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Small lipophilic molecules present in foods of plant origin have relevant biological
activities at rather low concentrations. Evidence suggests that phytosterols,
carotenoids, terpenoids, and tocopherols can interact with different metabolic
pathways, exerting beneficial effects against a number of metabolic diseases. These
small molecules can modulate triacylglycerol absorption in the intestine and the
biosynthesis of chylomicrons, the lipid carriers in the blood. Once in the bloodstream,
they can impact lipoprotein clearance from blood, thereby affecting fatty acid release,
incorporation into adipocytes and triglyceride reassembling and deposit. Consequently,
some of these molecules can regulate pathophysiological processes associated to
obesity and its related conditions, such as insulin resistance, metabolic syndrome and
type-2 diabetes. The protective capacity of some lipophilic small molecules on oxidative
and chemotoxic stress, can modify the expression of key genes in the adaptive cellular
response, such as transcription factors, contributing to prevent the inflammatory status
of adipose tissue. These small lipophilic compounds can be incorporated into diet
as natural parts of food but they can also be employed to supplement other dietary
and pharmacologic products as nutraceuticals, exerting protective effects against the
development of metabolic diseases in which inflammation is involved. The aim of this
review is to summarize the current knowledge of the influence of dietary lipophilic small
biomolecules (phytosterols, carotenoids, tocopherols, and triterpenes) on lipid transport,
as well as on the effects they may have on pathophysiological metabolic states, related
to obesity, insulin resistance and inflammation, providing an evidence-based summary
of their main beneficial effects on human health.

Keywords: tocopherol, carotenoid, sterol, triterpene, metabolism, metabolic disease

INTRODUCTION

Among lipophilic compounds exerting biological effects on human health, phytosterols,
carotenoids, tocopherols, and triterpenes are consumed as part of food. To exert their benefit, they
need to be released from the food matrix and be available for intestinal absorption (Saura-Calixto
et al., 2007); this involves micelle formation and emulsification by bile, interaction with enzymes in
the intestinal lumen, and further hydrolysis by pancreatic lipases, if they were esterified with fatty
acids (Iqbal and Hussain, 2009).
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Latest studies using the human epithelial colorectal
adenocarcinoma (CaCo-2) cell line have proved that the
uptake of these substances is mediated by transporters, being
therefore a saturable process (During et al., 2002; Anwar et al.,
2006; Amiot et al., 2011). Through different mechanisms, that
will be detailed onward, once these lipophilic compounds
arrive in the enterocyte, they need to be incorporated into
chylomicrons, so they can be transported in the blood and to
the lymph, both aqueous mediums, ending up in the liver and
extrahepatic tissues.

Carotenoids and tocopherols are transported in the core of
chylomicrons (Iqbal and Hussain, 2009) but less is known about
sterols or triterpenoids. For instance, we reported that oleanolic
acid (OA) is transported in plasma bound to albumin, but it
cannot be discarded that this triterpene can also be transported
in lipoprotein carriers (Rada et al., 2015).

Phytosterols, carotenoids, tocopherols, and triterpenes can
exert important biological effects even before arriving at the
target tissues. There is evidence that they could modulate
triacylglycerol (TAG) hydrolysis by lipoprotein lipase (LPL) in
chylomicrons (Cabello-Moruno et al., 2014), which affect their
clearance from plasma and liver uptake (Perona et al., 2006), and
improve the balance between vasoprotective and prothrombotic
factors (Perona et al., 2004). Therefore, they have therapeutic
potential to be used against chronic metabolic diseases related to
TAG transport and deposition in adipose tissue.

Below, we summarize the current knowledge of the
influence of these dietary lipophilic small biomolecules on
lipid transport, as well as on the effects they may have on
pathophysiological metabolic states related to obesity, insulin
resistance and inflammation.

PHYTOSTEROLS

Definition, Types and Structure
Phytosterols are bioactive components present in plants that are
synthesized via the isoprenoid pathway, while phytostanols are
their saturated derivatives. Their main function is to stabilize
plant cell membranes and serve as precursors in the synthesis
of steroidal saponins, alkaloids, and other steroids (Lai and
Akoh, 2005). These plant sterols share structural similarity with
cholesterol, differing in a methyl or ethyl group in C24. The
most abundant sterols in plants and plant-containing foods are
sitosterol (C29H50O), campesterol (C29H48O), and stigmasterol
(C29H48O) (Figure 1), accounting for about 90% of total sterols
to the diet (Klingberg et al., 2008).

