoproteins

INTRODUCTION

Among tumor types, liver cancer is the third leading cause of death in humans around the globe
(Torre et al., 2015; Forner et al., 2018). Hepatocellular carcinoma (HCC) is one of the most
common subclass accounting for 90% of liver cancer (Bruix et al., 2014). Most HCC patients are
no longer eligible for curative treatment, such as transplantation or surgical resection, because
of disease progression to the late stage. Simultaneously, while molecular targeted therapies and
chemotherapy are available for partial HCC patients, clinical benefits remain unsatisfactory. As
a result, exploration of new systemic treatment approaches for HCC is important due to poor
outcomes (Blum, 2005; Forner et al., 2012). Interestingly, using surface markers, studies have
identified cancer stem cells (CSCs) and isolated CSC subpopulations from HCC cells in the field
of liver CSCs (LCSCs) (Liu Y.M. et al., 2015). Although LCSCs only represent a small subset of liver
cancer cells, they are considered to be responsible for HCC tumorigenesis, progression, metastasis
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and recurrence. Therefore, many scholars have conducted studies
on LCSCs. In addition, scholars have summarized their results
from the perspective of genes or RNA. However, new research
results are constantly emerging. To provide LCSC researchers
with more information, this review will summarize studies
newly reported from the perspective of ncRNAs, oncogenes
and oncoproteins.

THE ROLE AND CLASSIFICATION OF
ncRNAs

The main function of RNA is to bridge the transformation
process from genetic information to translation of genetic
information into proteins. In transcriptional precursor RNA,
more than 70% of the genome is transcribed into non-
coding RNAs (ncRNAs), only approximately 20% of which are
transcribed into messenger RNA (mRNAs). The common feature
of ncRNAs is that they can be transcribed from the genome
but perform their respective biological functions at the RNA
level without being translated into proteins. There is sufficient
evidence to demonstrate the important role of ncRNAs in
regulating LCSCs. ncRNAs include microRNAs (miRNAs), long
ncRNAs (lncRNAs), small interfering RNAs (siRNAs), ribosomal
RNAs (rRNAs), transfer RNAs (tRNAs), and small nuclear RNAs
(snRNAs). Here, we will focus on the most studied members of
the ncRNA family, miRNAs and lncRNAs.

miRNAs Associated With LCSCs
MicroRNA is a subset of the ncRNA family that can regulate
expression of more than 60% of human genes. While miRNA is a
group of short ncRNAs containing approximately 22 nucleotides
and are not completely complementary to target mRNAs, they
inhibit post-transcriptional translation by binding to the 3′-
untranslated region (3′-UTR) of target mRNAs (DeSano and Xu,
2009; Gargalionis and Basdra, 2013). Moreover, dysregulation of
miRNA expression is linked to tumorigenesis in humans (Budhu
et al., 2008; Ji et al., 2009a; Li et al., 2010; Fu et al., 2014) and
regulates the stemness features of CSCs (Ji et al., 2009b). The
characteristics of several miRNAs whose expression is associated
with LCSCs are well known, such as miR-130b (Ma et al., 2010),
miR-21 (Tomimaru et al., 2010; Zhou et al., 2013), miR-214
(Xia et al., 2012), miR-425-3p (Vaira et al., 2015), and miR-
517a (Toffanin et al., 2011). Here, we summarize the recently
identified miRNAs whose deregulation enhances or suppresses
LCSC properties (Supplementary Figure 1).

miRNAs That Enhance LCSC Properties
miR-429
E2F transcription factor 1 (E2F1) has been found to be a
novel regulator of pluripotent stem cells (Yeo et al., 2011).
Interestingly, the protein-protein interaction between E2F1
and RB transcriptional co-repressor 1 (RB1) was significantly
weakened upon transfection with miR-429. Moreover, miR-
429 can modulate the transcriptional activity of E2F1 via
direct targeting of RB binding protein 4 (RBBP4). Furthermore,
the stemness-related gene OCT4 was identified as an E2F1-
responsive gene and was upregulated upon RBBP4 silencing

or high miR-429 expression. In sum, high expression of miR-
429 contributed to self-renewal, tumorigenicity, proliferation and
chemoresistance in HCC. In addition, miR-429 was found to
target a novel functional axis, RBBP4/E2F1/OCT4, to manipulate
HCC (Li L. et al., 2015).

miR-1246
Glycogen synthase kinase 3β (GSK3β) and axis inhibition protein
2 (AXIN2) are negative regulators of Wnt signaling and are tumor
suppressors in HCC (Reya and Clevers, 2005). A recent study
demonstrated that miR-1246 promotes tumorigenesis, metastasis
and chemoresistance of LCSCs by activating the Wnt/β-catenin
signaling pathway. Mechanistically, an in silico prediction
indicated that AXIN2 and GSK3β were potential downstream
targets of miR-1246. Interestingly, miR-1246 activated the
Wnt/β-catenin pathway by suppressing GSK3β and AXIN2
expression, which are key members of the β-catenin destruction
complex. Furthermore, OCT4 was the direct upstream regulator
of miR-1246, which activated miR-1246 expression through
miR-1246 promoter binding and cooperatively drove β-catenin
activation in LCSCs (Chai et al., 2016).

miR24-2
miR24-2 can promote tumorigenesis by epigenetically enhancing
the tyrosine kinase Src and can epigenetically regulate liver
cancer by altering the expression of various Histone H3/4
epigenetic modifications in LCSCs. Moreover, histone deacetylase
3 (HDAC3), Nanog and PI3K were found to be key players in the
signaling pathways mediated by miR24-2. Furthermore, miR24-
2 targeted the protein arginine methyltransferase 7 (PRMT7)
3′-UTR and inhibited PRMT7 expression, thereby reducing
the bi/trimethylation of histone H4R3. Importantly, miR24-2
promoted the transcriptional activity and maturation of the
miR675 precursor (pri-miR675) through binding to Nanog in
LCSCs. lncRNA HULC plays a key role in the carcinogenesis
triggered by miR24-2. Moreover, miR24-2-dependent PI3K
activation promoted autophagy (Wang L. et al., 2019).

