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Mammalian oocytes are enveloped by the zona pellucida (ZP), an extracellular matrix of
glycoproteins. In sperm, stimulation with ZP proteins evokes a rapid Ca?* influx via
the sperm-specific, pH-sensitive Ca?t channel CatSper. However, the physiological
role and molecular mechanisms underlying ZP-dependent activation of CatSper
are unknown. Here, we delineate the sequence of ZP-signaling events in mouse
sperm. We show that ZP proteins evoke a rapid intracellular pH; increase that
rests predominantly on Nat/H* exchange by NHA1 and requires cAMP synthesis
by the soluble adenylyl cyclase sAC as well as a sufficiently negative membrane
potential set by the spem-specific KT channel Slo3. The alkaline-activated CatSper
channel translates the ZP-induced pH; increase into a Ca* response. Our findings
reveal the molecular components underlying ZP action on mouse sperm, opening up
new avenues for understanding the basic principles of sperm function and, thereby,
mammalian fertilization.

Keywords: zona pellucida, mouse sperm, calcium, sperm motility, sodium-proton exchange

INTRODUCTION

The zona pellucida (ZP) serves as an important check-point during fertilization, allowing sperm
from the same (homologous) species to penetrate the ZP and fuse with the oocyte, while preventing
the penetration of sperm from a different (heterologous) species. Fertilization requires sperm
capacitation, a maturation process occurring in the female genital tract (Chang, 1951; Austin, 1952;
Braden et al., 1954; Avella et al., 2014; Fahrenkamp et al., 2020). After fertilization, the ZP becomes
impenetrable also to homologous sperm, avoiding the fertilization of the oocyte by more than one
sperm cell, called polyspermy (Avella et al., 2013; Gupta, 2015). Moreover, in vitro, binding of sperm
to the ZP changes swimming behavior (Katz and Yanagimachi, 1981; Baltz et al., 1988; Drobnis
et al., 1988; Sumigama et al., 2015), and stimulation of sperm with solubilized ZP proteins evokes
acrosomal exocytosis (Florman and Storey, 1982; Bleil and Wassarman, 1983; Baltz et al., 1988;
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Cross et al., 1988; Florman et al., 1989; Arnoult et al., 1996a,b),
which is also evoked upon binding of sperm to isolated, intact
ZPs (Jin et al., 2011; Sumigama et al., 2015). The significance and
role of the ZP-induced acrosome reaction for fertilization are,
however, unclear and might vary between mammalian species
(Jin et al,, 2011; La Spina et al., 2016; Muro et al., 2016; Hirohashi
and Yanagimachi, 2018). Furthermore, the signaling pathways
underlying the action of ZP proteins on sperm are only ill-defined
(Florman et al., 2008).

Swimming behavior and acrosomal exocytosis are controlled
by changes in the intracellular Ca?* concentration ([Ca®T];)
(Ho and Suarez, 2001; Eisenbach and Giojalas, 2006; Florman
et al, 2008; Kaupp et al., 2008; Publicover et al., 2008). In
mouse sperm, ZP proteins evoke a Ca’Tinflux (Arnoult et al,
19962, 1999; Florman et al., 2008) via the sperm-specific Ca?™
channel CatSper (Xia and Ren, 2009). How ZP proteins activate
CatSper is not known. In general, CatSper is activated upon
depolarization of the membrane potential (V,,) and alkalization
of the intracellular pH (pH;) (Kirichok et al., 2006; Lishko and
Kirichok, 2010; Lishko et al., 2011; Striinker et al., 2011; Seifert
et al., 2015). ZP proteins evoke a pH; increase, which might
stimulate alkaline-evoked Ca ™ influx via CatSper (Arnoult et al.,
1996b, 1999), The sperm-specific Nat/H™ exchanger sNHE
(Slc9cl) (Wang et al., 2003) has been proposed to mediate the pH;
increase (Chavez et al., 2014). Finally, ZP-evoked Ca?™ influx in
mouse sperm requires a sufficiently negative membrane potential
(Vyn), set by the sperm-specific K™ channel Slo3 (Kcnul, Table 1)
(Chavez et al., 2014). However, the mechanism underlying the
Vm-control of the ZP action has remained enigmatic.

