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As a classical immune checkpoint molecule, PD-L1 on the surface of tumor cells plays
a pivotal role in tumor immunosuppression, primarily by inhibiting the antitumor activities
of T cells by binding to its receptor PD-1. PD-1/PD-L1 inhibitors have demonstrated
unprecedented promise in treating various human cancers with impressive efficacy.
However, a significant portion of cancer patients remains less responsive. Therefore,
a better understanding of PD-L1-mediated immune escape is imperative. PD-L1 can
be expressed on the surface of tumor cells, but it is also found to exist in extracellular
forms, such as on exosomes. Recent studies have revealed the importance of exosomal
PD-L1 (ExoPD-L1). As an alternative to membrane-bound PD-L1, ExoPD-L1 produced
by tumor cells also plays an important regulatory role in the antitumor immune response.
We review the recent remarkable findings on the biological functions of ExoPD-L1,
including the inhibition of lymphocyte activities, migration to PD-L1-negative tumor
cells and immune cells, induction of both local and systemic immunosuppression, and
promotion of tumor growth. We also discuss the potential implications of ExoPD-L1
as a predictor for disease progression and treatment response, sensitive methods for
detection of circulating ExoPD-L1, and the novel therapeutic strategies combining the
inhibition of exosome biogenesis with PD-L1 blockade in the clinic.

Keywords: exosomal PD-L1, tumor microenvironment, immune escape, antitumor immune memory, abscopal
effect, biomarker, detection method, immunotherapy

INTRODUCTION

Programmed cell death protein-ligand 1 (PD-L1) is an immune checkpoint molecule that interacts
with programmed cell death protein-1 (PD-1) to mediate immunosuppression (Ribas and Hu-
Lieskovan, 2016; Alsaab et al., 2017; Sun et al., 2018; Han et al., 2020). Binding of PD-L1 to PD-1
conveys a regulatory signal to T cells and an antiapoptotic signal to tumor cells, resulting in T cells
exhaustion and tumor cell survival (Dong et al., 2002; Jiang X. et al., 2019; Jiang Y. et al., 2019). It is
known that, as a membrane-bound molecule, PD-L1 is expressed on the cell surface of many tumor
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types and the PD-1/PD-L1 pathway is considered to be a
critical mechanism for immune escape and tumor progression
(Quail and Joyce, 2013; Yu et al., 2016; Kakavand et al.,
2017; Kythreotou et al., 2018; Cha et al., 2019). Therefore,
anti-PD-1/PD-L1 inhibitors are able to induce durable tumor
regression and represent a unique therapeutic strategy for
patients with advanced cancers (Couzin-Frankel, 2013; Mahoney
et al., 2015; Ribas et al., 2016; Yaghoubi et al., 2019). However,
the effective rate of anti-PD-1/PD-L1 immunotherapy remains
low (Xu-Monette et al., 2017; Chamoto et al., 2020; Hatae
et al., 2020). Furthermore, patients exhibiting negative PD-L1
expression can also benefit from anti-PD-1/PD-L1 blockade
(Patel and Kurzrock, 2015; Shukuya and Carbone, 2016; Shen
and Zhao, 2018). Thus, neither the expression pattern of PD-L1
on the tumor cell surface alone is sufficient to account for the
mechanism of tumor immune escape nor accurate for predicting
the response to anti-PD-1/PD-L1 treatment, although tumor
tissue PD-L1 is the only indicator authorized by the FDA (Festino
et al., 2016; Wang Q. et al., 2017; Li et al., 2019c; Martinez-Morilla
et al., 2020). Therefore, as an alternative to membrane-bound
PD-L1, exosomal PD-L1 (ExoPD-L1) that is associated with
exosomes secreted by tumor cells has been investigated recently.

Extracellular vesicles (EVs) are membrane-enveloped particles
produced by almost all cell types and are classified into
three subgroups: microvesicles, apoptotic bodies, and exosomes,
according to their biogenesis, cellular source and biological
properties (Gould and Raposo, 2013; Colombo et al., 2014; Yanez-
Mo et al., 2015; Xu et al., 2016; Hessvik and Llorente, 2018; van
Niel et al., 2018; Margolis and Sadovsky, 2019). Microvesicles
and apoptotic bodies are large EVs (normally 100−1000 µm)
and are shed directly from the plasma membrane (Gould and
Raposo, 2013; van Niel et al., 2018; Margolis and Sadovsky, 2019).
Exosomes are small EVs (typically 30−100 µm) generated by
the endocytic pathway (Thery et al., 2006; Kowal et al., 2014;
Lobb et al., 2015; Kalluri, 2016; Tkach and Thery, 2016; Tkach
et al., 2018). After the fusion of endosomal multivesicular bodies
(MVBs) with the plasma membrane, exosomes are secreted
extracellularly (Carlton, 2010; Stoorvogel, 2015; Ha et al., 2016).
Neutral sphingomyelinase type 2 (nSMase2) and Rab27a are
two key enzymes in the biogenesis of exosomes (Hessvik and
Llorente, 2018). They are involved in the inward budding of
MVBs to form intraluminal vesicles (ILVs), the intracellular
precursors of exosomes, and the transportation and fusion of the
MVBs to the plasma membrane, respectively (Trajkovic et al.,
2008; Ostrowski et al., 2010; Lallemand et al., 2018). Genetic
and pharmacological manipulation of these enzymes offers an
approach to determine the various roles of exosomes in vitro
and in vivo. Increasing evidence indicates that exosomes derived
from tumor cells can regulate the tumor microenvironment
and promote cancer progression via their cargos, which include
proteins, lipids, and nucleic acids (Anastasiadou and Slack, 2014;
Lazaro-Ibanez et al., 2019; Zhang and Yu, 2019; Raimondo et al.,
2020; Sahebi et al., 2020). Recent studies have demonstrated
that PD-L1 also exists on the surface of exosomes generated by
their parental tumor cells (Chen G. et al., 2018; Lubin et al.,
2018; Ricklefs et al., 2018; Theodoraki et al., 2018b; Yang et al.,
2018; Fan et al., 2019; Kim et al., 2019; Poggio et al., 2019;

Cordonnier et al., 2020; Huang et al., 2020). Moreover, ExoPD-
L1 can function as efficiently as PD-L1 on the tumor cell surface
through direct ligation to PD-1 on the surface of lymphocytes
in tumor foci (Chen G. et al., 2018; Lubin et al., 2018; Ricklefs
et al., 2018; Theodoraki et al., 2018b; Yang et al., 2018; Fan et al.,
2019; Kim et al., 2019; Poggio et al., 2019; Cordonnier et al., 2020;
Huang et al., 2020). Surprisingly, although the cell-surface PD-
L1 is low or absent, the ExoPD-L1 may be highly secreted by
its parental tumor cells that are resistant to anti-PD-L1 therapy
(Poggio et al., 2019). Overall, ExoPD-L1 plays a pivotal role in
immunosuppression and tumor progression.

In this review, we summarize the various functions of ExoPD-
L1 secreted by tumor cells, focusing on the recent findings
regarding their expression heterogeneity, the impact on local and
systemic immune response, and tumor growth. Moreover, we
also discuss the clinical implications of circulating ExoPD-L1
as a non-invasive biomarker to predict tumor progression and
immunotherapeutic response, and as a novel target to develop
more effective antitumor strategies.

THE EXPRESSION PATTERN OF TUMOR
ExoPD-L1

It is well known that the PD-L1 protein is abundantly expressed
on the cell surface of various cancers (Cimino-Mathews et al.,
2016; Nduom et al., 2016; Brody et al., 2017; Sunshine et al., 2017).
Recent studies have shown that tumor cells can secrete PD-L1 in
EVs, particularly in exosomes, which are generally present in the
pellet obtained by ultracentrifugation (Chen G. et al., 2018; Yang
et al., 2018; Kim et al., 2019; Poggio et al., 2019). Colocalization
of PD-L1 and exosomal marker CD63 in MVBs is observed in
human breast cancer tissues by immunohistochemical staining
(Pols and Klumperman, 2009; Khushman et al., 2017; Farooqi
et al., 2018; Yang et al., 2018). Furthermore, human ExoPD-
L1 was found in the circulation of nude mice bearing human
melanoma xenografts (Chen G. et al., 2018). Thereby, both
human and murine tumor cells can secrete ExoPD-L1 both
in vitro and in vivo.