miR-199a-3p, miR-155
Transforming growth factor beta 1 (TGF-β1) has been confirmed
to be an important enhancer of CSCs and epithelial-mesenchymal
transition (EMT) (Polyak and Weinberg, 2009). miR-199a-
3p plays an important role and is upregulated in LCSCs.
Consistently, overexpression of TGF-β1 and hepatitis B virus
X (HBx) have been associated with LCSC properties and poor
prognosis in hepatitis B virus (HBV)-related liver cancer. TGF-
β1 cooperation with HBx can activate the c-Jun N-terminal
kinase (JNK)/c-Jun pathway, while miR-199a-3p, a regulator of
hepatic progenitor cell (HPC) transformation, can be activated by
c-Jun. In conclusion, TGF-β1/HBx co-regulated the miR-199a-3p
signaling axis targeting malignant transformation of HPCs (Dong
et al., 2019). Furthermore, miR-155 overexpression promoted
cell EMT in liver cancer cells, and overexpression of miR-155
promoted the stemness of LCSCs via down-regulation of tumor
protein P53 inducible nuclear protein 1 (TP53INP1), which is a
downstream target gene of miR-155. In addition, in vitro, TGF-
β1 indirectly downregulated TP53INP1 expression via miR-155
upregulation in liver cancer cells (Ji et al., 2015; Liu Y.M. et al.,
2015; Liu et al., 2015a,b).
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miR-500a-3p and miR-589-5p
Evidence has indicated that the JAK/STAT signaling pathway
acts as a critical regulator in several well-known CSCs
(Jove, 2000). One study reported that miR-500a-3p promotes
CSC properties by targeting suppressor of cytokine signaling
(SOCS)2, SOCS4 and protein tyrosine phosphatase non-receptor
type 11 (PTPN11) through STAT3 signaling activation (Jiang
et al., 2017). Another study found that overexpression of
miR-589-5p decreased overall and relapse-free survival in
HCC. Further mechanistic analysis revealed that miR-589-
5p activated the STAT3 pathway by inhibiting its negative
regulators. Moreover, upregulation of miR-589-5p enhanced
LCSC properties (Long et al., 2018).

Furthermore, zinc finger e-box binding homeobox (ZEB)1/2
is a key transcription factor in EMT, and is the most prominent
target of the miR-200 family (Burk et al., 2008). Deregulation of
miR-200b was involved in regulation of LCSCs, the miR-200b–
ZEB1 circuit was found to regulate diverse LCSCs (Tsai et al.,
2017), and miR-219 down-regulated E-cadherin via its mRNA
3′UTR, thus playing a role in the sensitivity of HCCs to sorafenib
(Si et al., 2019), miR-137 expression was upregulated in CD44-
positive CSCs and found to be associated with a significantly
shorter survival periods for HCC patients (Sakabe et al., 2017).

miRNAs That Suppress LCSC Properties
miR-125b
Increasing evidence suggests that EMT contributes to metastasis
and recurrence in HCC (Choi and Diehl, 2009). Zhou et al.
(2015) found that overexpression of miR-125b could attenuate
migration, chemoresistance and LCSC generation by suppressing
EMT. Moreover, they revealed that miR-125b suppressed EMT by
targeting small mothers against decapentaplegic (SMAD)2 and
SMAD4. These findings suggest that ectopic expression of miR-
125b is a potential HCC treatment strategy (Zhou et al., 2015).

miR-192-5p
miR-192-5p was found to be significantly down-regulated in
LCSCs. Suppression of miR-192-5p markedly increased LCSC
numbers and the features of LCSCs through targeting of
poly(A) binding protein cytoplasmic 4 (PABPC4). The axis
of tumor protein p53 (TP53) mutation/mir-192 promoter
hypermethylation/reduced miR-192-5p/increased PABPC4 was
identified in HCCs expressing high levels of CSC markers. These
findings reveal a genetic regulatory signaling pathway shared by
different LCSCs (Gu et al., 2019).

miR-302a/d
miR-302a/d negatively regulates spheroid formation and cell
growth and promotes apoptosis of liver cancer cells by
suppressing the targeted E2F transcription factor 7 (E2F7) gene.
In one study, miR-302a/d inhibited LCSC cell cycle entry and self-
renewal via targeting the E2F7/Akt axis. These results suggest that
miR-302a/d and E2F7 might be potential biomarkers of LCSCs
(Ma et al., 2018).

miR-26b-5p
Epithelial cell adhesion molecule (EpCAM) is one of the most
prevalent LCSC markers. Recently, researchers reported that

miR-26b-5p targets both heat shock protein family A member
8 (HSPA8) and EpCAM. Reduced expression of miR-26b-
5p enhanced LCSC invasion, migration and tumorigenesis.
Moreover, miR-26b-5p was responsible for maintaining EpCAM-
positive LCSCs by targeting of HSPA8 (Khosla et al., 2019).

Furthermore, miR-1305 overexpression reversed the
suppressor that inhibited LCSC properties by suppressing
the ubiquitin-conjugating enzyme E2T (UBE2T)-dependent
Akt-signaling pathway (Wei et al., 2019). While knockdown
of miR-25 enhanced the sensitivity of LCSCs to TNF-related
apoptosis inducing ligand (TRAIL)-mediated apoptosis via
the phosphatase and tensin homologue (PTEN)/PI3K/Akt/Bad
signaling pathway (Feng et al., 2016). miR-365 directly regulated
Ras-related C3 botulinum toxin substrate 1 (RAC1) by binding
with the mRNA 3′UTR and affected HCC drug resistance (Jiang
et al., 2019). In addition, miR-486 directly targeted sirtuin1,
which exhibits high expression in self-renewing and tumorigenic
LCSCs (Yan et al., 2019).

LncRNAs Associated With LCSCs
Long ncRNAs are a subclass of ncRNAs longer than 200
nucleotides. They have emerged as critical epigenetic regulators
of gene expression and share some characteristics of mRNAs
(Devaux et al., 2015). lncRNAs exert their functions via diverse
mechanisms, including cytoplasmic complexes, modulation of
gene expression, nuclear scaffolding, transcriptional regulation
and pairing with other RNAs (Ulitsky and Bartel, 2013). lncRNAs
can regulate gene expression through chromosome remodeling,
transcription and post-transcriptional processing. Dysregulation
of lncRNA expression has been associated with widespread
development of many cancers (Zhang M. et al., 2016; Xiaoguang
et al., 2017). We summarize the latest deregulated lncRNAs that
enhance or suppress LCSC properties (Supplementary Figure 2).

LncRNAs That Enhance LCSC Properties
lncTCF7 and lnc-β-Catm
lncTCF7 can regulate transcription factor 7 (TCF7) expression
by recruiting the SWI/SNF complex in the nuclei of LCSCs.
Then, the TCF7 expression triggers Wnt signaling to initiate
self-renewal of LCSCs. In sum, lncTCF7-mediated Wnt signaling
primes LCSC self-renewal and tumor propagation (Wang et al.,
2015). In addition, a study revealed a new transcribed lncRNA
called lncRNA β-catenin methylation (lnc-β-Catm), which could
also regulate self-renewal of LCSCs. Moreover, lnc-β-Catm was
responsible for inhibiting β-catenin ubiquitination, allowing β-
catenin to activate Wnt–β-catenin signaling and sustaining the
stemness of LCSCs (Zhu et al., 2016a).