Dietary Sources and Bioavailability
The main sources of plant sterols are vegetable oils, nuts and
unrefined grains, whereas plant stanols are mainly present
in cereals, especially wheat and rye (Valsta et al., 2004).
Other important dietary sources are phytosterol-enriched food
products, usually in their esterified form, including margarines,
yogurts and beverages.

Absorption of phytosterols follows the same pathways as
cholesterol in the proximal part of the small intestine. Free sterols

are solubilized into the micelle that is formed in the emulsified
fat phase. In a group of ten healthy subjects, it was found that
phytosterols are absorbed in the brush border membrane of the
enterocyte via transporter proteins, such as Niemann-Pick C1-
Like 1 (NPC1L1) with a very low efficiency (<2% for sterols and
<0.2% for stanols) compared to cholesterol (Ostlund et al., 2002).
Consequently, their serum concentrations are low, varying from 7
to 24 mmol/L for sterols, and from 0.05 to 0.3 mmol/L for stanols.

Effects on Lipid Absorption and
Transport
Phytosterols have the ability to modulate serum cholesterol
transport and metabolism. The FDA and EFSA have approved
health claims for functional foods that provide 1.3 g (FDA,
2010) or 3.0 g (EFSA, 2015) of plant sterols/day respectively
for reducing serum total cholesterol (TC) and LDL (Brufau
et al., 2008; Musa-Veloso et al., 2011). Nevertheless, the clinical
relevance of these cholesterol lowering effects is still a matter of
controversy (Talati et al., 2010). The impairment in cholesterol
absorption by displacement from micelles in the intestinal lumen
by phytosterols has been suggested as the underlying mechanism
(Amiot et al., 2011), however, there is also evidence that they
modify the expression of genes involved in cholesterol re-
esterification in the enterocyte and its removal via trans-intestinal
cholesterol efflux (Gylling and Simonen, 2015).

Phytosterols may likewise contribute to reduce serum TAG
(Demonty et al., 2013) by decreasing their intestinal absorption
(Rideout et al., 2010), restricting chylomicron assembly in the
enterocyte (Liang et al., 2011) and reducing the hepatic release
of very-low-density lipoproteins (VLDL) (Gylling and Miettinen,
1994). Reductions in serum TAG levels of 6–20% by the intake
of 1.5–2 g/day of phytosterol/phytostanols have been reported
(Sialvera et al., 2012; Demonty et al., 2013; De Smet et al., 2015).
However, other studies did not corroborate such changes (Amiot
et al., 2011; De Smet et al., 2015).

Implications in Metabolic Diseases
Metabolic syndrome (MetSyn) is a cluster of several
pathophysiological states, including central obesity,
hyperglycemia, hypertriacylglycerolemia, hypertension and
low HDL, which may increase the risk of type 2 diabetes
(T2DM), cardiovascular disease (CVD), neurodegenerative
disorders and certain types of cancer (Mottillo et al., 2010). There
are data indicating that consumption of phytosterols may have
beneficial effects on MetSyn subjects (Rondanelli et al., 2013;
Coker et al., 2015), although controversy remains (Ooi et al.,
2007). A 16-weeks study in gestational diabetic women taking
phytosterol-rich margarine reported an increase in serum HDL
and improvements in markers of glucose homeostasis, including
fasting glycemia, fasting insulin, HOMA-IR (homeostatic model
assessment for insulin resistance) and β-cell function (Li and
Xing, 2016). In contrast, a randomized controlled trial (RCT)
with 151 T2DM patients taking a low-fat spread enriched
in phytosterols (2 g/day) for 6 weeks reported reductions in
serum TAG and LDL, but no effects on postprandial glycemia
(Trautwein et al., 2018).
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FIGURE 1 | Structure of main phytosterols found in food.