The expression of ExoPD-L1 is highly heterogeneous in
tumor cells. The variability in the levels of ExoPD-L1 is quite
significant between different tumor types and even between
different cell lines of the same type (Table 1). In addition,
it appears that ExoPD-L1 levels are consistent with the levels
of PD-L1 expressed in their parental tumor cells (Chen G.
et al., 2018; Ricklefs et al., 2018; Fan et al., 2019; Kim
et al., 2019). However, an exception is observed in prostate
cancer. These tumor cells produce high levels of PD-L1-
containing exosomes, but are devoid of PD-L1 on the tumor
cell surface, despite expressing constitutively high levels of PD-
L1 mRNA (Poggio et al., 2019). Considering the discordance
between exosomal and cell-surface PD-L1 expression, the
expression pattern of ExoPD-L1 from tumor cells, especially
that of low or undetectable cell-surface PD-L1, should not
be neglected. In addition, interferon-γ, a typical inflammatory
cytokine, upregulates ExoPD-L1 production by melanoma, breast
cancer, prostate cancer, glioblastoma, and non-small cell lung
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TABLE 1 | Expression of ExoPD-L1 secreted by human and mouse tumor cell lines.

Tumor High Low Negative References

Breast cancer MDA-MB-231# Chen G. et al., 2018; Yang et al., 2018

BT549, 4T1* MCF-7 Yang et al., 2018

HCC1954#, 67NR*#, SKBR& Monypenny et al., 2018

Colon cancer RKO Yang et al., 2018

MC38* Poggio et al., 2019

Gastric cancer MKN74 SGC7901, BGC823, NCI-N87,
NUGC4, MKN45

KATOIII, AGS, MGC803 Fan et al., 2019

Glioblastoma G34, G35, CT2A* G44#, G157# Ricklefs et al., 2018

Melanoma WM9#, WM164#, UACC-903 WM1552C, WM35, WM793, WM902B MEL624 Chen G. et al., 2018

SK-MEL-28 Poggio et al., 2019

B16-F10* Chen G. et al., 2018; Cordonnier et al., 2020

SK-MEL-2 Cordonnier et al., 2020

A375 Chen G. et al., 2018; Huang et al., 2020

A375 Yang et al., 2018

NSCLC H1299#, H358#, H1264# Chen G. et al., 2018

H460, H1975 A549 LLC-1* Kim et al., 2019

HCC827 Yang et al., 2018

A549 Cordonnier et al., 2020

Prostate cancer PC3#, TRAMP-C2*# LNCaP Poggio et al., 2019

*, murine; #, IFN-γ inducible PD-L1 expression; &, IFN-γ non-inducible PD-L1 expression.

carcinoma (NSCLC) (Chen G. et al., 2018; Monypenny et al.,
2018; Ricklefs et al., 2018; Poggio et al., 2019). However, the
mechanism regulating ExoPD-1 release is not fully understood.
Thus, endeavors to further explore the molecular mechanisms
regulating ExoPD-L1 expression are warranted.

THE IMMUNOSUPPRESSIVE EFFECTS
OF ExoPD-L1

The modulatory effect of tumor cell PD-L1 occurs through
binding to PD-1. PD-L1 is a typical transmembrane protein
(Dong et al., 1999, 2002). Recent studies reveal that ExoPD-
L1 displays the same extracellular domain topology as its cell-
surface counterpart (Chen G. et al., 2018). Therefore, ExoPD-L1
may exert a similar function as tumor cell-surface PD-L1 by
engaging with PD-1.

The Interaction Between ExoPD-L1 and
PD-1 on T Cells
ExoPD-L1 Directly Binds to PD-1 on T Cells
In vitro binding assays showed that PD-L1 on melanoma-derived
exosomes is able to ligate to soluble PD-1 molecules in a
concentration-dependent manner (Chen G. et al., 2018; Ricklefs
et al., 2018; Yang et al., 2018). Consistently, both PD-L1 and
PD-1 blocking antibodies can disrupt the ligation in a dose-
dependent manner (Chen G. et al., 2018; Ricklefs et al., 2018).
The physical combination of melanoma exosomes and T cells
was confirmed by using confocal microscopy, flow cytometry and
enzyme linked immunosorbent assay (ELISA) (Chen G. et al.,
2018; Ricklefs et al., 2018). The binding of melanoma-derived
exosomes to CD8+ T cells is increased when the levels of either

PD-1 on CD8+ T cells or ExoPD-L1 are upregulated (Chen G.
et al., 2018). Studies on glioblastoma-derived exosomes also show
that ExoPD-L1 binds to CD4+ and CD8+ T cells (Ricklefs et al.,
2018). Furthermore, the in vivo colocalization of ExoPD-L1 to
tumor-infiltrating lymphocytes (TILs) in mouse glioblastoma
tissues was visualized (Ricklefs et al., 2018). Thus, ExoPD-L1 can
ligate to PD-1 on T cells, which is an alternative pathway to
membrane-bound PD-L1 interacting with its receptor PD-1.

ExoPD-L1 Interacts With PD-1 on T Cells After
Migration to PD-L1-Negative Tumor Cells
It has been demonstrated that exosomes can transfer specific
proteins, nucleic acids, and lipids from donor cells to recipient
cells, thereby influencing the phenotype of the recipient cells
(Milane et al., 2015; Ruivo et al., 2017; Wan et al., 2018; Lazaro-
Ibanez et al., 2019). Recent studies found that tumor-derived
exosomes can transport PD-L1 from PD-L1-positive tumor cells
to PD-L1-negative tumor cells (Yang et al., 2018). After a 24 h
incubation with ExoPD-L1 derived from breast cancer cells
with constitutive PD-L1 expression, high levels of PD-L1 were
detected in breast cancer cells with PD-L1 knockdown or low
PD-L1 expression (Yang et al., 2018). Notably, the ExoPD-L1
migration to PD-L1-negative tumor cells was detectable in tumor
masses of mice 5 days after coinjection of ExoPD-L1 (Yang et al.,
2018). Furthermore, ExoPD-L1 can be transported to immune
cells, including human macrophages and dendritic cells in vitro
and murine tumor-infiltrated macrophages in vivo (Yang et al.,
2018). More importantly, results obtained from flow cytometric
analysis demonstrated that the ExoPD-L1, which settled on the
surface of the PD-L1-negative tumor cells, is capable of binding
to the PD-1 Fc fragment (Yang et al., 2018). Thus, the ExoPD-L1
that migrates to the surface of recipient cells from PD-L1-positive
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tumor cells still maintains its ability to bind to PD-1 on T cells
(Yang et al., 2018).

Notably, CD80 is also a binding partner of PD-L1 and
competes with PD-1 for engaging PD-L1 (Butte et al., 2008;
Park et al., 2010; Chen and Flies, 2013). The interaction of
PD-L1 on tumor cells and CD80 on T cells suppresses T cell
activation and survival, suggesting that dual blocking PD-1 and
CD80 interaction with PD-L1 might be more favorable for
improving the immunotherapy efficacy compared with single
PD-1 blockade (Butte et al., 2007; Rollins and Gibbons Johnson,
2017). In addition, PD-L1 can interact in cis with CD80 on the
same cell (Chaudhri et al., 2018). The cis-heterodimer of PD-
L1 and CD80 on antigen presenting cells is able to restrict PD-1
function and is the requirement for triggering T cell responses
(Sugiura et al., 2019; Zhao Y. et al., 2019; Mayoux et al., 2020).
Therefore, it is necessary to dissect the functions contributed by
the crosstalk between PD-L1/PD-1 and PD-L1/CD80 pathways
in tumor microenvironment to explore new opportunities for
tumor treatment.