DANCR
In one study, genome-wide analyses identified tumor-associated
lncRNA-DANCR. Dysregulation of DANCR was explored in
HCC tumorigenesis and colonization. The activation of DANCR
was confirmed to be associated with poor survival of HCC
patients. Recently, Yuan et al. (2016) reported that lncRNA-
DANCR was overexpressed in LCSCs. Experiments showed that
knockdown of DANCR decreased stem-cell properties and tumor
cell vitality. In further mechanistic studies, DANCR associated
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with Catenin Beta 1 blocked the repressive effect of miR-2214,
miR-199a, and miR-320a (Yuan et al., 2016).

lncBRM
LINCR-0003 (lncBRM) was overexpressed in LCSCs and
maintained their self-renewal stemness properties via Yes-
associated protein 1 (YAP1) signaling. In addition, lncBRM
associated with Brahma (BRM) initiated the BRM/SWI2-
related gene 1 (BRG1)/BRM switch. Next, the BRG1-associated
factor complex activated YAP1 signaling. Furthermore, lncBRM
expression with the addition of YAP1 signaling was associated
with the prognosis of HCC (Zhu et al., 2016b).

HAND2-AS1
INOsitol-requiring 80 (INO80) chromatin-remodeling complex,
which is a conserved complex that modifies chromatin using
the energy of adenosine triphosphate (ATP), controls gene
expression and maintains stem cell properties (Ayala et al.,
2018). One study revealed that lncRNA HAND2-AS1 expression
was upregulated in LCSCs. Importantly, HAND2-AS1 recruited
the INO80 complex to bone morphogenetic protein receptor
type 1A (BMPR1A), inducing bone morphogenetic protein
(BMP) signaling activation. Mechanistically, overexpression of
lncRNA HAND2-AS1 associated with the INO80 complex can
promote the self-renewal of LCSCs and drive liver oncogenesis
(Wang et al., 2019b).

CUDR
Cancer upregulated drug resistant (CUDR) is a new ncRNA
gene that is highly expressed in HCC. A study revealed that
decreased phosphatase and tensin homolog (PTEN) might
enhance the binding ability of CUDR to Cyclin D1. In this
study, the CUDR-Cyclin D1 complex loaded onto the lncRNA
H19 promoter region enhanced H19 expression. Moreover,
the CUDR-Cyclin D1-CTC-binding factor (CTCF) complex
promoted c-Myc expression (Pu et al., 2015). SET1A is a
component of the histone methyltransferase complex. One study
found that SET-domain-containing 1A (SET1A) cooperated with
CUDR to promote malignant transformation of hepatocyte-like
SCs (Li et al., 2016). Furthermore, research has shown that CUDR
is highly upregulated in liver cancer and can cause abnormal
β-catenin signaling during malignant transformation of LCSCs
(Gui et al., 2015).

lncHOXA10
HOXA10 (homeobox A10) is a member of the HOX transcription
factor family, which is highly expressed in liver tumors. HOXA10
interacts with some signaling pathways and participates in many
types of cancer (Cui et al., 2014; Li et al., 2014). Recently, a study
found that HOXA10 is upregulated during liver tumorigenesis
and tumor-initiating cell (TIC) self-renewal. The authors found
that both lncHOXA10 and HOXA10 were highly expressed
and participated in self-renewal regulation in liver cancer
and liver TICs. lncHOXA10 interacts with NURF chromatin
remodeling complex and binds to the HOXA10 promoter to drive
transcription initiation (Shao et al., 2018).

Furthermore, lncRNA HCG11 regulates insulin-like growth
factor 2 mRNA-binding protein 1 (IGF2BP1) to inhibit apoptosis

of HCCs via mitogen-activated protein kinase (MAPK) signaling
transduction (Xu et al., 2017), and lncZic2 drives the self-renewal
of liver TICs via the myristoylated alanine rich protein kinase C
substrate (MARCKS) and MARCKS like 1 (MARCKSL1) (Chen
et al., 2018). Moreover, lncRNA n339260 (Zhao et al., 2018)
and lncCAMTA1 (Ding et al., 2016) were suggested to be new
prognostic biomarkers of LCSCs.

LncRNAs That Suppress LCSC Properties
lnc-DILC
The suppressor lnc-DILC resides in both the nucleus and
cytoplasm. A recent study showed the subcellular distribution
of lnc-DILC and revealed its nuclear localization in LCSCs.
Likewise, it was determined that lnc-DILC could depress IL-
6 transcription and regulate LCSC expansion by suppressing
IL-6 autocrine signaling. Interestingly, knockdown of lnc-
DILC affected IL-6 transcription, STAT3 activation and LCSC
expansion. Nuclear factor kappa B (NF-κB) was found to be
an essential link between inflammation and cancer (Ben-Neriah
and Karin, 2011) and to play a pivotal role in CSC maintenance
(Kagoya et al., 2014). In another recent study, the authors
clarified a paradigm of LCSC expansion in which lnc-DILC
functions as a novel link connecting tumor necrosis factor
(TNF)-a/NF-κB signaling with the autocrine IL-6/STAT3 cascade
(Wang X. et al., 2016).

DLX6-AS1
lncRNA distal-less homeobox 6 antisense 1 (DLX6-AS1) belongs
to the DLX gene family (Wang P. et al., 2017). One study
demonstrated that DLX6-AS1 is highly expressed in HCC
and serves as an oncogene targeting the DLX6-AS1/miR-
203a/matrix metallopeptidase 2 (MMP-2) pathway (Zhang et al.,
2017). Intriguingly, DLX6-AS1 can promote the stemness
of osteosarcoma cells by regulating miR-129-5p/delta like
non-canonical notch ligand 1 (DLK1) (Zhang et al., 2018).
Additionally, cell adhesion molecule 1 (CADM1) expression was
downregulated and facilitated tumorigenesis in HCC (Zhang W.
et al., 2016). Another recent study showed that suppression of
DLX6-AS1 inhibited tumorigenesis through the STAT3 signaling
pathway, which restrains CADM1 promoter methylation in
LCSCs (Wu et al., 2019).

THE ROLE OF ONCOGENES OR
ONCOPROTEINS ASSOCIATED WITH
LCSCS

Current evidence indicates that during hepatocarcinogenesis, one
potential pathogenic mechanism is abnormalities in oncogenes
or oncoproteins. Interestingly, oncogenes play an important
role in cell growth, proliferation and division (Hinds et al.,
1989; Rochlitz et al., 1993). Genes with deletions, insertions or
mutations may lose their functions and are related to cancer
development. A large number of experiments have shown that
abnormalities in oncogenes or the expression of oncoproteins
are implicated in oncogenesis, tumor progression and metastasis
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by targeting LCSCs. According to GeneCards1, which shows the
localization of human genes, gene subcellular locations will be
described based on compartments as follows: nucleus, cytoplasm,
and plasma membrane, among others (Supplementary Table 1).

Oncogenes or Oncoproteins Mainly
Located in the Nucleus of Human Cell
Sox9
The sex determining region Y box 9 (Sox9) protein is
predominantly localized in the nucleus of HCCs. Sox9 is a
transcription factor that is expressed in several cancers (Guo
et al., 2012; Sarkar and Hochedlinger, 2013). Sox9 is significantly
highly expressed in HCC and associated with decreased survival.
Consistently, the proportion of Sox9 knockdown cells in S
and G2/M phases was reduced and that in G0/G1 phase was
increased. Furthermore, the expression of Sox9 was coincident
with expression of the LCSC markers CD13 and OCT4.
Knockdown of Sox9 expression in LCSCs cells resulted in a
reduction in the expression of the stem cell transcription factors
B cell-specific Moloney murine leukemia virus integration site 1
(BMI-1), OCT4 and Nanog, as well as in α-fetoprotein and β-
catenin. Additionally, Sox9 was decreased during asymmetrical
cell division and regulated the asymmetrical-to-symmetrical cell
division switch in LCSCs (Liu C. et al., 2016).