Here, we study the action of solubilized ZP proteins on mouse
sperm. We show that the ZP-induced pH; increase is required
to evoke Ca’™ influx via CatSper. The pH; increase is abolished
upon depolarization, which underlies the V,,-control of CatSper
activation by ZP proteins. Moreover, we show that the ZP-
induced pH; increase rests on Na*/H' exchange by NHAI,

TABLE 1 | Official nomenclature for genes and proteins used in this study.

Mouse Official protein name
Gene Catsper Cation channel sperm-associated protein 1
Protein CATSPER
Alias CatSper
Gene Slcob1 Sodium/hydrogen exchanger 9B1
Protein Slc9b1
Alias NHA1
Gene Slc9c1 Sodium/hydrogen exchanger 10
Protein Slc9ct
Alias sNHE
Gene Kenut Potassium channel subfamily U member 1
Protein Kenui
Alias Slo3
Gene Adcy10 Adenylyl cyclase type 10
Protein Adcy10
Alias SAC
Gene Lrrc52 Leucine-rich repeat-containing protein 52
Protein Lrrc52

but not by sNHE, and requires cAMP synthesis by the soluble
adenylyl cyclase sAC. Altogether, our findings answer long-
standing questions about the molecular mechanisms underlying
ZP action on mouse sperm.

RESULTS

ZP-Induced Ca®*- and pH;-Signaling
Events in Mouse Sperm

We studied the action of solubilized ZP proteins on mouse
sperm. In mice, the ZP consists of three glycoproteins
(mZP1-3). In line with previous studies (Avella et al,
2014), staining of isolated oocytes with antibodies against
mZP1, mZP2, and mZP3 labeled the ZP surrounding the
oocyte (Figure 1A). The specificity of the anti-ZP antibodies
was confirmed by detection of heterologously expressed
mZP1, mZP2, and mZP3 in both immunocytochemistry and
Western blots (Supplementary Figure S1 and Figure 1C).
On Western blots of solubilized ZPs isolated from mouse
oocytes, the antibodies detected proteins with apparent
molecular weights (M,,) of about 150, 100, and 83 kDa for
mZP1, mZP2, and mZP3, respectively (Figure 1B), similar
to what has been shown previously (Bleil and Wassarman,
1980; Wassarman, 1988; Thaler and Cardullo, 1996).
Treatment with PNGase F decreased the M,,, demonstrating
that glycosylation of ZP proteins was preserved during
isolation (Figure 1B).

We analyzed the action of ZP proteins on mouse sperm using
a stopped-flow apparatus and fluorescent probes for Ca?>* and
pH;. Mixing of capacitated sperm (incubated for 90 min in buffer
containing 3 mg/ml BSA and 25 mM HCOj at pH 7.4) with
ZP proteins evoked a rapid Ca®" increase that reached a plateau
within 30-40 s (Figure 1D); the control signal evoked by mixing
with buffer alone was subtracted, setting the control-signal level
consistently to AF/Fy (%) = 0. Simultaneous alkalization and
depolarization of sperm by mixing with buffer adjusted to pH 8.6
and containing a high K™ and a low Na* concentration (dubbed
K8.6 buffer) (Babcock and Pfeiffer, 1987) also evoked a rapid
Ca?™ increase that reached a slightly higher [Ca?*]; (Figure 1D).
As a reference for the maximal signal amplitude at saturation
of the Ca?* indicator, we recorded the Ca>* response evoked
by the Ca?" ionophore ionomycin (Figure 1D). ZP proteins,
K8.6 buffer, and ionomycin also evoked Ca?T responses in
non-capacitated sperm (Figure 1E and Supplementary Figures
S2a,b). Yet, relative to the reference signal evoked by ionomycin,
the amplitudes of ZP- and K8.6-evoked Ca?* response were
enhanced upon capacitation (Figure 1E and Supplementary
Figure S2b). To verify that the Ca>" responses are carried by
CatSper, we measured Ca>* responses in wild-type and CatSper1-
deficient mice. Indeed, the Ca?* responses were abolished in
sperm from Catsperl deficient-mice (Catsperl-KO, Figure 1F)
(Xia and Ren, 2009).