The PD-1/PD-L1 signaling pathway in activated T cells
has been reviewed in recent literatures (Ai et al., 2020;
Bastaki et al., 2020; Wu et al., 2020). After PD-1 binds to
PD-L1, the cytoplasmic tail of PD-1 is phosphorylated and
recruits Src homology phosphatase 1 (SHP-1) and SHP-2
(Chemnitz et al., 2004; Yokosuka et al., 2012; Chinai et al.,
2015). SHP-2 dephosphorylates and inhibits T cell receptor
(TCR) and downstream signaling, such as zeta-chain-associated
protein kinase 70 (ZAP70), phosphoinositide 3-kinase (PI3K),
protein kinase B (PKB/AKT), mammalian target of rapamycin
(mTOR), rat sarcoma (RAS), mitogen-activated protein kinase

(MAPK/MEK), and extracellular regulated protein kinase (ERK)
(Sheppard et al., 2004; Parry et al., 2005; Riley, 2009; Patsoukis
et al., 2012; Hui et al., 2017). Additionally, recent studies
reported that CD28, rather than the TCR, is the primary
target of SHP-2 (Hui et al., 2017; Kamphorst et al., 2017),
suggesting that PD-1 may target both TCR and CD28 to
exert regulatory function. It has been shown that ExoPD-
L1 released by breast cancer cells significantly suppresses
ERK phosphorylation and nuclear factor kappa-B activation
in CD3/CD28-activated T cells (Yang et al., 2018). However,
whether other molecules participate in the ExoPD-L1 signaling,
especially in the context of tumorigenesis, remains unclear and
needs to be further investigated.

The in vitro Immunosuppressive Effects
of ExoPD-L1
It has been reported that tumor-derived exosomes contribute
to CD8+ T cell dysfunction, although the mechanism is not
fully understood (Ludwig et al., 2017; Maybruck et al., 2017;
Huang et al., 2018; Wang T. et al., 2019). Recent studies
found that ExoPD-L1 secreted by tumor cells can efficiently
induce T cell dysfunction via interacting with its surface PD-
1 (Table 2).

Protein-1 is mainly expressed on activated T cells and it
is a central inhibitory receptor that regulates CD8+ T cell
dysfunction in tumors (Ahn et al., 2018; Miller et al., 2019).
Recent studies found that the activation-signaling pathway in T
cells is inhibited in a dose-dependent manner from exposure to
ExoPD-L1 derived from breast cancer cells (Yang et al., 2018).

TABLE 2 | The inhibitory effects of tumor cell-derived ExoPD-L1 on T cells in vitro.

Cell source of ExoPD-L1 Target cell Effect Indicator References

Human MDA-MB-231 breast cancer cells PBMCs Suppression of T cell
activation

IL-2 ↓ Yang et al., 2018

Human RKO colon cancer cells PBMCs IL-2 ↓ Yang et al., 2018

Human HCC827 NSCLC cells PBMCs IL-2 ↓ Yang et al., 2018

Human PC3 prostate cancer cells Jurkat T cells IL-2 ↓ Poggio et al., 2019

Human NSCLC primary cells CD8+ and Jurkat T cells IL-2 ↓, IFN-γ ↓ Kim et al., 2019

Human WM9 melanoma cells CD8+ T cells IL-2 ↓, IFN-γ ↓, TNF-α ↓ Chen G. et al., 2018

Human SK-MEL-2 melanoma cells PBMCs IFN-γ ↓, PD-1 ↓ Cordonnier et al., 2020

Human MKN74 gastric cancer cells PBMCs CD69 ↓, PD-1 ↓ Fan et al., 2019

Human glioblastoma primary cells and murine
CT2A cells

CD8+ and CD4+ T cells CD69 ↓, CD25 ↓, PD-1 ↓ Ricklefs et al., 2018

Human glioblastoma primary cells and murine
CT2A cells

CD8+ and CD4+ T cells Inhibition of T cell
proliferation

CFSE ↓ Ricklefs et al., 2018

Human WM9 melanoma and murine B16-F10 cells CD8+ T cells CFSE ↓, Ki67 ↓ Chen G. et al., 2018

Human NSCLC primary cells and H1264 cells CD8+ T cells CFSE ↓, Ki67 ↓ Chen G. et al., 2018

Human SK-MEL-2 melanoma cells PBMCs Ki67 ↓ Cordonnier et al., 2020

Human H1264 NSCLC cells CD8+ T cells Suppression of T cell
Cytotoxicity

GzmB ↓ Chen G. et al., 2018

Human MDA-MB-231 breast cancer cells PBMCs Tumor-cell killing ability ↓ Yang et al., 2018

Human WM9 melanoma and murine B16-F10 cells CD8+ T cells Tumor-cell killing ability ↓,
GzmB↓

Chen G. et al., 2018

Human NSCLC cells CD8+ T cells Inhibition of T cell
survival

Apoptosis ↑ Kim et al., 2019

Human HNSCC primary cells CD8+ T cells Apoptosis ↑ Theodoraki et al., 2018a

↑, increase; ↓, decrease.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 October 2020 | Volume 8 | Article 569219

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-569219 October 10, 2020 Time: 16:51 # 5

Zhou et al. Exosomal PD-L1 Mediates Immune Escape

Furthermore, the production of IFN-γ, IL-2, and TNF-α by
CD8+ T cells was decreased in the presence of ExoPD-L1
derived from melanoma, breast cancer, NSCLC, and prostate
cancer (Chen G. et al., 2018; Yang et al., 2018; Kim et al.,
2019; Poggio et al., 2019; Cordonnier et al., 2020). In addition,
ExoPD-L1 shuts down the expression of activation markers
on CD4+ and CD8+ T cells, including CD69, CD25, and
PD-1 (Ricklefs et al., 2018; Fan et al., 2019; Cordonnier
et al., 2020). Pretreatment with anti-PD-1 antibodies or PD-L1
knockdown constructs significantly diminished the suppression
of T cell activation mediated by ExoPD-L1 (Chen G. et al.,
2018; Ricklefs et al., 2018; Theodoraki et al., 2018b; Yang
et al., 2018; Fan et al., 2019; Kim et al., 2019). Importantly,
exosomes from plasma of patients with NSCLC and headneck
squamous cell carcinoma (HNSCC) display modulatory effects
on T cells (Theodoraki et al., 2018a; Kim et al., 2019).
Remarkably, ExoPD-L1 from tumors is not only as efficient
as cellular PD-L1, but also stronger than soluble PD-L1 in
suppressing T cell activation because of the high stability
of ExoPD-L1 and MHC-I expression (Fan et al., 2019;
Cordonnier et al., 2020).

Recent studies showed that exosomes derived from human
melanoma and NSCLC significantly reduced the Ki-67 expression
of T cells and CD8+ T cells, which is restored in the presence
anti-PD-1 blocking antibodies (Chen G. et al., 2018; Cordonnier
et al., 2020). Additionally, exosomes from human glioblastoma
culture block both CD8+ and CD4+ T cell proliferation (Ricklefs
et al., 2018). Notably, ExoPD-L1 from NSCLC and HNSCC cells
induced apoptosis in CD8+ T cells and the amount of CD8+ T
cells decreased in a dose-dependent manner (Theodoraki et al.,
2018a; Kim et al., 2019). Overall, tumor-derived ExoPD-L1 is
able to suppress the proliferation and survival of T cells, which
contributes to T cell dysfunction (Li et al., 2019b; Xia et al., 2019).

The cytotoxicity of functional effector T cells is responsible for
killing cancer cells and eradicating tumors. Exosomes secreted
from melanoma and NSCLC cells that express endogenous PD-
L1 inhibit the expression of granzyme B (GzmB) from human
peripheral and mouse splenic CD8+ T cells activated by TCR
stimulation (Chen G. et al., 2018). Pretreatment with exosomes
from tumors, such as melanoma and breast cancer, significantly
inhibited the cytotoxic T cell-mediated tumor killing, which
could be counteracted by anti-PD-L1 antibodies (Chen G.
et al., 2018; Yang et al., 2018; Kim et al., 2019). Thus, tumor-
derived ExoPD-L1 is capable of inhibiting T cell function by
modulating the proliferative capacity and effector function of T
cells (Table 2).