MacroH2A1
Macrohistone H2A (MacroH2A) is a subclass of the H2A
family containing two isoforms, encoded by macroH2A1
and macroH2A2. The MacroH2A1 gene is associated with
tumorigenesis in many cancer types (Gaspar-Maia et al., 2013;
Borghesan et al., 2016). Interestingly, macroH2A1 can protect
differentiated HCC cells from chemotherapeutics as a marker
(Rappa et al., 2013; Borghesan et al., 2016). A recent study found
that downregulation of macroH2A1 enhanced the expression
of stemness-related genes and hypoxia factor. Furthermore,
depletion of macroH2A1 activated the phosphorylated nuclear
factor kappa B p65 pathway, which is responsible for inducing
LCSCs (Lo Re et al., 2018b). Knockdown of macroH2A1 led
to LCSC-like features and massive alterations to the nuclear
architecture in HCCs (Douet et al., 2017). MacroH2A1-depleted
cells showed two changes in lipid metabolism and glucose in
LCSCs: massive acetyl-coA upregulation, which transformed
lipid content; and increased activation of the pentose phosphate
pathway, which provides precursors for nucleotide synthesis.
macroH2A1 was also found to rewire lipid and carbohydrate
metabolism in HCC toward LCSCs (Lo Re et al., 2018a).

REX1
REX1 is also called zinc finger protein 42 (ZFP42) (Jiang et al.,
2002) and has been studied in multiple cancer types (Kim
et al., 2011). Steve TLUK et al. found that REX1 was frequently
downregulated in HCC tumors. Furthermore, they explored
the possibility that REX1 silencing was regulated by promoter
hypermethylation, histone methylation and histone acetylation
in human HCC. In addition, silencing of REX1 potentiated the

1https://www.genecards.org/

tumorigenesis and metastasis potential of HCC. The molecular
mechanism by which REX1 deficiency enhanced the stemness
appeared to involve p38 MAPK signaling regulation in a
mitogen-activated protein kinase kinase 6 (MKK6)-dependent
manner (Luk et al., 2019). Furthermore, REX1 silencing
promoted F-actin reorganization and changed oxidative stress
levels through a p38 MAPK-dependent pathway.

MYCN
MYCN is a member of the MYC family, which comprises
basic helix–loop–helix–zipper transcription factors. MYCN is
one of the central regulators of the growth-promoting signal
transduction that maintains stem-like properties (Takahashi and
Yamanaka, 2006). Acyclic retinoid (ACR) is capable of preventing
HCC recurrence in hepatitis C virus (HCV)-positive patients
who have undergone curative removal of primary tumors (Muto
et al., 1996). Recent research found that ACR significantly
inhibited MYCN expression at both the gene and protein
level. Mechanistically, MYCN is expressed at high levels in S
and G2 phases in cells. Knockdown of MYCN repressed cell
cycle progression and induced cell death. Furthermore, MYCN
expression was correlated with EpCAM, Alpha-fetoprotein
(AFP), and CD133 expression and activated Wnt/β-catenin
signaling in HCC (Qin et al., 2018).

ZFX
Zinc finger protein X-linked (ZFX) is a zinc finger transcription
factor encoded on the mammalian X chromosome and is
frequently upregulated in various malignancies (Jiang and Liu,
2015; Li Y. et al., 2015). One study demonstrated that high
ZFX expression conferred self-renewal and chemoresistance
properties to HCC cells by binding of the SRY-box transcription
factor (Sox)2 and Nanog (Lai et al., 2014). Recently, Chao Wang
et al., reported that ZFX expression in LCSCs was relevant to poor
prognosis. Consistently, silencing ZFX expression suppressed
tumorigenicity and the metastatic potential of EpCAM+ LCSCs
in vitro. Interestingly, knockdown of ZFX suppressed the
expression of several β-catenin target genes, such as cyclin
D1, c-Jun and c-Myc. More importantly, ZFX was responsible
for maintaining stem-like features of EpCAM+ LCSCs by
facilitating β-catenin nuclear translocation and transactivation
(Wang C. et al., 2017).

HOXB7
Homeobox B7 (HOXB7) belongs to the homeobox gene family,
which plays a role in some solid tumors (Chile et al., 2013;
Joo et al., 2016). EMT causes epithelial cells to lose their cell-
cell adhesions, plays an important role in HCC metastasis
(Candini et al., 2015). A previous study showed that HOXB7
enhanced the proliferation and self-renewal of LCSCs (Care
et al., 1999). A recent investigation showed that HOXB7 was
highly expressed in HCC cells and could facilitate growth and
metastasis of cell stemness and EMT, correlating with poor
prognosis. Further mechanistic research suggested that HOXB7
promoted metastasis by activating the Akt pathway to upregulate
c-Myc and Slug in HCC. In conclusion, HOXB7 promotes EMT
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and modulates the PI3K/Akt/c-Myc axis to facilitate stem cell
pluripotency in HCC (Huan et al., 2017).

Tcf7l1
The β-catenin-transcription factor 7 like 1 (Tcf7l1) shows high
expression in many malignant tumors and has a crucial effect
on the Wnt/β-catenin pathway (Murphy et al., 2016). However,
another study reported the opposite results, finding that Tcf7l1
expression was down-regulated in LCSCs and associated with
poor survival of HCC patients. Further mechanistic research
showed that Tcf7l1 attenuation upregulated the expression of
stemness genes, including kruppel like factor (KLF)4, OCT4 and
Nanog, and down-regulated the expression of differentiation
genes, including glucose-6-phosphatase (G6p), albumin and
transthyretin. Tcf7l1 knockdown further impacted the protein
expression of Nanog. Moreover, Tcf7l1 phosphorylation and
protein degradation through the mitogen-activated protein
kinase (MEK)/extracellular signal regulated kinase (ERK)
pathway were negatively regulated by extracellular insulin-like
growth factor (IGF) signaling (Shan et al., 2019).