Next, we studied ZP-induced pH; responses. Mixing of
capacitated sperm with ZP proteins evoked a rapid pH;
increase that reached a plateau after 20-30 s (Figure 1G).
Mixing of sperm with the weak base NH4Cl as a positive
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FIGURE 1 | Changes in pH; and [Ca?*]; stimulated by solubilized zona pellucida (ZP) glycoproteins in mouse sperm. (A) Mouse oocytes labeled with antibodies

0 mM Na’ 0 uM EIPA 100 uM EIPA

directed against mZP1 (purple), mZP2 (cyan), and mZP3 (green); the DNA was labeled using DAPI (blue). (B) Western blot of solubilized ZP glycoproteins before (-)
and after (+) PNGase-F treatment. The blots were probed with ZP isoform-specific antibodies. (C) Western blot of heterologously-expressed mouse ZP glycoproteins
before (-) and after (+) PNG-F treatment, probed with mZP isoform-specific antibodies; NT: non-transfected cells. (D) Ca?™ responses in populations of sperm
evoked by mixing with 1 ZP/ul, K8.6 buffer, or 2 wM ionomycin; shown are the averages (solid lines, n = 7) and the 95% confidence interval (dashed lines). Shown is
the percent change in fluorescence (AF) with respect to the mean of the first three data points recorded immediately after mixing (Fp). The control AF/Fg signal
observed upon mixing with buffer (control) was subtracted from K8 6-, ZP-, or ionomycin-induced signals, setting the control-signal level to AF/F (%) = 0.

(E) Relative amplitude of the Ca?* responses evoked by mixing with 1 ZP/ul or K8.6 (mean + SD of the average of the last three data points, n > 7)in
non-capacitated (-) and capacitated (+) sperm, normalized to the ionomycin-evoked Ca?* responses. (F) Relative amplitude of Ca2* responses in wild-type and
Catsper1-KO sperm (n = 4). (G) pH; responses evoked by mixing with 1 ZP/ul or 10 mM NH,4Cl in mouse sperm populations; shown are averages (solid lines, n = 7)
and the 95% confidence interval (dashed lines). Shown is the percent change in fluorescence ratio (AR) with respect to the mean of the first three data points
recorded immediately after mixing (Ro). The control AR/Rg signal observed upon mixing with buffer (control) was subtracted, setting the control-signal level to AR/Rg
(%)= 0. (H) Amplitude of pH; responses (mean + SD of the average of the last three data points, n > 7) evoked by mixing with 1 ZP/ul or 10 mM NH,4Cl in wild-type
and Catsper1-KO sperm (n = 4). (1) pH; responses in sperm bathed in 0 mM Na™ buffer (n = 4). (J) Amplitude of pH; responses at 138 or 0 mM extracellular Na*

(mean =+ SD, n = 4). (K) Amplitude of pH; responses in the absence (-) or presence (+) of 100 uM EIPA (mean + SD, n = 4). Statistical significance between two
groups was determined using two-tailed, unpaired t-test with Welch'’s correction; p-values are indicated.

control also evoked a rapid pH; increase that reached a
slightly higher pH; (Figure 1G). The ZP- and NH4Cl-evoked
pH; responses were similar in wild-type and Catsperl-KO
sperm (Figure 1H).

Altogether, these results confirm that ZP action on sperm
involves an increase of pH; (Arnoult et al., 1996b) and a Ca?*
influx via CatSper (Xia and Ren, 2009), and that capacitation
enhances the Ca?™ response (Arnoult et al., 1999). Moreover,
because the pH; increase is preserved in Catsper]1-KO mice, we
conclude that the pH; increase is not evoked by Ca?* influx via

CatSper. Instead, the ZP-induced pH; increase might underlie the
ZP-activation of CatSper.

The ZP-Induced Alkalization Does Not
Involve the Na*/H* Exchanger sNHE

We aimed to unravel the molecular players underlying the
ZP-evoked alkalization. Na™/H™ exchange via sNHE has been
proposed to take part in the ZP-evoked alkalization (Chavez
et al., 2014). In addition to sNHE, two members of the Nat/HT

Frontiers in Cell and Developmental Biology | www.frontiersin.org

3 August 2020 | Volume 8 | Article 572735


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Balbach et al.

ZP Action on Mouse Sperm

antiporter (NHA) subfamily, NHA1 and NHA?2 (encoded by the
Slc9bl and Slc9b2 genes, respectively), have been identified in
mouse sperm (Liu et al., 2010; Chen et al., 2016). Thus, NHA1 and
NHA2 are also candidates to mediate the ZP-induced alkalization
by Na®™/H™" exchange.