Both in vitro (Kurano et al., 2011; Valerio and Awad,
2011) and in vivo (mice and piglets experimental models)
(Hu et al., 2017; Plat et al., 2014) experiments indicate
that phytosterols exhibit anti-inflammatory properties.
However, systematic reviews and meta-analyses of RCT do
not support that the regular intake of phytosterol-enriched foods
reduced low-grade systemic inflammation associated to obesity
(Rocha et al., 2016).

CAROTENOIDS

Definition, Types and Structure
Carotenoids include both carotenes and xanthophylls. They are
poly-unsaturated isoprenoids, often consisting of eight isoprene
units. Thus, many carotenoids belong to the tetraterpenes.
At the ends of the carbon chain various functional groups
can be located, resulting in the enormous variety of more
than 750 carotenoids known today (Westphal and Böhm,
2015). Carotenes harbor hydrocarbon-type structures (Figure 2),
whereas xanthophylls contain oxygen in their molecules
(Figure 3). Although more than one thousand carotenoids
have been identified (Yabuzaki, 2017), only about 40 are
present in human blood and tissues. β-Carotene (C40H56),
α-carotene (C40H56), and lycopene (C40H56) are the main
carotenes, while lutein (C40H56O2), zeaxanthin (C40H56O2),
β-cryptoxanthin (C40H56O), and astaxanthin (C40H52O4) are the
main xanthophylls (Figure 2).

Dietary Sources and Bioavailability
β-carotene shows the greatest capability to be incorporated into
mixed micelles, while that of lycopene is very poor (Sy et al.,
2012). In fact, and unlike other carotenoids, lycopene levels
in plasma and tissues do not correlate well with its dietary
intake (Gann, 2005). According to The Carotenoid Content of

US Foods (Holden et al., 1999) and data from O’Neill et al.
(2001) the most abundant food sources of carotenoids in the
United States and Europe are carrot for α and β-carotene, tomato
and watermelon for lycopene, kale and parsley for lutein, red
pepper for zeaxanthin and papaya for β-cryptoxanthin.

Experiments in Caco-2 cells show that carotenoid uptake
is curvilinear, time-dependent, saturable and dose-dependent
(During et al., 2002), being facilitated by epithelial transporters
with broad substrate specificity (Reboul and Borel, 2011), such
as the scavenger receptor B1 (SR-B1) (During et al., 2005).
After intestinal absorption, carotenoids are incorporated into
chylomicrons, which account for 80% of total plasma carotenoids
in the postprandial period, and transported to the liver, their main
storage organ (During et al., 2002).

Effects on Lipid Absorption and
Transport
In rats fed a high-fat diet, lycopene-enriched tomato juice
reduced plasma and hepatic TAG (Kim et al., 2012). Moreover,
this juice dose-dependently decreased serum TAG, TC and LDL
in hypercholesterolemic hamsters (Lee et al., 2015). In humans,
the meta-analysis of twelve intervention studies (Ried and Fakler,
2011) pointed out that supplementation with lycopene-rich
edible sources (≥25 mg lycopene/day) reduced LDL by about
10%. However, a more recent meta-analysis (Cheng et al., 2017)
reported that tomato supplements successfully reduced LDL,
while supplementation with lycopene alone yielded no significant
effects. Plasma levels of α-carotene, β-cryptoxanthin, lutein,
zeaxanthin, and lycopene, but not β-carotene, have showed
positive correlations with plasma TC concentrations (Amara
et al., 2015). Likewise, β-cryptoxanthin, lutein, zeaxanthin,
and lycopene also positively correlated with LDL. β-Carotene,
β-cryptoxanthin, lutein, and zeaxanthin further did it with
HDL. A trial with 670 non-diabetic Mexican-American children
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FIGURE 2 | Structure of main carotenes found in food.

determined negative correlations of α-/β-carotene with TAG
and positive associations with HDL (Farook et al., 2017). By
contrast, a research associated to the CARET Study (Omenn
et al., 1996) showed that the combined administration of
β-carotene and retinyl palmitate to smoker or asbestos-exposed
individuals did not produce significant differences in plasma
TAG, TC, and LDL when compared with those receiving placebo
(Redlich et al., 1999).

The plasma TAG lowering effect of lycopene has been
explained by mRNA overexpression of LPL and increased TAG
hydrolysis, but also by enhanced hepatic fatty acid β-oxidation
(Martín-Pozuelo et al., 2015).