Furthermore, Sox12 is a potential marker in LCSCs (Zou
et al., 2017). Another a transcription factor, E26 transformation-
specific transcription factor ELK3 (ELK3), is activated by
mitogen-activated protein kinase-associated signaling pathways
(Buchwalter et al., 2005). The expression of ELK3 was
upregulated in CD133+/CD44+ HCC cells. Furthermore,
silencing the expression of ELK3 in CD133+/CD44+ LCSCs
could downregulate their metastatic potential by modulating
hypoxia inducible factor 1α (HIF-1α) expression (Lee J.H. et al.,
2017). In addition, forkhead box M1 (FOXM1) belongs to the
forkhead box protein family, which plays an important role
in DNA replication, mitosis and genomic stability (Laoukili
et al., 2005). FOXM1 inhibited LCSC proliferation, migration,
invasion, colony formation and EMT by promoting apoptosis.
Furthermore, silencing of FOXM1 suppressed the expression of
Sox2, OCT4, and Nanog in LCSCs by decreasing the expression
of acetaldehyde dehydrogenase-2 (Chen et al., 2019). In addition,
ring finger protein 1 (Ring1), an essential cofactor of polycomb
group proteins, was upregulated in HCC and targeted p53
to promote cancer cell proliferation (Xiong et al., 2015; Shen
et al., 2018). Zhu et al. (2019) found that overexpression of
Ring1 activated the Wnt/β-catenin signaling pathway and drove
malignant transformation of LCSCs. In addition, KLF8, which
belongs to the KLF family of transcription factors (Pearson et al.,
2008), is highly expressed in LCSCs, and KLF8 gene silencing
suppressed the invasion and migration of LCSCs. For the further
mechanism, Wnt/β-catenin signaling participates in the KLF8
regulation process (Shen et al., 2017).

Oncogenes or Oncoproteins Mainly
Located in Both the Nucleus and
Cytoplasm of Human Cells
Shp2
Src-homology 2 domain–containing phosphatase 2 (Shp2)
is a non-receptor protein tyrosine phosphatase encoded by
PTPN11 (Feng et al., 1993). Studies have demonstrated that

Shp2 highly expression is associated with poor prognosis in
various malignancies (Aceto et al., 2012; Han et al., 2015).
A recent study found that upregulation of Shp2 facilitated
expansion by promoting self-renewal of LCSCs. Further research
on the mechanism revealed that Shp2 dephosphorylated cell
division control protein 73 in the cytosol of hepatoma cells
and that Shp2 could augment nuclear accumulation of β-
catenin. Furthermore, Shp2 increased β-catenin accumulation
by inhibiting the glycogen synthase kinase GSK3β in LCSCs
(Xiang et al., 2017).

ZIC2
Zic family member 2 (ZIC2) belongs to the zinc finger
transcription factor gene family (Benedyk et al., 1994). A previous
study showed that ZIC2 was enhanced in various tumors and
regulated tumorigenesis (Marchini et al., 2012). Bromodomain
PHD finger transcription factor (BPTF) is the largest subset of
the nuclear remodeling factor (NURF) chromatin remodeling
complex (Li et al., 2006). The NURF complex is responsible
for embryonic differentiation, development and stemness
maintenance (Cherry and Matunis, 2010). A recent study
demonstrated that ZIC2 expression was high in LCSCs and could
regulate their self-renewal. Mechanistically, ZIC2 can bind to the
upstream region of OCT4 and initiate its activation. Importantly,
ZIC2 interacts with the NURF complex in the nucleus of HCCs.
Furthermore, ZIC2 silencing abolished its binding capacity to
the NURF complex, but depletion of the NURF complex did
not affect the binding capacity of ZIC2 to the OCT4 promoter.
These findings suggest that the NURF complex regulates OCT4
expression directly. In sum, ZIC2 can sustain the stemness
of LCSCs by recruiting the NURF complex to trigger OCT4
activation (Zhu P. et al., 2015).

BPTF
The NURF complex can also modulate chromatin structure by
targeting genes that make transcription factors more accessible
(Song et al., 2009). One study reported that BPTF could activate
oncogenic signaling and synergize with other proteins to regulate
tumor progression (Dar et al., 2016; Richart et al., 2016).
Another recent study reported high BPTF expression in HCC.
In addition, down-regulation of BPTF expression affected cell
colony formation, proliferation, chemotherapy resistance and
apoptosis and tumor progression in HCC. However, human
telomerase reverse transcriptase (hTERT), a catalytic subset of
the telomerase holoenzyme complex, synthesizes telomeres using
its own RNA as a template and then adds the telomeres to the
ends of chromosomes (Liu N. et al., 2016). Further study of the
molecular mechanisms showed that BPTF promotes tumor cell
proliferation, tumor metastasis and stemness maintenance by
activating hTERT expression in HCCs (Zhao et al., 2019).

IRAK1
Interleukin-1 receptor-associated kinase 1 (IRAK1)
phosphorylation is implicated in tumorigenesis (Dussiau
et al., 2015). However, the role of IRAK1 itself in TICs and
HCC is not clear. In a recent study, Cheng et al. (2018) found
that overexpression of IRAK1 in HCC was related to poor
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prognosis. Importantly, IRAK1 was found to regulate self-
renewal, tumorigenicity, chemoresistance and TIC expression
in HCC. Mechanistically, knockdown of IRAK1 revealed that
Aldo-Keto Reductase Family 1 Member 10 (AKR1B10) was a
target of IRAK1 mediated through activator protein 1 (AP-1)
activation. More importantly, IRAK1 augmented stemness and
chemoresistance through AP-1/AKR1B10 signaling in HCC
(Cheng et al., 2018).

BORIS
BORIS is the paralog of CCCTC-binding factor (CTCF), also
called CCCTC-binding factor-like (CTCFL) (Marshall et al.,
2014). Notably, increasing evidence shows that BORIS is
expressed in CSCs and associated with CSC-like properties
(Alberti et al., 2014, 2015). In one study, Liu et al. (2017)
found that BORIS overexpression increased CD90 expression,
drug resistance, migration, invasion and stem cell marker
(Sox2, OCT4, and c-Myc) expression in human HCC
cells. Mechanistically, BORIS regulates OCT4 via epigenetic
modification, with changes in the histone methylation status of
the OCT4 promoter at CTCF sites. BORIS maintains an active
chromatin conformation via increasing the histone 3 lysine 4
bimethylation (H3K4me2)/histone H3 lysine 27 trimethylation
(H3K27me3) ratio to enhance OCT4 expression (Liu et al., 2017).

TARBP2
Transactivation response element RNA-binding protein 2
(TARBP2) is a double-stranded RNA-binding protein governing
the translation of mRNA (Gatignol et al., 1991). TARBP2 was
suggested to be a potential regulatory factor in CSCs (De
Vito et al., 2012). The study identified that restoration of
TARBP2 expression resensitized HCC to sorafenib. TARBP2-
mediated sensitization of HCC to sorafenib was miRNA-
independent. Interestingly, TARBP2 protein was destabilized
by autophagic-lysosomal proteolytic degradation in HCC cells.
Mechanistically, downregulated TARBP2 expression promoted
sorafenib resistance via stabilization of Nanog expression and
increased LCSC properties in HCC cells (Lai et al., 2019).