Together, ExoPD-L1 secreted from tumor cells is able
to mediate immunosuppression in vitro. The expression of
inhibitory receptors is also a characteristic of T cell dysfunction,
except for low proliferation and loss of effector function (Xia
et al., 2019). Therefore, in addition to PD-1, the impact of
ExoPD-L1 on other T cell inhibitory receptors should be
investigated, including T cell immunoglobulin domain and
mucin domain-3 (TIM-3), cytotoxic T lymphocyte antigen
4 (CTLA-4), lymphocyte activation gene 3 (LAG-3), T cell
immunoreceptor with Ig and ITIM domains (TIGIT) (Anderson
et al., 2016; Andrews et al., 2019; Wolf et al., 2019).

The Immunoinhibitory Effects of
ExoPD-L1 in Mouse Tumor Models
Insight into the immunosuppressive effects of ExoPD-L1 in vivo
is beneficial to understanding the mechanisms of tumor immune
escape. Recent studies have shown that ExoPD-L1 released by
tumor cells induces immunosuppressive activities at tumor sites
in a paracrine-dependent manner (Chen G. et al., 2018; Yang
et al., 2018; Kim et al., 2019). Additionally, exosomes can enter
blood and circulate systemically, which may help ExoPD-L1
to function at distant sites in a manner similar to endocrine
molecules (Figure 1; Seo et al., 2018; Wortzel et al., 2019).

Decreased Frequencies and Activities of TILs
A significant reduction in the number of CD8+ TILs was
observed in melanoma tumors of C57BL/6 mice after 24 days of
an injection with PD-L1-containing exosomes (Chen G. et al.,
2018). Moreover, the frequency of Ki67+PD-1+CD8+ T cells
in the tumor microenvironment decreased significantly, which
was reversed by anti-PD-L1 antibodies (Chen G. et al., 2018).
There was also a significant loss of CD8+ TILs in the tumor area
of NSCLC after an intravenous injection of PD-L1-containing
exosomes in mice after 14 days (Kim et al., 2019). Furthermore,
PD-L1-containing exosomes reduce cytotoxic T cell activity, as
assessed by GzmB expression, in the tumor microenvironment
(Yang et al., 2018). Collectively, these results suggest that ExoPD-
L1 plays a key role in induction of immune escape in tumor
microenvironment (Figure 1).

Suppression of T Cell Function in the Draining Lymph
Node
It is clear that exosomes are important communicators between
tumors and immune cells and they exert modulatory effects
on the systemic immune response (Hood et al., 2011; Groot
Kormelink et al., 2018; Czystowska-Kuzmicz et al., 2019; Sheehan
and D’Souza-Schorey, 2019). Recent studies reported that PD-L1-
deletion significantly increases the number, proliferation (Ki67),
and effector function (GzmB) of CD8+ T cells, while decreasing
the exhaustion (TIM-3) of CD8+ T cells in the draining lymph
node of mice injected with TRAMP-C2 prostate cancer cells
(Poggio et al., 2019). Meanwhile, similar to PD-L1-deletion,
Rab27a-deletion, which inhibits the biogenesis of exosomes, has
a promotional effect on the frequency and activity of CD8+ T
cells (Poggio et al., 2019). More importantly, the administration
of exogenous exosomes derived from wild-type (Newton et al.,
2016) prostate cancer cells leads to immunosuppression in the
draining lymph node, as evidenced by a reduced number and
effector function, and increased exhaustion of CD8+ T cells of
mice injected with Rab27a-deleted prostate cancer cells (Poggio
et al., 2019). Moreover, the administration of WT melanoma
cell-derived exosomes significantly reduced the proportion of
Ki67+PD-1+CD8+ T cells in the draining lymph node of mice
injected with the PD-L1-deleted melanoma cells, which was
counteracted by anti-PD-L1 antibodies (Chen G. et al., 2018).
Thus, these findings indicate that tumor-derived ExoPD-L1 is
capable of patrolling the draining lymph node and regulating T
cell activation (Figure 1).
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FIGURE 1 | The mechanisms by which tumor ExoPD-L1 induce immunosuppression. (A) ExoPD-L1 originating from tumor cells induces T cell dysfunction in the
tumor microenvironment by directly ligating to PD-1 on T cells as well as stationing on PD-L1-negative tumor cells, while its immunoregulatory effect remains intact.
ExoPD-L1 also migrates to macrophages and dendritic cells, but the potential effects remain unknown. (B) ExoPD-L1 is able to leave tumor foci and enter the
draining lymph node to mediate T cell suppression. (C) ExoPD-L1 can enter and circulate in the blood. (D) ExoPD-L1 inhibits the immune response in spleen and
decreases spleen size.

Reduction of Spleen Size and T Cell Proliferation in
Spleen
In addition to inducing immune suppression in the draining
lymph node, ExoPD-L1 can inhibit the immune response in the
spleen. Recent studies reported that PD-L1-deletion significantly
increases the spleen size of mice injected with TRAMP-C2
prostate cancer cells (Poggio et al., 2019). Meanwhile, Rab27a-
deletion also increases the spleen size of mice injected with
prostate cancer cells. Notably, intravenous injection of exogenous
exosomes derived from WT prostate cancer cells resulted in
decreased spleen size of mice injected with Rab27a-deleted
prostate cancer cells to nearly 50% (Poggio et al., 2019). In
addition, administration of WT melanoma B16-F10 cell-derived
exosomes significantly reduced the proportion of Ki67+PD-
1+CD8+ T cells in murine spleen injected with the PD-L1-
deleted melanoma cells. This effect could be counteracted by
anti-PD-L1 antibody treatment (Chen G. et al., 2018). Thus,

ExoPD-L1 secreted by tumor cells can enter into the circulation
to inhibit the antitumor immunity systemically (Figure 1).

Promotion of Tumor Growth Across Different Tumor
Types in an Immune-Dependent Manner
It has been shown that ExoPD-L1 derived from tumor cells
promotes tumor growth in vivo, including cancers of the breast
and prostate, colorectal cancer, melanoma, and NSCLC (Chen G.
et al., 2018; Yang et al., 2018; Kim et al., 2019; Poggio et al., 2019).
PD-L1 knockout leads to substantial tumor regression or even
failure to grow, however, this was reversed by local or intravenous
injection of exosomes derived from WT tumor cells (Chen G.
et al., 2018; Yang et al., 2018; Poggio et al., 2019). Different
from PD-L1 deletion, which downregulates the transcripts of PD-
L1 mRNA, genetic deletion of Rab27a or nSMase2 reduces the
production of ExoPD-L1 via inhibition of exosome biogenesis.
In vitro studies showed that blockade of Rab27a or nSMase2
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does not change cell proliferation in prostate cancer, colorectal
cancer, or breast cancer, indicating that blockade of exosome
biogenesis itself does not cause the suppression of tumor growth
(Yang et al., 2018; Poggio et al., 2019). However, deletion of
either Rab27a or nSMase2 significantly inhibits tumor growth in
mice, including that of breast, prostate, and colorectal cancers
(Yang et al., 2018; Poggio et al., 2019). These findings reveal
that the inhibition of exosome biogenesis or PD-L1 deletion
results in a similar suppressive effect on tumor growth. In
addition, prostate and breast cancer cells experiencing a blockade
of Rab27a, nSMase2 or PD-L1 failed to grow in WT mice,
but grow rapidly in immunodeficient mice (Yang et al., 2018;
Poggio et al., 2019). Collectively, ExoPD-L1 promotes tumor
growth that is dependent on the inhibition of the antitumor
immune response.

ExoPD-L1 Contributes to the Immune
Suppression in Tumor Patients
It has been observed that circulating ExoPD-L1 level is positively
associated with its ability to suppress the activation of CD8+ T
cells in HNSCC patients (Theodoraki et al., 2018b). Additionally,
in metastatic gastric tumor patients, the levels of plasma
ExoPD-L1 are negatively associated with CD4+ and CD8+ T
cell counts as well as the cytotoxicity of T cells (Fan et al.,
2019). These findings indicate that ExoPD-L1 contributes to
immunosuppression by inducing T-cell dysfunction, suggesting
that ExoPD-L1 might promote the disease progression of tumor
patients (Theodoraki et al., 2018b; Fan et al., 2019).