The most important effect of carotenoids on lipids and
proteins is their ability to protect them from oxidation. The daily
administration of 280 mL of tomato juice (containing 32.5 mg
of lycopene) to young females for 2 months decreased plasma
levels of malondialdehyde (MDA), a maker of lipid peroxidation,
in parallel with a reduction in body fat (Li et al., 2015). However,
this was an uncontrolled supplementation trial, so results should
be taken with caution. Nevertheless, carotenes seem to be worse
superoxide radical quenchers than xanthophylls, especially than
those containing carbonyls, like canthaxanthin and astaxanthin
(Galano et al., 2010).

Implications in Metabolic Diseases
Different studies have consistently described an inverse
association of the carotenoid dietary intake with BMI, insulin
resistance, MetSyn and CVD (Czernichow et al., 2009; Sluijs et al.,
2009; Chai et al., 2010; Suzuki et al., 2011; Higuchi et al., 2015).

In adipose tissue, carotenoids influence signaling pathways and
gene expression which modulate the pro-inflammatory cytokines
secretion and the proliferation/differentiation of adipocytes (Sy
et al., 2012; Östh et al., 2014). In mice, a β-carotene-enriched
diet decreased body weight, fat mass and adipocyte size, through
the PPARα-mediated overexpression of β-carotene-15,15′-
oxygenase (Amengual et al., 2011). Also in mice, lycopene
restricted adipocyte hypertrophy caused by high-fat diets
(Fenni et al., 2017).

In MetSyn patients, carotenoid intake correlated with
reductions in waist circumference, visceral fat and subcutaneous
fat mass (Sluijs et al., 2009). Carotenoid treatments have been
also associated with the improvement of insulin signaling. An
inverse association between carotenoids and HOMA-IR was
established (Suzuki et al., 2011; Farook et al., 2017; Xiao et al.,
2019), although this correlation was not conserved in adjusted
models for BMI and waist circumference (Amara et al., 2015).
The insulin-sensitizing effect of carotenoids has been attributed,
at least partially, to their ability to enhance adiponectin secretion
by adipose tissue (Amara et al., 2015; Li et al., 2015; Grasa-
López et al., 2016) and to increase the insulin receptor substrate-2
(IRS-2) expression in the liver (Awazawa et al., 2011).

TOCOPHEROLS AND TOCOTRIENOLS

Definition, Types and Structure
“Vitamin E” refers to hydroxychromane derivatives with
antioxidant activities. The most common forms of vitamin E
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FIGURE 3 | Structure of main xanthophylls found in food.

are tocopherols (TP) and tocotrienols (T3), but there are also
tocomonoenols (T1) and marine derived tocopherols (MDT).
Usually, vitamin E is generically named “tocopherols.” Their
basic structure is a chromium ring hydroxylated at position 6, the
methylation of which classifies them into α, β, γ, or δ forms. Four
families are differentiated by differently saturated side chains
(Table 1). These vitamers are naturally in all R configuration
(Traber and Atkinson, 2007).

Dietary Sources and Bioavailability
Vitamin E is found in food such as vegetable oils (sunflower,
palm, olive, cocoa, safflower, grape seed), soy beans, olives,
blueberries, nuts, grains (wheat, rice, barley) and culinary
herbs (cloves, cumin) (Aggarwal et al., 2010). When consumed,
tocopherols dissolve into the meal lipid phase and are emulsified
at the stomach and duodenum as mixed micelles. Micelles
are dissociated and tocopherols absorbed by enterocytes in
the intestinal brush border, by both passive diffusion and
mediated by receptors, such as the scavenger receptor class
B type I (SR-BI) (Reboul et al., 2006) NPC1 like intracellular