Oncogenes or Oncoproteins Mainly
Located in the Cytoplasm of Human
Cells
iNOS
An increasing number of studies suggest that NO, which is
produced by inducible NO synthase (iNOS), promotes tumor
initiation (Granados-Principal et al., 2015; Davila-Gonzalez et al.,
2017). Additionally, the Notch signaling pathway can promote
CSC self-renewal, migration, differentiation, proliferation and
survival in several malignancies (Androutsellis-Theotokis et al.,
2006). A recent study reported that iNOS exhibited high
expression in CD24+/CD133+ LCSCs. Furthermore, iNOS/NO
was associated with aggressive human HCC by activating
the Notch signaling pathway. The Notch signaling activation
was dependent on upregulation of iRhom-2 and 3′,5′-cyclic
guanosine monophosphate (cGMP)/protein kinase G (PKG)-
mediated activation of transarterial chemoembolization (TACE).
These studies provide a mechanism explaining the tumorigenic

effects of iNOS in LCSCs and indicate that targeting iNOS could
have therapeutic benefits in HCC (Wang et al., 2018).

GLS1
Glutaminase 1 (GLS1), which converts glutamine to glutamate, is
associated with proliferation, growth and metabolism in cancer
cells (Aledo et al., 2000). Previous studies have demonstrated
that GLS1 is responsible for cell invasion and migration, which
predict a poor prognosis in HCC (Yu et al., 2015). GLS1 mRNA
has been reported to generate two isoforms, with the shorter
form named glucose absorption capacity (GAC) and the longer
form called α-ketoglutaric acid (KGA) (Elgadi et al., 1999). In
a recent report, Yitao Ding et al., reported that both the KGA
and GAC isoforms were exclusively located in the mitochondrial
matrix. In addition, the mitochondrial matrix protein GLS1 is
highly expressed in LCSCs. Mechanistically, targeting GLS1 or
glutamine metabolism increased reactive oxygen species (ROS)
accumulation, which suppressed β-catenin translocation from
the cytoplasm to the nucleus, leading to a decrease in stemness-
related gene expression. GLS1 regulates the stemness features of
LCSCs via ROS/Wnt/β-catenin signaling (Li B. et al., 2019).

KIF15
Kinesin family member 15 (KIF15) plays an important role
in many malignant tumors with a tetrameric spindle motor
structure (Reinemann et al., 2017; Sheng et al., 2019).
Nevertheless, the mechanism by which KIF15 targets LCSCs
remains unclear. A recent study found that KIF15 was highly
expressed in HCC tissues from patients with higher recurrence
and shorter overall survival. Experimentally, low ROS levels in
the tumor microenvironment have been verified to support the
stemness of CSCs (Lee K.M. et al., 2017). KIF15 can promote
LCSC stemness. Further mechanistic research showed that
KIF15 markedly decreased intracellular ROS levels and increased
the LCSC phenotype via phosphoglycerate dehydrogenase
(PHGDH). Furthermore, the chromatin-associated protein
ANCCA (also known as ATAD2, the ATPase family AAA
domain-containing protein 2) appears to have an important role
in enhancing KIF15 expression (Li Q. et al., 2019).

ANXA3
Annexin A3 (ANXA3), which belongs to the annexin family of
Ca2+-dependent phospholipid-binding proteins, has the ability
to promote tumorigenesis and resistance to chemotherapy
(Raynal and Pollard, 1994; Pan et al., 2015). Stephanie Ma et al.,
found that high expression of both secretory and endogenous
ANXA3 was correlated with HCC pathogenesis. They further
found that secretory ANXA3 could be detected in sera of
HCC patients and that the secretory ANXA3 played a crucial
role in maintenance of LCSC-like properties. Mechanistically,
exogenous ANXA3 was internalized via caveolin-1-dependent
endocytosis. In addition, exogenous ANXA3 overexpression
resulted in c-Jun N-terminal kinase (JNK) pathway activation,
as evidenced by increased c-Myc expression, reduced p21
expression and increased JNK activity. In sum, ANXA3 is
responsible for enhancing stemness in CD133+ LCSCs via the
JNK pathway (Tong et al., 2015).
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Cygb
Cytoglobin (Cygb) is a member of the human hexacoordinate
hemoglobin family. Cygb is a tumor suppressor whose deficiency
contributes to tumor recurrence and poor prognosis in multiple
malignancies (Xu et al., 2013; Thuy le et al., 2016). Oxidative-
nitrosative stress (ONS) is an independent etiologic factor
in HCC tumorigenesis (Wang Z. et al., 2016). Accumulating
evidence indicates that the interaction of ONS with CSCs
promotes tumorigenesis, progression, and hemoradiotherapy
resistance (Su et al., 2016). A recent study found that Cygb
was deregulated in HCC tissue and the decrease aggravated the
growth of LCSCs. Furthermore, Cygb absence promoted LCSC
phenotypes and PI3K/Akt activation in HCC progression but
inhibited HCC proliferation and LCSC stemness in an ONS-
dependent manner (Zhang et al., 2019).

Oncogenes or Oncoproteins Mainly
Located in the Cell Membrane in Human
Cells
NUMB
NUMB is a tumor suppressor and cell fate determinant, and
loss of NUMB expression has been observed in cancer (Colaluca
et al., 2008). The p53-NUMB complex was independently
demonstrated to be a tumor suppressor (March et al., 2011).
Recently, study showed that NUMB phosphorylation plays
a crucial role in tumor-initiating cell self-renewal and liver
tumorigenesis via the Nanog pathway. Further mechanistic
research, Nanog increased phosphorylation of NUMB and
decreased p53 by modulating the atypical protein kinase C
zeta/Aurora A kinase (aPKCf-AURKA) pathway, which is an
upstream pathway for NUMB phosphorylation. Furthermore, the
phosphorylation of NUMB by Nanog destabilized the NUMB-
p53 complex, leading to destabilization of p53 and subsequent
high self-renewal of TICs (Siddique et al., 2015).

AQP3
Aquaporin 3 (AQP3) is a member of the water channel protein
family, which can be found in the plasma membranes of various
cells (Verkman, 2012). Studies have shown that aberrant AQP3
expression contributes to several malignant tumors (Huang X.
et al., 2017; Xiong et al., 2017). Accumulating evidence supports
the notion that AQP3 is related to maintain of CSC stemness
(Zhou et al., 2016). Recently, Yawei Wang and his colleagues
reported that AQP3 expression was high in HCCs. Additionally,
depletion of AQP3 suppressed the proliferation and invasion of
CD133+ HCC. In addition, AQP3 promoted LCSC properties
by regulating STAT3 nuclear translocation and phosphorylation
(Wang et al., 2019a).

ITGA7
Integrins are a subclass of glycoproteins that mediate cell-cell or
cell-extracellular adhesion (LaFlamme et al., 2018). Integrin alpha
7 (ITGA7) was demonstrated to maintain stemness through
targeting CSC biomarkers in various cancers (Ming et al., 2016).
Recently, Ge et al. (2019) found that knockdown of ITGA7
suppressed proliferation, reduced CSC marker expression levels
(CD44, CD133, and OCT4) and enhanced apoptosis by targeting

the protein tyrosine kinase 2 (PTK2)-PI3K-Akt signaling
pathway in liver cancer cells. However, overexpression of ITGA7
promoted proliferation and suppressed apoptosis but not CSC
marker expression via the PTK2-PI3K-Akt signaling pathway.
Then, they further performed compensation experiments, which
verified that ITGA7 regulates cell stemness through the PTK2-
PI3K-Akt signaling pathway (Ge et al., 2019).