We first probed the role of Nat/HT exchange in
the ZP-induced alkalization using Na®™ substitution and
pharmacology. Indeed, the ZP-induced pH; response was
abolished by substitution of extracellular Na® by NMDG
(N-methyl-D-glucamine) or addition of EIPA, a commonly used
non-selective inhibitor of Na*/H™ exchangers (Shi et al., 2017).
The NH4Cl-induced pH; response was, however, similar in the
absence or presence of Na® or EIPA (Figures 1I-K). These
results confirm that the ZP-induced pH; response depends on
Na™/H™ exchange.

We examined if ZP-induced Na™/H" exchange is mediated
by sNHE using Slc9cl knockout-mice (Slc9c¢I-KO) (Wang
et al, 2003). In SIc9c1-KO sperm, the ZP-induced pH; and
Ca?* responses were abolished, whereas the pH; and Ca’*

response evoked by NH4Cl and K8.6, respectively, was preserved
(Figures 2A,B). However, sNHE interacts with the soluble
adenylyl cyclase sAC, encoded by Adcyl0 (Wang et al., 2007),
which constitutes the principal source of cAMP in mammalian
sperm (Esposito et al., 2004; Hess et al., 2005; Xie et al,
2006); Slc9cI-KO sperm lack functional sAC and, therefore,
cAMP synthesis (Wang et al., 2007). We wondered whether
the failure of ZP proteins to increase [Ca®t]; and pH; in
Slc9c1-KO is due to the lack of sNHE, sAC, or both. To test
this, we used optogenetics and the membrane-permeable cAMP
analog db-cAMP to rescue intracellular cAMP levels. Transgenic
expression of the photoactivated adenylyl cyclase bPAC in Slc9cI-
KO sperm provides a tool to stimulate cAMP synthesis in a
light-dependent manner (Jansen et al., 2015). Light-stimulated
cAMP synthesis in Slc9c1-KO/bPAC sperm or incubation of
Slc9c1-KO sperm in db-cAMP both restored the ZP-induced
pH; and Ca’* response (Figures 2C-F). Thus, the Na*/H™
exchange stimulated by ZP proteins does not require sNHE, but
rather cAMP synthesis by sAC. Using sperm that express the
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FIGURE 2 | ZP-induced pH; and Ca®™ responses in sperm lacking sNHE. Intracellular pH (A) and Ca®* (B) responses in Sic9c1-KO sperm mean + 95% confidence
interval (n = 4). (C) Representative pH; responses evoked by 1 ZP/pl in wild-type, Slc9c1-KO, and light-stimulated Slic9c 1-KO/bPAC sperm. (D) Representative Ca2*
responses evoked by mixing with 1 ZP/ul in wild-type, Slc9c7-KO, and light-stimulated Sic9c 7-KO/bPAC sperm. (E) Amplitudes of pH; and (F) relative amplitudes of
Ca?™* responses in wild-type, Sic9c71-KO, and Slc9c1-KO sperm pre-incubated with 5 mM db-cAMP (mean + SD, n = 4). (G) Changes in the cerulean/citrine FRET
ratio in mMICNBD-FRET sperm evoked by mixing with 50 mM NaHCO3 or 1 ZP/pl. An increase of the FRET ratio indicates an increase of free intracellular cAMP;
mean + SD, n = 5. Statistical comparison between multiple groups was performed using one-way ANOVA with Dunnett’s correction; p-values are indicated.

Frontiers in Cell and Developmental Biology | www.frontiersin.org

August 2020 | Volume 8 | Article 572735


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Balbach et al.

ZP Action on Mouse Sperm

FRET-based cAMP biosensor mICNBD-FRET (Mukherjee et al.,
2016), we investigated whether ZP proteins enhance sAC activity
and, thereby, control intracellular cAMP synthesis. Mixing of
mICNBD-FRET sperm with ZP proteins did not increase cAMP
levels, whereas activation of sSAC by using 25 mM NaHCOj; as
a control evoked a pronounced cAMP increase (Figure 2G),
demonstrating that ZP proteins do not control cAMP levels in
sperm. Altogether, we conclude that the ZP-induced Na™/H*
exchange is not mediated by sNHE, but requires cAMP.