Collectively, tumor ExoPD-L1 plays a pivotal part in
mediating local and systemic immunosuppression in mouse
models and tumor patients.

POTENTIAL CLINICAL IMPLICATION OF
CIRCULATING ExoPD-L1 AS A
BIOMARKER FOR TUMOR DIAGNOSIS,
DISEASE PROGRESSION, AND
IMMUNOTHERAPY RESPONSE

Tumor immunotherapy requires biomarkers for predicting
disease progression, prognosis, clinical response, and the
selection of suitable patients (Buder-Bakhaya and Hassel, 2018;
Zhang et al., 2019). Tumor cell PD-L1 has been considered a
predictor for response to immunotherapy in the clinic (Patel and
Kurzrock, 2015; Aguiar et al., 2017; Lin et al., 2018; Li et al.,
2019c). However, there are pitfalls of using cellular PD-L1 such as
traumatic biopsy, missing small tumors, heterogeneity of PD-L1
expression within tumors, unavailability of dynamic observation,
and limited sensitivity (Kaunitz et al., 2017; Bassanelli et al.,
2018; Teixido et al., 2018; Davis and Patel, 2019; Stovgaard et al.,
2019; Xu G. et al., 2019). Recent studies indicate that circulating
ExoPD-L1 is emerging as a non-invasive and readily available
biomarker, and is more easily detectable and reliable than both
tissue and soluble PD-L1 in plasma (Liu et al., 2018b; Cordonnier
et al., 2020; Huang et al., 2020; Pang et al., 2020).

ExoPD-L1 as a Biomarker for Diagnosis
and Disease Progression
Tumor-derived exosomes can be enriched from small volumes of
patient plasma and are considered to be a potential biomarker
based on liquid biopsy (Crow et al., 2019; Johnsen et al., 2019;
Xie C. et al., 2019; Yekula et al., 2019, 2020; Brennan et al.,
2020). The number and the protein content of exosomes in
the blood of breast cancer patients are higher compared with
those of healthy subjects and the increased exosome numbers
positively correlates with tumor growth (Hesari et al., 2018).
However, in melanoma, the level of ExoPD-L1 in the blood,
rather than the number and total protein content of exosomes,
is elevated in metastatic melanoma patients compared with
healthy subjects (Chen G. et al., 2018). Furthermore, patients
with NSCLC and adenocarcinoma also exhibit higher levels of
circulating ExoPD-L1 compared with healthy controls (Liu et al.,
2018b; Li et al., 2019a; Huang et al., 2020; Pang et al., 2020).
Therefore, circulating ExoPD-L1 may be a potential diagnostic
marker. In addition, high levels of circulating ExoPD-L1 were
associated with metastatic melanoma, advanced HNSCC, and
poor prognosis in pancreatic cancer, further indicating that
circulating ExoPD-L1 may be a useful biomarker for tumor
progression (Theodoraki et al., 2018a; Lux et al., 2019; Huang
et al., 2020).

Soluble PD-L1 in plasma is also considered as a potential
diagnostic and predictive biomarker for tumor recurrence and
prognosis (Chatterjee et al., 2017; Okuma et al., 2017; Zhou
et al., 2017; Chang et al., 2019; Shigemori et al., 2019; Liu S.
et al., 2020). However, the levels of soluble PD-L1 were not
different between NSCLC patients and healthy donors (Li et al.,
2019a). Moreover, soluble PD-L1 did not correlate with disease
progression in patients with metastatic gastric cancer, HNSCC,
or NSCLC (Liu et al., 2018b; Fan et al., 2019; Li et al., 2019a; Pang
et al., 2020). On the contrary, circulating ExoPD-L1 in plasma is
an independent biomarker to predict poor prognosis in patients
with metastatic gastric cancer (Fan et al., 2019). Furthermore,
the levels of ExoPD-L1 correlated with the disease progression of
patients with HNSCC and NSCLC, including tumor size, lymph
node status, metastasis, and clinical stage (Theodoraki et al.,
2018a,b; Li et al., 2019a).

Exosomal PD-L1 DNA is present in exosomes isolated from
the plasma of glioblastoma patients (Ricklefs et al., 2018).
The amount of ExoPD-L1 DNA from glioblastoma patients is
associated with tumor volume, although the function of PD-L1
DNA remains unknown (Ricklefs et al., 2018; Lazaro-Ibanez et al.,
2019). Together, liquid biopsy analysis of ExoPD-L1 protein and
DNA in blood may provide biomarkers for tumor diagnosis and
disease progression.

ExoPD-L1 as a Biomarker for Efficacy of
Anti-PD-1/PD-L1 Therapy
It is important to provide individualized precise treatment and to
predict tumor response to immunotherapy (Madore et al., 2015;
Kaunitz et al., 2017; Sui et al., 2018; Liu and Wu, 2019). To fulfill
the need for real-time monitoring, the analysis of liquid biopsy-
based circulating biomarkers is preferred (Nishino et al., 2013;
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Ando et al., 2019; Gregg et al., 2019; Kloten et al., 2019;
Tang et al., 2020). Recent studies demonstrated that melanoma
patients who were less responsive to anti-PD-1 blockade had
a significantly higher level of circulating ExoPD-L1 prior to
treatment as compared with responders (Chen G. et al., 2018).
In addition, the increasing magnitude of circulating ExoPD-
L1 in melanoma patients during early treatment periods can
distinguish clinical responders from non-responders (Chen G.
et al., 2018). Moreover, a prospective study on melanoma
indicated that monitoring the levels of circulating ExoPD-
L1 may be helpful to predict therapeutic efficacy and clinical
outcome (Cordonnier et al., 2020). Additionally, compared with
patients exhibiting recurrence, patients who did not relapse
had higher levels of tumor-enriched CD3- ExoPD-L1 prior
to therapy, which significantly decreased after five weeks of
therapy (Theodoraki et al., 2018a, 2019). In contrast, tumor-
enriched ExoPD-L1 levels increased at week five of therapy,
whereas the CD3+ ExoPD-L1 levels decreased in patients with
recurrence (Theodoraki et al., 2019). Thus, studying on the role
of ExoPD-L1 derived from immune cells and tumor cells as
biomarkers for tumor patients will be necessary. Interestingly,
ExoPD-L1 mRNA can also be sequestered in exosomes of
patient plasma in melanoma and NSCLC, and associated
with response to anti-PD-1 inhibitors (Del Re et al., 2018;
Zhao Z. et al., 2019).

Collectively, ExoPD-L1, including PD-L1 protein, DNA and
mRNA, has the potential to become reliable biomarkers for
immunotherapy. This is an effective complement to tumor PD-
L1 and soluble PD-L1 to identify patients who may benefit
from immunotherapy and to dynamically monitor therapeutic
response (Chen G. et al., 2018; Theodoraki et al., 2019;
Cordonnier et al., 2020; Daassi et al., 2020).

The regulation of PD-L1 expression is highly intricate and has
been extensively addressed at transcriptional, posttranscriptional,
translational, and posttranslational levels (Sun et al., 2018; Zerdes
et al., 2018; Cha et al., 2019; Xu Y. et al., 2019; Fu et al.,
2020; Han et al., 2020; Ju et al., 2020). Notably, soluble PD-
L1 may be generated from ectodomain shedding mediated by
either matrix metalloproteinases (MMPs) or a disintegrin and
metalloproteases (ADAMs). Additionally, soluble PD-L1 may be
produced by alternative splice variants omitting transmembrane
domain (Dezutter-Dambuyant et al., 2016; Hira-Miyazawa et al.,
2018; Aguirre et al., 2020; Orme et al., 2020; Romero et al.,
2020). Although soluble PD-L1 is found in human serum and
is regarded as a liquid biopsy predictor, whether soluble PD-
L1 can deliver a regulatory signal through PD-1 remains elusive
(Gu et al., 2018; Takeuchi et al., 2018; Abu Hejleh et al., 2019;
Asanuma et al., 2020). Some studies reported that soluble PD-
L1 inhibits T cell activation, while others suggested that soluble
PD-L1 is likely to increase immune response by proteolytic
reducing the amount of membrane-bound PD-L1 on both cell
surface and exosome or by competing with membrane-bound
PD-L1 for PD-1 binding (Dezutter-Dambuyant et al., 2016; Hira-
Miyazawa et al., 2018; Aguirre et al., 2020; Romero et al., 2020).
Furthermore, it is demonstrated that soluble PD-L1 produced by
CD274-L2A splice variant lacks suppressive activity and functions
as a PD-1 antagonist, suggesting the possibility that soluble

PD-L1 might limit the immunoinhibitory effects of ExoPD-L1
(Wan et al., 2006; Steidl et al., 2011; Ng et al., 2019).