CD44s, CLDN1, and FZD2
Some oncogenes are located in cell junctions, the cell membrane,
and the basolateral cell membrane and have a common
mechanism for targeting EMT. Increasing evidence suggests that
EMT is connected with CSC properties and cancer metastasis
and recurrence (Choi and Diehl, 2009). A previous study
reported that the isoform switch to CD44s was essential for
cells to undergo EMT (Brown et al., 2011). Recently, Asai et al.
(2019) investigated the roles of CD44s in LCSCs. Knockdown of
CD44s expression resulted in decreased spheroid formation and
increased drug sensitivity. In addition, another study reported
that CD44s is involved in maintenance of LCSCs via the notch
receptor 3 (NOTCH3) signaling pathway (Asai et al., 2019).
Moreover, claudin 1 (CLDN1) plays a critical role in the EMT
process in HCC (Suh et al., 2017). However, transmembrane
protease serine 4 (TMPRSS4) is a contributing mediator during
EMT and an inducer of the CSC phenotype in multiple tumors
(Huang et al., 2014; de Aberasturi et al., 2016). Mahati et al.
(2017) observed that TMPRSS4 and CLDN1 were remarkably
upregulated in HCC tissues, while overexpression of CLDN1
induced EMT and CSC behaviors via TMPRSS4 in HCC.
Mechanistically, Ou et al. (2019) provided evidence that Frizzled
2 (FZD2) is a driver of EMT and CSC properties in HCC.

Oncogenes or Oncoproteins in Other
Locations or Pathways in Human Cells
RACK1, Tg737, and MAGE-A9
Some oncogenes are located in many parts of the cell, for example,
the cell membrane, cytoplasm, cytoskeleton, perinuclear region,
nucleus, cell projections, dendrites, and phagocytic cups. In the
same manner, they can target different targets and ultimately
affect the stemness of LCSCs. Receptor for activated C kinase
1 (RACK1) belongs to the Trp-Asp repeat protein family and
is an adaptor protein involved in multiple signaling pathways
(Bourd-Boittin et al., 2008). Overexpression of RACK1 is
associated with short overall survival and a high recurrence
rate in HCC (Ruan et al., 2012). In recent work, RACK1 was
found to directly stabilize Nanog, thus contributing to the self-
renewal and chemoresistance of LCSCs (Cao et al., 2019). In
addition, the Tg737 gene is a mouse intra-flagellar transport
88 homologue that was first identified in Chlamydomonas
(Pazour et al., 2000). Previous studies have shown that Tg737
expression highly suppresses LCSC properties. Consistently,
Tg737 gene silencing was significantly associated with tumor
differentiation, metastasis, and invasion and alpha-fetoprotein
levels (You et al., 2017). Furthermore, knockdown of Tg737
caused liver cancer cells to acquire LCSC properties during
malignant transformation, because Tg737 regulated a double-
negative feedback loop between Wnt/β-catenin and hepatocyte
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nuclear factor 4-alpha, resulting in EMT (Huang Q. et al., 2017).
Moreover, the melanoma antigen gene (MAGE) family represents
one of the largest groups of human tumor-associated antigens.
MAGE-A9, a member of the MAGE-A gene family, is frequently
expressed in various human tumors (Gu et al., 2014). MAGE-
A9 contributes to malignant biological phenotypes, including cell
proliferation, chemoresistance and migration of EpCAM+ HCC
cells (Wei et al., 2018).

OPN, CCN3, and LOX
A subset of secretory oncogenes can localize in many parts of
the cell. Osteopontin (OPN) is a subclass of phosphorylated
glycoproteins and is associated with chemoresistance in many
malignant tumors (Pang et al., 2011; Hsieh et al., 2013).
Considerable evidence has revealed that OPN enhances the
CSC phenotype in cancer (Pietras et al., 2014). Guoke
Liu et al., reported that secreted OPN induced autophagy
by sustaining forkhead box O3a (FoxO3a) stability and
binding with its integrin. The autophagy promoted LCSC
properties and chemoresistance (Liu G. et al., 2016). Another
study found that down-regulation of OPN expression in
CD133+/CD44+ cells suppressed migration and proliferation
by regulating DNA methyltransferase (DNMT)1 expression.
Downregulation of DNMT1 expression reduced global DNA
methylation. Additionally, various levels of OPN exhibited
different sensitivities to 5 Aza (Gao et al., 2018). Moreover,
cellular communication network factor 3 (CCN3) is associated
with the malignant phenotype of HCC. Furthermore, one
study found that CCN3 overexpression enhanced survival and
increased in vivo metastasis of HCC. Mechanically, CCN3 affects
the upregulation of OPN and coagulation factors, which led to
enhance stemness of LCSCs (Jia et al., 2017). Lysyl oxidase (LOX)
is a secreted enzyme, that contributes to regulation of various
factors, including extracellular matrix (ECM) maintenance,
migration and angiogenesis (Zhu J. et al., 2015; Ribeiro et al.,
2017). A recent study revealed that LOX gene expression
was upregulated in cell spheres and led to more vascular
enrichment in a mouse xenograft model. Furthermore, LOX
expression increased vascular endothelial growth factor (VEGF)
and enhanced the tube formation capacity of endothelial cells.
These findings provide a novel mechanism of LOX in regulation
of TICs in HCC (Yang et al., 2019).

CONCLUSION

Hepatocellular carcinoma is a solid cancer with high morbidity
and mortality. Evidence has shown that the existence of
LCSCs can contribute to HCC tumor initiation, drug resistance,
metastasis and recurrence. Intriguingly, LCSC elimination seems
to be an ideal method to defeat HCC. Therefore, specific targeting
of LCSCs may repress the malignant biological behaviors of
HCC and improve curative effects. Mounting data have suggested
that LCSCs develop through a multistep process associated
with RNAs, genes, proteins, pathways, factors, autophagy, the
microenvironment and the networks between them. Thus, a
better understanding of the molecular mechanisms underlying

HCC initiation and progression is a pressing requirement.
Additional studies are urgently necessary to facilitate exploration
of new therapeutic targets and effective treatment strategies.
Through classification of the studies on LCSC targeting published
in the past 5 years, we found that most of the studies
focused on ncRNAs (especially the miRNAs and lncRNAs),
oncogenes, oncoproteins and the crosstalk between their
upstream/downstream genes and molecular pathways.

miRNA is a major class of non-protein-coding transcripts
that instead function in posttranscriptional regulation of genes.
Several miRNAs can enhance LCSC features, and opposite
effects can be found with other miRNAs. lncRNAs regulate gene
expression through different ways, such as protein and miRNAs
networks. In this review, we observed that a number of miRNAs
and lncRNAs might serve as novel markers or provide potential
therapeutic targets in LCSCs. Dysregulation of miRNAs or
lncRNAs could be used to identify and characterize LCSCs based
on their interaction with pivotal signaling pathways, focusing
on the Wnt/β-Catenin signaling pathway (such as miR-1246,
miR-429, Lnc-β-Catm, lncTCF7, and CUDR), IL6/JAK2/STAT3
signaling pathway (such as miR-500a-3p, miR-589-5p, DLX6-
AS1, and Lnc-DILC), PI3K/Akt/Bad signaling pathway (such as
miR302a/d, miR-1305, miR24-2, miR-25, and lncRNA-HULC)
and certain genes, including OCT4 (such as miR-1246 and miR-
429) and Nanog (such as miR24-2), as well as on cell surface
proteins or cellular prognostic markers that have been identified
to be characteristic of LCSCs, such as EpCAM (miR26b-
5p and miR-429).