The ZP-Induced Alkalization Involves the

Na*/Ht Exchanger NHA1
NHAL1, a member of the Na™/H™ antiporter subfamily encoded
by the SIc9b1 gene, was identified in the flagellum of mouse

sperm (Liu et al., 2010; Chen et al., 2016). Slc9b1-KO sperm
suffer from impaired motility, resulting in male subfertility (Chen
et al,, 2016). To investigate the role of NHAI in the ZP-induced
alkalization, we generated Slc9b1-KO mice. SIc9b1-KO mice were
born in Mendelian ratios from heterozygous matings, and the
mice were viable without any gross phenotype. The recombinant
Slc9b1 locus contains the lacZ gene, expressing beta-galactosidase
under the control of the Slc9bl promoter (Figure 3A). Gene
targeting was verified by PCR (Figure 3B). Labeling of beta-
galactosidase in wild-type and heterozygous Slc9b17/1<Z testis
sections and on Western blots of SIcob1+/%¢Z testis and sperm
lysates demonstrated that the SIc9b1 gene is expressed in
developing sperm (Figures 3C,D). Protein mass spectrometry
identified NHA1 in wild-type sperm lysates (Supplementary
Table S1). Furthermore, an anti-NHA1 antibody labeled the
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flagellum of wild-type, but not of Slc9b1-KO sperm (Figure 3E)
and, as control, HEK293 cells heterologously expressing mouse
NHAT1 (Figure 3F). Altogether, these results confirm that NHA1
is expressed in wild-type, but not in SIc9b1-KO mouse sperm (Liu
et al., 2010; Chen et al., 2016).

We investigated the action of ZP proteins on SIc9bI1-KO
sperm. The ZP-induced pH; and Ca?™ responses were strongly
attenuated, whereas the pH; and Ca’* responses evoked by
NH4Cl or K8.6, respectively, were similar in wild-type and
Slc9b1-KO (Figures 3G-J). These results suggest that the
ZP-induced alkalization depends predominantly on Na™/H*
exchange via NHA1l. However, genetic ablation of NHAI
reportedly affects sAC expression and, thereby, intracellular
cAMP levels (Chen et al., 2016). Thus, the phenotype of Slc9bI-
KO sperm might be caused by impaired or abolished cAMP
synthesis, resembling the Slc9cI-KO phenotype (Wang et al,
2003). Yet, in contrast to Slc9cI-KO sperm, db-cAMP did
not restore the ZP-induced pH; response in SIc9b1-KO sperm
(Figure 3K). These results indicate that lack of NHA1, rather
than impaired cAMP synthesis, underlies the attenuated ZP-
induced pH; response in Slc9b1-KO sperm. We surmise that
the residual Na™/H' exchange in SIc9b1-KO mice is either
mediated by NHA2, by another unknown Na™/H™ exchanger, or
a combination of both.

Genetic Ablation of NHA1 Affects Sperm
Motility

Considering that the ZP-induced alkalization is predominantly
mediated by NHA1, we analyzed the phenotype of Slc9bI-
KO mice in more detail. In line with previous results, the
fertility of Slc9b1-KO males was severely impaired (Chen et al.,
2016): only 2 out of 21 matings (SIc9b1-KO males with wild-
type females) produced offspring (Supplementary Table S2).
The testis and epididymis weight and average sperm count
were similar in wild-type and Slc9b1-KO mice (Supplementary
Table S2), yet Slc9b1-KO sperm largely failed to fertilize oocytes
in vitro (Supplementary Table S2), which might be attributed
to the severely impaired ZP-induced Ca?* and pH; signaling.
In previous studies, the number of sperm cells that were motile
was significantly reduced in SIc9b1-KO mice (Chen et al., 2016).
We observed a similar phenotype: only 55 &= 5% of Slc9b1-KO
sperm showed progressive motility compared to 86 £ 5% of
wild-type sperm. The decrease in motility has been attributed
to a reduced sAC protein expression level (Chen et al., 2016).
Thus, we investigated sAC function in wild-type versus SIc9b1-
KO sperm. To this end, we studied the flagellar beat frequency
(Hansen et al., 2018), which is controlled by sAC: activation
of SAC by NaHCOj3 rapidly increases intracellular cAMP levels
and the flagellar beat frequency. In sperm that lack sAC, cAMP
synthesis and the action of NaHCOs3 is abolished, rendering
the sperm immotile (Wennemuth et al., 2003; Esposito et al.,
2004; Hess et al., 2005; Xie et al., 2006; Carlson et al., 2007).
To investigate whether sAC dysfunction underlies the defect
in sperm motility in Slc9b1-KO sperm, we compared the basal
flagellar beat frequency, determined at about 60 pwm distance
from the center of the sperm head, between wild-type and