cholesterol transporter 1 (NPC1L1) (Reboul et al., 2012), and
CD36 (Goncalves et al., 2014). Only free forms of vitamin
E seem to be uptaken, suggesting that esterified forms are
hydrolyzed beforehand (Lombardo and Guy, 1980). Once
absorbed, tocopherols integrate in chylomicrons, which
are first released to the lymph, and subsequently to the
bloodstream. A fraction of tocopherols in chylomicrons is
captured by extrahepatic tissues (mainly adipose tissue),
whereas the rest goes to the liver in remnant chylomicrons.
In addition, tocopherols transfers from chylomicrons to HDL
(Traber et al., 2019) and from LDL to HDL (Mardones and
Rigotti, 2004) so occur. They are important for vitamin E
delivery to reproductive tissues (adrenals, ovaries, and testes),
lung and brain. In the liver, α-tocopherol is specifically
bound to α-TF transfer protein (α-TTP), which protects
it from catabolism, allowing its incorporation into nascent
VLDL (Mustacich et al., 2007). The excess of α-TF and
other vitamers are secreted in bile or metabolized to
carboxyethyl-hydroxychroman (CEHC) and later excreted
in urine (Schultz et al., 1995).
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TABLE 1 | Common name, structure, and formula of the four vitamin E families.

Name Structure of (RRR) - isomer R1 R2 Formula

α-tocopherol CH3 CH3 C29H50O2

β-tocopherol CH3 H C28H48O2

γ-tocopherol H CH3 C28H48O2

δ-tocopherol H H C27H46O2

α-tocotrienol CH3 CH3 C29H44O2

β-tocotrienol CH3 CH3 C28H42O2

γ-tocotrienol H CH3 C28H42O2

δ-tocotrienol H H C27H40O2

α-tocomonoenol CH3 CH3 C29H48O2

β-tocomonoenol CH3 H C28H46O2

γ-tocomonoenol H CH3 C28H46O2

δ-tocomonoenol H H C27H44O2

α-MDT CH3 CH3 C29H48O2

β-MDT CH3 CH3 C28H46O2

γ-MDT H CH3 C28H46O2

δ-MDT H H C27H44O2

Dietary lipids are effectors of vitamin E absorption. MUFA and
PUFA promoted tocopherols absorption compared to saturated
ones in cockerels (Prévéraud et al., 2014) and Caco-2 cells
(Failla et al., 2014). Conversely, phosphatidylcholine, vitamin C,
carotenoids, and polyphenols significantly impair it in rats (Koo
and Noh, 2001; Nishimukai and Hara, 2004; Reboul et al., 2007;
Goncalves et al., 2015). There is controversial data about the fat
quantity required for optimal vitamin E absorption (Roodenburg
et al., 2000; Bruno et al., 2006). A recent trial with healthy women
has determined that α-TP absorption is not quantitatively limited
by the dietary fat abundance or fasting (Traber et al., 2019). The
authors pointed that α-TP is retained in the enterocyte until
sufficient fat is consumed to promote chylomicron secretion.

Effects on Lipid Absorption and
Transport
α-TP diminishes the capture of ox-LDL by
monocytes/macrophages through CD36 downregulation
(Ricciarelli et al., 2000; Munteanu et al., 2006).

Analogously, T3 decrease serum NEFA, TAG, TC, LDL, Apo B,
glucose and HbA1c levels and hepatic cholesterol (Qureshi et al.,
2000; Chou et al., 2009), while increase HDL (Budin et al., 2009;
Matough et al., 2014). T3 decline likewise HMG-CoA reductase
and hyperlipidemia in murine models of hypercholesterolemia
and atherosclerosis (Iqbal et al., 2003; Minhajuddin et al., 2005).

Implications in Metabolic Diseases
Tocopherols are potent antioxidants within lipid domains, both
in vitro (fats and food oils) and in vivo (biological membranes,
lipoproteins and tissues) (Kuhad and Chopra, 2009; Siddiqui
et al., 2010; Wong et al., 2017). α-TP efficiently decreased
hydroxyl and superoxide radicals and scavenged peroxides in
different animal models (Cachia et al., 1998; Alcalá et al.,
2015) and increased NO production (Meydani et al., 2014).

γ-TP attenuated superoxide, lipid peroxides and ox-LDL in
arteries of Sprague Dawley rats (Saldeen et al., 1999). It
significantly increased NOS activity and plasma nitrites and
also enhanced endogenous SOD and glutathione peroxidase
activities in spontaneously hypertensive rats (SHR) (Newaz
et al., 2003; Budin et al., 2009; Matough et al., 2014). T3
reduced lipid peroxidation and oxidative stress in murine
models (Kuhad and Chopra, 2009; Burdeos et al., 2012) and
HepG2 cells (Asai et al., 1999). These antioxidant response
is consistent with the vitamin E role as Nrf2 activator
(Bozaykut et al., 2014). In experimental animals, α-TP improved
hypertriglyceridemia, insulin resistance and hepatic steatosis
(Alcalá et al., 2015).