Additionally, PD-L2 is also expressed on tumor cells and
involved in antitumor immune suppression (Latchman et al.,
2001; Taube et al., 2014; Yearley et al., 2017; Larsen et al., 2019;
Liao et al., 2019; Tanegashima et al., 2019; Nakayama et al.,
2020). Moreover, PD-L2 not only possesses higher affinity for
PD-1 than PD-L1 does but also may be highly coexpressed
with PD-L1 in tumor cells and tissues (Youngnak et al., 2003;
Cheng et al., 2013; Morales-Betanzos et al., 2017; Tang and
Kim, 2019; Furuse et al., 2020; Wolkow et al., 2020). It is
worth mentioning that proteolytic degradation or alternative
splice variants also produce soluble PD-L2, which may be a
complementary biomarker (He et al., 2004; Dai et al., 2014;
Fukasawa et al., 2017; Costantini et al., 2018; Buderath et al.,
2019; Wang Q. et al., 2019). Recently, a pilot study found PD-L2-
expressing EVs in a murine sepsis model (Kawamoto et al., 2019).
Moreover, sepsis patients displayed higher PD-L2 expression on
EVs compared with healthy subjects (Kawamoto et al., 2019).
Additionally, reduced exosomal PD-L2 was observed in IL-10-
treated murine dendritic cells (Ruffner et al., 2009). However, it is
unclear whether tumor cells are able to release exosomal PD-L2,
and the function and regulation of exosomal PD-L2 in antitumor
immunity are unexplored and worthy of further investigations
(Solinas et al., 2020).

POTENTIAL METHODS FOR THE
DETECTION OF CIRCULATING
ExoPD-L1 IN CLINICAL SAMPLES

A quick, simple, and sensitive assay is a prerequisite for a point-
of-care test for ExoPD-L1 as a clinical biomarker. However, due
to the small size and high heterogeneity of exosomes, the methods
used most widely to detect ExoPD-L1 from tumor patients
required ultracentrifugation and ELISA (Table 3). Therefore,
low efficiency and sensitivity are two bottlenecks to the classic
detection of ExoPD-L1 in the clinic (Liu et al., 2017; Yang et al.,
2017). Efforts have been made to improve the sensitivity of the
ELISA-based methods for detecting low levels of ExoPD-L1 (Liu
et al., 2018a,b; Huang et al., 2020).

Ultracentrifugation-Based Methods
Recently, a homogeneous, low-volume, efficient, and sensitive
ExoPD-L1 (HOLMES-ExoPD-L1) quantitation method has
been developed (Huang et al., 2020). The HOLMES-ExoPD-
L1 method combining PD-L1 aptamer with separation-free
thermophoresis exhibits higher sensitivity and is more rapid than
the classic ELISA-based methods (Lee et al., 2019; Huang et al.,
2020). To completely surmount the disadvantages of ELISA, a
nanoplasmonic exosome (nPLEX) assay has been established,
which involves modified surface plasmon resonance (Enderle
et al., 2015) with a compact SPR biosensor (Liu et al., 2018b).
Notably, the nPLEX assay is able to detect ExoPD-L1 in 50 µl
serum samples in real-time, which is undetectable by ELISA
(Table 3; Liu et al., 2018b).
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TABLE 3 | Comparison of methods for detecting ExoPD-L1 in clinical samples.

Method Instrument Sample
volume (µl)

Exosome isolation Heterogeneous
reaction system

Detection
limitation

References

ELISA Microplate reader 1000 Ultracentrifugation Yes 200 pg/ml Chen G. et al., 2018; Liu et al., 2018b;
Theodoraki et al., 2018a,b, 2019; Fan et al.,
2019; Li et al., 2019a; Lux et al., 2019;
Cordonnier et al., 2020; Huang et al., 2020

HOLMES-Exo-PD-L1 Flow cytometer 1000 Ultracentrifugation No 17.6 pg/ml Huang et al., 2020

nPLEX assay Compact SPR biosensor 50 Ultracentrifugation No Not given Liu et al., 2018b

SERS immunoassay Raman spectrometer 4 Fe3O4@TiO2

magnetic nanobeads
No 1 PD-L1+

exosome/µl
Pang et al., 2020

ELISA, enzyme linked immunosorbent assay; HOLMES-ExoPD-L1, homogeneous, low-volume, efficient, and sensitive ExoPD-L1; nPLEX, nanoplasmonic exosome; SPR,
surface plasmon resonance; SERS, surface-enhanced Raman scattering.

Ultracentrifugation-Free Method
The methods described above are ultracentrifugation-based,
time-consuming and yield low recovery (Momen-Heravi et al.,
2013; Lobb et al., 2015). More recently, a quick and precise
method for detecting ExoPD-L1 directly from clinical samples
has been set up by coupling Fe3O4@TiO2 isolation with a surface-
enhanced Raman scattering (SERS) immunoassay (Pang et al.,
2020). Although it takes less than 40 min to complete the entire
procedure, the separation efficiency for exosomes is 96.5% and
the detection limit is one PD-L1+ exosome per microliter (Pang
et al., 2020). Moreover, the number of ExoPD-L1 molecules in
four µl of a patient’s serum is precisely quantified using this
method (Pang et al., 2020). Overall, along with the advancement
of novel technologies, there should have more methods in
development. It should be noted that it is necessary to validate
these methods in large cohorts before routinely using ExoPD-L1
as a clinical biomarker (Table 3).

POTENTIAL STRATEGIES TARGETING
ExoPD-L1 FOR ANTITUMOR THERAPY

Antibody blockade of PD-L1 is able to trigger an antitumor
immune response, bringing about a persistent remission in a
fraction of tumor patients. Recent studies have shown that the
removal of ExoPD-L1 blocks tumor growth, even in mouse
models which are resistant to anti-PD-L1 antibody (Chen G.
et al., 2018; Yang et al., 2018; Kim et al., 2019; Poggio
et al., 2019; Xie F. et al., 2019). This indicates that targeting
exosome biogenesis inhibition and PD-L1 deletion represents an
unexplored strategy for antitumor therapy.

Blockade of Exosome Biogenesis
Provides an Efficient Way to Overcome
Resistance to Anti-PD-L1 Antibody
Immune checkpoint inhibitors are effective against various
cancers, including melanoma, NSCLC, and renal cancer.
However, the overall response rate in patients treated with anti-
PD-1/PD-L1 antibodies is low (Page et al., 2014). In some tumor
types, such as prostate cancer, the number of responders is very
limited (Goswami et al., 2016; Sharma et al., 2017). However,

genetic deletion of PD-L1 in TRAMP-C2 prostate cancer cells,
which causes a reduction of both cell-surface PD-L1 and ExoPD-
L1, strikingly prevents anti-PD-L1 antibody resistant tumor to
grow in mice (Foster et al., 1997; Poggio et al., 2019). More
importantly, the prostate cancer cells were also unable to grow in
mice when Rab27a or aSNase2 was deleted by the CRISPR/Cas9
technique, leading to a blockade of exosome biogenesis (Poggio
et al., 2019). Thus, targeting the process of exosome biogenesis
may yield new approaches to overcoming tumor resistance to
anti-PD-L1 antibodies.