Slc9b1-KO sperm. Under basal conditions, the beat frequency
was similar (WT: 11 &+ 3 and KO: 13 £ 3 Hz, n > 13), and
stimulation with 25 mM NaHCO3 increased the frequency to a
similar extent (WT: 20 £ 6% and KO: 22 £ 9%, n > 13). Thus,
the lack of NHA1 does not impair the sAC-control of flagellar
beat frequency, suggesting that cAMP synthesis is not impaired.

When analyzing the flagellar beat in detail, we noticed
that the beat frequency along the flagellum was not uniform
in SIc9b1-KO (Figures 4A,B and Supplementary Movies S1-
§2). At < 80 wm distance from the sperm head, the flagellar
beat frequency was similar in SIc9b1-KO and wild-type sperm,
whereas at > 80 pm, the frequency was considerably faster
in Slc9b1-KO sperm (Figure 4B). Strikingly, Slc9b1-KO sperm
displayed a stiff midpiece, which prevented to reliably determine
the beat frequency at the first 20 m of the flagellum. To describe
this defect in quantitative terms, we compared the amplitudes of
the curvature angle along the flagellum as a measure for the beat
amplitude (Figure 4C) (Hansen et al., 2018). In the midpiece, the
amplitude was lower in Slc9b1-KO sperm compared to wild-type
sperm, reflecting the restricted movement (Figure 4C). Farther
along the flagellum, the amplitude was similar between wild-type
and SIc9b1-KO sperm (Figure 4C).

A stiff midpiece has also been observed in sperm lacking
calcineurin or the CatSper-channel subunit CatSper ¢ (Miyata
et al., 2015; Chung et al., 2017). The CatSper-channel complex
forms Ca?" signaling domains along the flagellum that are
organized in four longitudinal columns (Chung et al., 2014).
Loss of the channel complex disrupts this organization (Chung
et al., 2014, 2017). To examine whether a defect in the Ca?t
signaling domains might underlie the stiff midpiece in SIc9b1-
KO sperm, we used super-resolution microscopy (3D-STORM).
In wild-type and SIc9bI1-KO sperm, an anti-CatSperl antibody
labeled four distinct columns aligned longitudinally along the
flagellum, as previously described for wild-type sperm using
the same antibody (Chung et al,, 2014), demonstrating that
the Ca?*-signaling domains are preserved in Slc9b1-KO sperm
(Figure 4D). Furthermore, the density distribution of CatSperl
labeling along the flagellum was not different between wild-type
and SIc9b1-KO sperm (Supplementary Figure S3). Thus, the
molecular mechanism underlying the motility defect of Slc9b1-
KO sperm remains unclear, but we propose that a combination of
defective ZP signaling and altered flagellar beat pattern in SIc9b1-
KO sperm underlies the sub-fertility of male Slc9b1-KO mice.

ZP-Induced Signaling Requires a
Sufficiently Negative Membrane

Potential

Although it is unknown how ZP proteins activate Na™/H*t
exchange via NHA1, the membrane potential seems to be an
important factor (Zeng et al., 1995; Arnoult et al., 1999; De La
Vega-Beltran et al., 2012; Chavez et al., 2014). Thus, we tested
the role of the V,, in ZP signaling. In wild-type sperm, that
were depolarized by incubation in high extracellular potassium
([K*], = 138 mM), the ZP-induced pH; and Ca?* responses
were abolished, whereas the pH; and Ca?* responses evoked
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FIGURE 4 | Flagellar beating pattern and ultrastructure in sperm lacking NHA1. (A) Flagellar waveform of wild-type and Slc9b7-KO sperm before and after
stimulation with 25 mM NaHCOg3. Superimposed color-coded frames taken every 5 ms, illustrating one flagellar beat cycle; scale bar: 30 um. (B) Mean flagellar beat
frequency along the flagellum of wild-type and Slc9b7-KO sperm (n = 5). (C) Mean amplitude of the curvature angle along the flagellum of wild-type and Sic9b7-KO
sperm (n = 5). (D) Left: Epifluorescence image of wild-type and Slc9b1-KO sperm labeled with an anti-CatSper1 antibody. Position of the midpiece (MP), the
annulus, and the principal piece (PP) is indicated. Middle: 3D-STORM image of the principal piece of wild-type and Sic9b7-KO sperm in x-y projection and
color-coded for z; scale bars are indicated. Position of Z cross-section is indicated by white square. Right: Z cross-section of principal piece showing the four
CatSper-organized signaling domains along the flagellum of wild-type and Slc9b7-KO sperm.