Vitamin E also performs against inflammation; α-TP inhibited
PKC, 5-LOX and PLA2, and activated PP2A and DAG kinase
(Mathur et al., 2015; Hayashi et al., 2017). It repressed the
activation of nuclear factor κB (NFκB), as well as the biosynthesis
of pro-inflammatory cytokines and adhesion molecules (Cook-
Mills, 2013; Rashidi et al., 2017). Likewise, γ-TP blocked COX
activity and diminished prostaglandin E2 (PGE2) synthesis
(Jiang et al., 2000; Yoshikawa et al., 2005). γ-T3 inhibited the
production of TNF-α, transforming growth factor-beta (TGF-
β), and IL-1β in STZ-diabetic rats. In human adipocytes, γ-T3
suppressed MAP kinase and NFκB pathways (Kuhad et al.,
2009). In C57BL/6J mice, γ-T3 improved insulin signaling
and glucose tolerance. It also decreased MCP-1 in adipose
tissue, indicating a lesser macrophage infiltration (Zhao et al.,
2015). Despite these beneficial effects, some authors have
suggested that high doses of vitamin E could become harmful.
For instance, a dose of 600 mg α-TP/kg augmented blood
pressure and lipid peroxides in serum and brain tissue of SHR
(Miyamoto et al., 2009).

In humans, evidence of vitamin E effects on metabolic
disorders is still not solid. Some trials showed that vitamin E
improves dyslipidemia in patients of MetSyn (Devaraj et al.,
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FIGURE 4 | Structure of main bioactive pentacyclic triterpenes of lupine, oleanane and ursane subtypes.

2008; Heng et al., 2015), hypercholesterolemia (Qureshi et al.,
2002; Zaiden et al., 2010), or diabetes (Baliarsingh et al.,
2005). Furthermore, tocopherols improved glycemic control
(Irandoost et al., 2013), hypertension (Jain and Jain, 2012)
and increased the endogenous antioxidant capacity (Vafa et al.,
2015). In animal models, α-TP improves hypertriglyceridemia,
insulin resistance and hepatic steatosis (Alcalá et al., 2015).
It also reduces LXRα expression and increases ABCA1,
preventing cholesterol-mediated damage to cardiomyocytes
(Sozen et al., 2018).

Cohort studies and RCT have displayed an inverse association
between vitamin E and the risk of ischemic cardiomyopathy
(Venturi et al., 2019), stroke (Boaz et al., 2000), coronary
artery disease (Muntwyler et al., 2002), myocardial infarction
(Stephens et al., 1996; Boaz et al., 2000) and death due to
heart failure (Muntwyler et al., 2002; Eshak et al., 2018).

However, other well-designed trials, such as SU.VI.MAX (Kubota
et al., 2011) and PREDIMED (Henríquez-Sánchez et al.,
2016), did not determine any relationship between vitamin E
supplementation and CVD incidence and mortality. Neither
on circulating lipids (O’byrne et al., 2000; Mustad et al., 2002;
Rasool et al., 2006).

PENTACYCLIC TRITERPENES

Definition, Types and Structure
Pentacyclic triterpenes (PT) are synthetized, as phytosterols,
through the mevalonate pathway and oxidosqualene cyclization.
Most frequent PT belong to three subtypes: lupane (betulinic
acid), oleanane (uvaol, erythrodiol, oleanolic and maslinic acids)
and ursane (ursolic, asiatic, corosolic, and boswellic acids)
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FIGURE 5 | Schematic drawing illustrating the main processes and effects that phytosterol, carotenoids, tocopherols, and triterpenes may have on human body.

(Figure 4). PT can occur as free, acylated (with hydroxycinnamic
acids or fatty acids, for instance) or glycosylated (triterpenoid
saponins) forms (Furtado et al., 2017).