Genes support the basic structure and properties of life
through their genetic effects. In this review, according to
Supplementary Table 1, which presents impact factors, we found
that the oncogenes and oncoproteins reported by high-impact
factor studies to target LCSCs are primarily located in the nucleus
and cytoplasm. Similarly, we found that many oncogenes and
oncoproteins are novel potential LCSC markers located in the
cell membrane or are subsecretory types. Moreover, some of the
molecular mechanisms of the oncogenes or oncoproteins that
target LCSCs are the same and involve several key pathways,
including the Wnt/β-catenin signaling pathway (such as Sox9,
Shp2, MYCN, ZFX, GLS1, Tg737, KLF8, and Ring1), Notch
signaling pathway (such as iNOS and CD44s), PI3K/Akt/c-
Myc pathway (such as HOXB7, Cygb, and ITGA7) and STAT3
pathway (such as AQP3). The target genes include Nanog (such
as Sox9, NUMB, TARBP2, RACK1, and FOXM1) and OCT4
(such as Sox9, ZIC2, FOXM1, and BORIS), along with LCSC
biomarkers (such as CD133, CD44, and EpCAM).

From the above observations, in addition to LCSC surface
biomarkers, we emphasize the role of three signaling pathways
and two genes that influence LCSCs. The first is the Wnt/β-
catenin signaling pathway. The Wnt/β-catenin signaling pathway
has been identified as one of the most frequent participants
in CSCs (Fodde and Brabletz, 2007). Dramatically, the Wnt/β-
catenin signaling pathway, which involves translocation of β-
catenin to the nucleus, is heavily implicated in LCSCs (Yamashita
et al., 2007). Moreover, the final nuclear transfer can induce
transcription of prominent targets, such as c-Myc (He et al., 1998)
and CD44 (Wielenga et al., 1999). CD44 has also been identified
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as a biomarker of LCSCs (Zhu et al., 2010). In addition, EpCAM
is a direct transcriptional target of the Wnt/β-catenin signaling
pathway in HCCs (Yamashita et al., 2007).

The second signaling pathway is the PI3K/Akt/c-Myc
pathway. PI3K-Akt has been shown to promote cancer stemness
in various cancer types (Hambardzumyan et al., 2008; Bleau
et al., 2009). Elevated phosphatidylinositol 3,4,5-trisphosphate
(PIP)3 levels lead to activation of multiple kinases, including
phosphoinositide-dependent protein kinase 1 (PDK1), which
phosphorylates downstream targets, such as Akt. Activated Akt
phosphorylates numerous substrates to regulate vital cellular
processes, including tuberous sclerosis complex 2 (TSC2), NF-
κB and GSK3β (Vanhaesebroeck et al., 2010). Furthermore,
the PI3K-Akt pathway has been reported to augment the
expression of c-Myc (Tsai et al., 2012; Zhang H.F. et al., 2016).
Interestingly, one study demonstrated synergistic interactions of
CD44 and TGF-β1 in EMT induction via the Akt/GSK-3β/β-
catenin pathway in HCCs (Park et al., 2016). Here, we found
that c-Myc is a coactive gene in the Wnt/β-catenin signaling
pathway and PI3K/Akt signaling pathway. Interestingly, the
proto-oncogene Myc is the frequent event in many cancers
(Soucek et al., 2008). Myc can be activated via Wnt/β-catenin,
PI3K/Akt, MAPK/extracellular signal-regulated kinase (ERK)
and Hedgehog. Mechanically, the activated Myc gene affects
target genes mediation including chromatin remodeling and
DNA-methylation (Sridharan et al., 2009).

The third signaling pathway is the IL6/JAK2/STAT3 signaling
pathway. IL-6 produced by tumor-associated macrophages
(TAMs) can activate the STAT3 signaling pathway to promote
CD44+ LCSCs (Wan et al., 2014). Therefore, an IL-6 receptor
blocking antibody (such as tocilizumab) is a novel therapeutic
strategy for targeting LCSCs. Simultaneously, it has been
demonstrated that targeting of the TGF-β pathway using indirect
modulation of IL6/STAT3 appears to effectively eradicate LCSC
features (Lin et al., 2009).

OCT4, which belongs to the POU family, is the most
important stem cell factor and is considered the master regulator
in the maintenance of stem cell potency (Nichols et al.,
1998). Active OCT4 can directly regulate two downstream stem
cell regulator genes, Nanog and SOX2, promoting LCSC-like
phenotypes (Babaie et al., 2007). Many studies have identified
that there is a correlation between OCT4 and LCSCs (Murakami
et al., 2015). Nanog has been proposed as an important
regulator modulating the phenotype of CSCs in various of
cancer types (Shan et al., 2012; Chen et al., 2016). Furthermore,
one study has reported that overexpression of CD24 is
accompanied by increased STAT3 and Src activities (Bretz et al.,
2012). Interestingly, STAT3-mediated Nanog expression can

regulate self-renewal and tumor initiation in CD24+ LCSCs
(Lee et al., 2011).

Altogether, non-coding RNAs, genes, and signaling pathways
form a network that affects the characteristics of LCSCs.
Targeting LCSCs via ncRNAs, oncogenes, oncoproteins or
signaling pathways holds promise for preventing disease relapse.
In addition, some small molecular agents have been studied
extensively. However, there is still no available US FDA-approved
drug that is likely to be clinically effective for HCC. It is now clear
that all RNAs, genes, proteins and signaling pathways function
as a coordinated network rather than operating in isolation.
Thus, we should find a key node in the LCSC network. In
this review, we summarize three pathways: the Wnt/β-catenin
pathway, PI3K/Akt pathway, and IL6/JAK2/STAT3 pathway and
their targeting gene c-Myc. Furthermore, we conclude that two
important genes are OCT4 and Nanog. They play a pivotal role
in LCSC regulation and HCC prognosis. There is a potential
opportunity to achieve great therapeutic effects by targeting the
above signaling pathways or genes in LCSCs. However, their dual
oncogenic and biological functions indicate that targeting should
be conducted with caution.
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