The biogenesis of ExoPD-L1 is a complicated process
involving multiple molecules that impact the production of
ExoPD-L1 in different ways (Chen G. et al., 2018; Monypenny
et al., 2018; Yang et al., 2018; Poggio et al., 2019). The endosomal
sorting complex required for transport complex (ESCRT) is a
key mediator of MVB biogenesis (Henne et al., 2011; Matusek
et al., 2014; Olmos and Carlton, 2016; Schoneberg et al., 2017;
Furthauer, 2018). Hepatocyte growth factor-regulated tyrosine
kinase substrate (HRS) is a subunit of ESCRT that mediates the
recognition and sorting of exosomal cargos (Schmidt and Teis,
2012). Genetic deletion of HRS leads to a decrease in ExoPD-L1
levels but an increase in cellular PD-L1 levels. The effect of HRS
blockade on tumor growth remains unknown (Chen G. et al.,
2018). Apoptosis-linked gene 2-interacting protein X (ALIX),
an ESCRT accessory protein, is a critical regulator potentially
involved in the redistribution of PD-L1 between exosomes
and cell-surface membranes (Baietti et al., 2012; Hurley and
Odorizzi, 2012; Bissig and Gruenberg, 2014; Christ et al., 2017;
Monypenny et al., 2018; Skowyra et al., 2018; Szymanska et al.,
2018). Similar to nSMase2 or Rab27a deletion, ALIX knockdown
also leads to a significant decrease in ExoPD-L1 production in
breast cancer (Monypenny et al., 2018). However, in contrast to
Rab27a or nSMase2 deletion, ALIX knockdown promotes, but
does not suppress the tumor growth (Monypenny et al., 2018).
The differential effects of these genetic deletions on cell-surface
PD-L1 expression contribute to their different effects on tumor
growth. Deletion of nSMase2 leads to a reduction in the levels of
both cellular PD-L1 and ExoPD-L1 protein by downregulating
the transcription of the PD-L1 gene (Poggio et al., 2019).
Meanwhile, Rab27a deletion does not change cell-surface PD-
L1 levels but causes a greater inhibition in exosome production
compared with nSMase2 deletion (Poggio et al., 2019). Therefore,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 October 2020 | Volume 8 | Article 569219

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-569219 October 10, 2020 Time: 16:51 # 10

Zhou et al. Exosomal PD-L1 Mediates Immune Escape

deletion of either nSMase2 or Rab27a completely inhibits
tumor growth (Yang et al., 2018; Poggio et al., 2019). In
contrast, ALIX knockdown leads to a significant increase in cell-
surface PD-L1 on breast cancer cells, and thereby increases the
aggressiveness of tumors (Monypenny et al., 2018). Collectively,
the distribution of PD-L1 between exosomes and cell surfaces
is pivotal for the efficacy of immunotherapy. Both ExoPD-L1
and cell-surface PD-L1 should be the focus of future therapeutic
strategies (Figure 2).

Combination of Exosome Biogenesis
Inhibition With Anti-PD-L1 Antibody
Enhances Immunotherapy Efficacy
It is a concern that the antitumor effect of removing ExoPD-L1 is
not limited to the anti-PD-L1 resistant model of prostate cancer.
Both Rab27a depletion and an nSMase2 inhibitor (GW4869)
significantly inhibit the growth of breast cancer derived from 4T1

cells in mice, which is a drug-resistant model for breast cancer
(Pulaski and Ostrand-Rosenberg, 2001; Lasso et al., 2019). These
findings indicate that the blockade of exosome secretion is an
effective tool to disrupt the growth of various tumors (Grasselly
et al., 2018; Yang et al., 2018). Importantly, Rab27a knockdown
and nSMase2 inhibition are more potent suppressors of breast
cancer growth compared with anti-PD-L1 antibody treatment
(Yang et al., 2018). More importantly, blocking either Rab27a or
sMSase2 markedly enhances the therapeutic effectiveness of anti-
PD-L1 antibody for the inhibition of breast cancer growth (Yang
et al., 2018). Thus, combining exosome biogenesis inhibition with
anti-PD-L1 antibody may be more potent for tumor suppression.

Rab27a knockout suppressed colorectal cancer growth and
extended survival in MC38 mice, which is a colorectal cancer
model exhibiting a partial response to anti-PD-L1 therapy (Deng
et al., 2014; Poggio et al., 2019). In contrast to the resistant
TRAMP-C2 prostate cancer model, either Rab27a knockout
or anti-PD-L1 antibody blockade exhibited less of an effect

FIGURE 2 | Potential targets for antitumor therapy in ExoPD-L1 biogenesis pathways. Multiple molecules, including Rab27a, nSMase2, ALIX, and HRS, participate
in the complex processes of ExoPD-L1 biogenesis, which originates from the cell surface rather than from the ER or Golgi apparatus. Deletion of Rab27a decreases
ExoPD-L1, but does not alter cell-surface PD-L1 levels. Deletion of nSMase2 reduces the levels of both cellular PD-L1 and ExoPD-L1 protein. Rab27a deletion
causes a greater inhibition in exosome production compared with nSMase2 deletion, while nSMase2 deletion leads to a greater inhibition of ExoPD-L1 production
compared with Rab27a deletion. GW4869, an inhibitor of nSMase2, inhibits ExoPD-L1 generation, but does not increase cellular PD-L1 levels. Knockdown of ALIX,
which redistributes PD-L1 between the cell-surface and exosomes, results in a reduction of ExoPD-L1 production but an increase in cell-surface PD-L1. Blockade of
Rab27a or nSMase2 results in suppression, whereas ALIX knockdown promotes tumor growth. Knockdown of HRS, an ESCRT-0 subunit, confers a decrease in
ExoPD-L1 levels but an increase in cellular PD-L1 levels. The effects of HRS knockdown on the cell-surface PD-L1 levels and tumor growth remain unknown.
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on the MC38 colorectal cancer growth compared with PD-L1
genetic deletion (Poggio et al., 2019). However, the combination
of exosome deletion with anti-PD-L1 antibody lengthened the
lifespan of mice burdened with colorectal cancer to an extent
similar to that of PD-L1 deletion (Poggio et al., 2019). Hence,
ExoPD-L1 appears to impose an additional, but not redundant
impact compared with anti-PD-L1 antibody on the suppression
of tumor growth (Chen G. et al., 2018; Poggio et al., 2019).
In addition, combined genetic deletion of Rab27a and PD-
L1 showed a similar inhibition of tumor growth as compared
with PD-L1 deletion, demonstrating that the inhibitory effect of
exosomes on colorectal cancer growth occurs mainly through
the deletion of ExoPD-L1 (Poggio et al., 2019). Thus, the
combination of inhibitors targeting exosome secretion with anti-
PD-L1 blockade targeting cell-surface PD-L1 may be a promising
strategy to effectively suppress tumor growth in the clinic (Yang
et al., 2018; Poggio et al., 2019).

ExoPD-L1-Deficient Tumor Cells Induce
Abscopal Effect and Antitumor Immune
Memory
The abscopal effect refers to that treatment of a local tumor leads
to the regression of distant tumors (Postow et al., 2012; Demaria
and Formenti, 2020; Fionda et al., 2020; Mondini et al., 2020).

This represents a promising therapeutic strategy for tumors and
has drawn increased attention (Liu et al., 2018; Ngwa et al.,
2018; Rodriguez-Ruiz et al., 2018; Choi et al., 2020). Interestingly,
blocking ExoPD-L1 suppresses the growth of not only the local
tumor, but also tumors at a distant site (Poggio et al., 2019).
In the TRAMP-C2 mouse prostate cancer model, mutant cancer
cells devoid of Rab27a, nSMase2, or PD-L1 expression completely
failed to grow (Chen G. et al., 2018; Yang et al., 2018; Poggio
et al., 2019). Surprisingly, the growth of WT tumor cells was
reduced dramatically when the above mutant cells were injected
simultaneously in the opposite sides of mice (Poggio et al., 2019).
This indicates that ExoPD-L1-deficient tumor cells induce an
abscopal effect on tumor growth (Poggio et al., 2019). On the
contrary, WT cells had little or no effect on the growth of the
mutant cells (Poggio et al., 2019). Furthermore, the numbers
and activities of TILs in WT tumors in mice coinjected with
ExoPD-L1-deleted mutant cells were significantly increased in
comparison with the mice injected with WT cells alone (Poggio
et al., 2019). Thereby, local anti-ExoPD-L1 treatment is able to
induce a durable immune response to suppress the growth of
tumors at distant sites (Figure 3).