Dietary Sources and Bioavailability
Pentacyclic triterpenes are natural components of a great variety
of fruits, vegetables, and medicinal plants and are therefore
part of the human diet. They are found in apple, pear,
mango, green pepper, strawberries, mulberry, guava or olives;
but also in aromatic herbs (e.g., basil, oregano, rosemary, and
lavender) (Jäger et al., 2009). In vivo studies have shown that
PT bioavailability differs when they are administered as pure
compounds or in a complex matrix, such as a food item.
The presence of fat appears also of major importance, since

the solubilization and micellarization of lipophilic compounds
are necessary steps prior to absorption (Furtado et al., 2017).
Although absorption and metabolism processes are not well
established, both passive and P-glycoprotein-mediated active
transport have been postulated for intestinal absorption of PT
(Wang et al., 2017; Jinhua, 2019). They result widely distributed
among tissues after passing through the liver (Rada et al., 2011;
Zhu et al., 2013).

Effects on Lipid Absorption and
Transport
In animal models of dyslipidemia, PT reduce plasma TAG,
TC, LDL, VLDL and NEFA, whereas significantly increase
HDL and NO (Wang et al., 2013; Pan et al., 2018), enhance

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 October 2020 | Volume 8 | Article 555359

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-555359 October 8, 2020 Time: 18:30 # 9

Castellano et al. Lipophilic Bioactives and Lipid Transport

plasma leptin and reduce ghrelin (Wang et al., 2013). They
downregulate lipogenic genes (ACC, SCD2, GPAT3, ACAT)
(Wang et al., 2013) and diminish hepatic fatty acid oxidation
by downregulating PPAR-γ coactivator-1β (PGC-1β) (Kuroda
et al., 2012). In addition, PT regulate the expression of genes
involved in regulation of lipid metabolism, such as PPAR-α
(Quang et al., 2011), PPAR-γ (Luo et al., 2018), AdipoR1, and
AdipoR2 (Sung et al., 2010).

Implications in Metabolic Diseases
Pentacyclic triterpenes present several other biological activities,
including anti-inflammatory, antioxidant, anti-viral, anti-
diabetic, anti-tumor, hepatoprotective, and cardioprotective, and
could be used as anti-ulcer drugs, as well as for the prevention
and treatment of metabolic diseases (Reen-Yen et al., 2009;
Yamai et al., 2009; de Melo et al., 2010; Jiang et al., 2015;
Fernández-Aparicio et al., 2019). As a result, some triterpenes
are currently being evaluated in clinical trials (Skarke et al., 2012;
Santos-Lozano et al., 2019).

On peripheral tissues, PT improve insulin signaling,
upregulating the expression of IR and IRS (Whalley et al., 2011),
promoting IR auto-phosphorilation (Sato et al., 2007) and
selectively inhibiting tyrosine phosphatases PTP1B and TCPTP
(Jung et al., 2007; Teodoro et al., 2008; Genet et al., 2010; Bu et al.,
2011). Moreover, PT arise the activity of essential kinases for
insulin-stimulated events, such as the PI3K/Akt axis (Galic et al.,
2005; Ramírez-Espinosa et al., 2011), ERK 1/2, LKB1, and AMPK
(Feng et al., 2011). In the liver, PT inhibit GSK3β (Sangeetha
et al., 2010; Zeng et al., 2012; Ramírez-Espinosa et al., 2011)
and potentiate the glycogen pool through the stimulation of
glucokinase activity and the repression of glucose-6-phosphatase
and glycogen phosphorylase (Ha et al., 2009; Azevedo et al., 2010;
Saha et al., 2010). Another hypoglycemic effect of PT is their
ability to strongly inhibit intestinal and pancreatic α-glucosidases
(Ali et al., 2002; Castellano et al., 2016). Likewise, PT markedly
reduce microvesicular steatosis and lipid droplets in the liver
(Woo et al., 2006).

PT inhibit the polyol pathway and attenuate the synthesis of
advanced glycation end-products (AGEs). They inhibit aldose
reductase and sorbitol dehydrogenase (Cheng et al., 2010), and
enhance glyoxalase-I. In rodent, they reduce the formation
of methylglyoxal, pentosidine, Nε-(carboxymethyl)lysine (Ahn
et al., 2017), plasma HbA1c and urinary glycated albumin
(Bachhav et al., 2015).

Although modest radical scavengers (Li et al., 2014; Wang
et al., 2015; Castellano et al., 2016; Lee et al., 2016), PT strongly
potentiate the adaptive cell response against oxidative and
chemotoxic stresses. They stimulate the expression of antioxidant
and NADPH-producing enzymes (Djeziri et al., 2018; Gamede
et al., 2018; Su et al., 2018), and reduce LDH and MDA
productions (Djeziri et al., 2018). In these effects, the activation
of the nuclear factor Nrf2 seems to play a key role (Yin and Chan,
2007; Allouche et al., 2011; Castellano et al., 2013).

Furthermore, PT block NFκB activation (Belleza et al., 2010;
Castellano et al., 2013), and irreversibly inhibit phospholipase
A2 (Dharmappa et al., 2009), attenuating the production of pro-
inflammatory cytokines (Du and Ko, 2006; Yang et al., 2007;

Tsai and Yin, 2008). PT enhance the levels of angiotensin 1-7,
NO and eNOS (Soobrattee et al., 2005). In experimental animals,
PT decrease hepatic and adipose tissue productions of ROS, IL-
1b, IL-6, IL-18, and TNFα (Huang et al., 2005; Chen et al.,
2006, 2017; Wang et al., 2010; Saaby et al., 2011), together with
the inhibition of NLRP3 inflammasome and caspase-1 pathways
(Wang et al., 2010).

At β-cell level, PT increase the glucose-stimulated insulin
biosynthesis and secretion through a multifactorial mechanism.
They stimulate pro-insulin gene expression (Gilon and Henquin,
2001), activate M3-subtype muscarinic receptors (Ali et al., 2002),
and perform as selective agonists of TGR5 receptors (Genet
et al., 2010). PT act likewise as anti-apoptotic agents and selective
enhancers of the Shp-2 phosphatase activity (Ali et al., 2006).

CONCLUDING REMARKS

Sterols, carotenoids, tocopherols, and pentacyclic triterpenoids
are all dietary lipophilic biomolecules with important functional
effects for human health. These molecules are solubilized in
meal fats and emulsified into mixed micelles in the intestinal
lumen, before been taken-up by enterocytes and poured into
the bloodstream into chylomicrons. Figure 5 illustrates the main
processes and effects that phytosterol, carotenoids, tocopherols,
and triterpenes may have on human body.

Although structurally diverse, they share, with different
intensity, antioxidant and anti-inflammatory features. By
attenuating oxidative stress and inflammation, they improve
disorders associated to obesity and dyslipidemia. In animal
models and human trials these functional ingredients have
demonstrated to decrease plasma levels of TAG, TC, and LDL,
whereas arise the leptin, adiponectin and HDL concentrations.
They ameliorate hepatic steatosis, protect lipids from oxidation
and reduce LDH and MDA productions. These compounds
amend BMI, as well as abdominal and subcutaneous obesity.

Furthermore, carotenoids, vitamin E and PT may act as
insulin-sensitizers, improving insulin resistance and pathological
disorders related to MetSyn. Notoriously, PT also preserve
functionality and survival of pancreatic β-cell, increasing the
insulin release capability. Vitamin E is a potent lipophilic
antioxidant, which scavenge hydroxyl and superoxide radicals
and reduce the production of lipid peroxides. PT, by contrast, are
modest radical scavengers, but potent enhancers of the adaptive
cell response against oxidative and chemotoxic stress. Part of
the effects of both tocopherols and PT can be explained by
its capability to activate Nrf2 and the expression of phase 2
genes. Through Nrf-2 activation, they upregulate the expression
of antioxidant enzymes and lipogenic genes. On the other hand,
tocopherols and PT are able to inhibit the transactivation of
NFκB, inhibiting the inflammatory response. They repress the
production of pro-inflammatory cytokines, the expression of
adhesion molecules, and a number of inflammatory pathways,
including MAPK, LOX, or COX.

The pharmacological activity of these small lipophilic
molecules has been correlated with lower risks to develop
T2DM, CVD, and other pathological complications of MetSyn.
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Unfortunately, accumulated evidence in humans is still
limited, and more well-designed RCT should be performed
before nutritional recommendations may be directed to
general population.
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