Additionally, in the prostate cancer model, the mice injected
with mutant cells deleted of PD-L1, Rab27a, or nSMase2 survived
more than 90 days, whereas the mice injected with WT cells died
soon or had to be euthanized because of tumors greater than

FIGURE 3 | The abscopal effect and antitumor immune memory induced by ExoPD-L1-deficient tumor cells. Tumor cells with ExoPD-L1 deletion are generated by
genetic mutation of Rab27a, nSMase2, or PD-L1. The growth of PD-L1-positive tumors at a distant site is inhibited when ExoPD-L1-deleted tumor cells are
coinjected simultaneously. In addition, the growth of PD-L1-positive tumors injected secondarily 92 days later is also suppressed.
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2 cm in diameter (Poggio et al., 2019). At 92 days after primary
injection with mutant cells, surviving mice were reinjected
with WT cells on the opposite flank. Interestingly, the WT
prostate cancer cells were unable to grow in the mice that were
preinjected with mutant cells (Poggio et al., 2019). In contrast,
they grew normally in mice that were not preinjected with mutant
cells (Poggio et al., 2019). Therefore, local import of tumor
cells lacking of ExoPD-L1 induced a strong antitumor memory
response against secondarily challenged tumor cells that secrete
ExoPD-L1 (Poggio et al., 2019). In summary, the anti-ExoPD-
L1 therapy that targets the tumor at one site may be of clinical
significance due to the triggering of a systemic and durable
immune response against tumors at multiple sites or challenged
secondarily (Figure 3).

Currently, a dozen of small molecules have been recognized
as exosome inhibitors (Luberto et al., 2002; Johnson et al., 2016;
Catalano and O’Driscoll, 2020). GW4869 and Nexinhib-20 are
inhibitors of nSMase2 and Rab27a, respectively (Luberto et al.,
2002; Johnson et al., 2016). Moreover, Yang et al. reported that
GW4869 inhibited exosome secretion of MDA-MB-231 human
breast tumor cells in vitro and 4T1 mouse mammary tumor
cells in vitro and in vivo (Yang et al., 2018). However, neither
GW4869 nor Nexinhib-20 are able to inhibit exosome release
in other tumor cell lines (Phuyal et al., 2014), although genetic
deletion of either nSMase2 or Rab27a leads to tremendous
loss of exosome secretion (Poggio et al., 2019). It has been
established that exosomes participate in a variety of physiological
processes and can be released from a variety of cell types
(Colombo et al., 2014; Lo Cicero et al., 2015; van Niel et al.,
2018; Catalano and O’Driscoll, 2020). It is likely that exosome
inhibitors might interfere with normal cell functions by affecting
the exosome release from healthy cells (Kalluri, 2016; Hessvik and
Llorente, 2018; van Niel et al., 2018; Catalano and O’Driscoll,
2020; Hassanpour et al., 2020). Thus, it should be noted that
exploitation of exosome inhibitors for tumor immunotherapy
should be conducted with caution due to the potential adverse
effects on healthy tissues (Dinkins et al., 2014). In addition,
similar to immune checkpoint inhibitors, the restoration of T cell
activation mediated by ExoPD-L1 blockade is non-specific and
may result in immune-related adverse events (Cuzzubbo et al.,
2017; Wanchoo et al., 2017; Barroso-Sousa et al., 2018; Myers,
2018; Sandigursky and Mor, 2018; Sibaud, 2018; Varricchi et al.,
2018; Fan et al., 2020; Gauci et al., 2020; Liu T. et al., 2020;
Ueki et al., 2020; Williams et al., 2020). Collectively, exosome
inhibitors that selectively target cancer cells need to be developed
to maximize the antitumor immune responses and minimize the
possible side effects of blocking ExoPD-L1 release (Nagai and
Muto, 2018; Weinmann and Pisetsky, 2019).

CONCLUDING REMARKS

Exosomal PD-L1 derived from tumors is able to suppress
antitumor immunity locally and systemically through ligation
of PD-1 on T cells, which facilitates immune escape and tumor
progression. Additionally, circulating ExoPD-L1 is emerging as
a liquid biopsy biomarker for diagnosis, prognosis, stratifying

eligible patients, and real-time monitoring of clinical response.
Furthermore, the therapeutic strategies targeting ExoPD-L1 are
potentially promising by inhibiting the biogenesis of PD-L1-
expressing exosomes, and inducing the abscopal effect and
antitumor memory response.

However, many issues remain to be resolved. First,
understanding the mechanism by which cytokines regulate
the biogenesis of ExoPD-L1 is needed. It has been reported
that IFN-γ enhances ExoPD-L1 secretion by multiple tumors
(Chen G. et al., 2018; Mimura et al., 2018; Monypenny et al.,
2018; Poggio et al., 2019). Moreover, there is crosstalk between
IFN-γ and epidermal growth factor in the regulation of the
distribution of ExoPD-L1 and cellular PD-L1 in breast cancer
cells (Monypenny et al., 2018). Recent studies have revealed
that both cell-surface PD-L1 and ExoPD-L1 play crucial roles
in immunosuppression, tumor progression, and response
to cancer immunotherapy (Zou et al., 2016; Chen G. et al.,
2018; Theodoraki et al., 2018b; Fan et al., 2019; Kim et al.,
2019; Xie F. et al., 2019; Cordonnier et al., 2020; Huang et al.,
2020; Tang et al., 2020). Nevertheless, the manner in which
inflammatory cytokines affect PD-L1 expression on tumor cells
and exosomes is still elusive (Akbay et al., 2013; Chen et al.,
2015, 2019; Wang X. et al., 2017; Li et al., 2018; Lin et al.,
2020). Second, studies regarding the origin of the PD-L1 nucleic
acids in exosomes and their function in antitumor immunity
are required. PD-L1 mRNA and DNA are found in exosomes
derived from tumor cells in addition to PD-L1 protein (Del Re
et al., 2018; Lubin et al., 2018; Ricklefs et al., 2018). It has been
reported that RNA in cancer-derived exosomes is also relevant
to the local and systemic interaction of exosomes with target
cells (Skog et al., 2008; Matei et al., 2017; Yang et al., 2020).
However, little is known about the role that ExoPD-L1 nucleic
acids play, which should be addressed in the future. Third,
immune cells and other cells in the tumor microenvironment or
outside of the tumor also express PD-L1 and release exosomes.
Moreover, the PD-L1 expression on immune cells is differently
regulated and has an important impact on anticancer immunity
(Kowanetz et al., 2018). However, the dynamics of host cell-
derived ExoPD-L1 production and its potential function in
immunosuppression remain unclear (Chen S. et al., 2018;
Choo et al., 2018; Zhou et al., 2018; Carreras-Planella et al.,
2019; Hong et al., 2019; Lan et al., 2019; Wang X. et al., 2019).
Recent studies of murine tumor models indicate that PD-L1
expressed on host cells rather than on tumor cells is the primary
target for immunotherapy, and determines the efficacy of the
PD-1/PD-L1 blockade (Lin et al., 2018; Tang et al., 2018).
Thereby, the immunoregulatory impact of ExoPD-L1 produced
by host cells, such as T and B cells, macrophages, dendritic cells,
epithelial cells, and mesenchymal stem cells, should be addressed.
Finally, determining the regulatory role of ExoPD-L1 on various
PD-1-expressing immune cells is of significant interest. In
addition to T cells, PD-1 is also expressed on natural killer cells,
macrophages, and dendritic cells, which are enriched in the
tumor microenvironment (Karyampudi et al., 2016; Gordon
et al., 2017; Hsu et al., 2018; Mariotti et al., 2019). Hence, the
effect mediated by ExoPD-L1 on a group of PD-1-positive
immune cells is a highly relevant issue in tumor immunology.
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We believe that a better understanding of the regulatory roles
of ExoPD-L1 in host resistance to immunotherapies will offer
novel therapeutic strategies for cancer patients in the future
(Shergold et al., 2019).
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