by NH4Cl or K8.6, respectively, were preserved (Figures 5A-
D). This suggests that the ZP-induced pH; increase requires a
more negative V,,. Slo3 and its auxiliary subunit Lrrc52 form
the principal K channel in mouse (Santi et al., 2010; Yang
et al, 2011; Zeng et al.,, 2011, 2015) and human sperm (Brenker
et al.,, 2014). We studied the action of ZP proteins on Kcnul-
and Lrrc52-KO sperm, which both feature a depolarized V,,
(Santi et al., 2010; Yang et al., 2011; Zeng et al., 2011, 2015). In
Kcnul-KO and Lrre52-KO sperm, the ZP-evoked pH; and Ca?*
responses were abolished, whereas the pH; and Ca®* responses
evoked by NH4Cl and K8.6, respectively, were preserved
(Figures 5E,EI-L). Remarkably, hyperpolarizing Kcnul- and
Lrrc52-KO sperm using the K ionophore valinomycin (Santi
et al., 2010; Chavez et al., 2014) restored the ZP-induced pH;
and Ca" responses (Figures 5G-I,L), supporting the notion that
ZP signaling requires a sufficiently negative V,,. Altogether, these
results corroborate that a negative V,,, set by Slo3, enables the
ZP-induced pH; increase and, thereby, ZP-induced Ca** influx

via CatSper. However, the mechanism underlying the V,,-control
of NHA1 remains to be elucidated.

DISCUSSION

The function of mammalian sperm is controlled by external cues
that engage various signaling molecules. How these molecules are
integrated into signaling pathways is not well-understood. Here,
we show that the synthesis of cAMP and a sufficiently negative
membrane potential prime mouse sperm to transduce binding of
ZP proteins into rapid H* and Ca?* signaling events (Figure 6).
This ZP-induced Ca®* increase might be involved in the control
of swimming behavior and acrosomal exocytosis.

The CatSper channel is the principal pathway for Ca?* entry
into mammalian sperm (Quill et al., 2001; Ren et al, 2001;
Kirichok et al., 2006; Lishko and Kirichok, 2010). We propose
that the action of ZP proteins on CatSper is indirect, mediated by
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FIGURE 5 | ZP-evoked pH; and Ca?* responses in mouse sperm lacking Slo3 or its auxiliary subunit Lrrc52. (A) pH; responses evoked by mixing with 1 ZP/ul or
10 mM NH4Cl in sperm bathed in 138 mM K* buffer; average + 95% confidence interval (n = 3). (B) Amplitude of pH; responses evoked by mixing with 1 ZP/ul or
10 mM NH,4Cl in sperm bathed in 5 mM or 138 mM K buffer; mean + SD (n = 3). (C) Ca?* responses evoked by mixing with 1 ZP/ul or K8.6 in sperm bathed in
138 mM K buffer; average + 95% confidence interval (n = 3). (D) Relative amplitude of Ca2* responses evoked by mixing with 1 ZP/pl or K8.6 in sperm bathed in
5 or 138 mM K* buffer; mean 4 SD (n = 3). (E,F) pH; responses evoked by mixing with 1 ZP/jul or 10 mM NH,4Cl in Kenu1-KO (E) and Lrrc52-KO (F) sperm;
average + 95% confidence interval (n = 3). (G,H) pH; responses evoked by mixing with 1 ZP/jl or 10 mM NH4Cl in Kenu1-KO (G) and Lrrc52-KO (H) sperm bathed
in 2 WM valinomycin; average + 95% confidence interval (n = 3). (I) Amplitude of pH; responses evoked by mixing with 1 ZP/ul or 10 mM NH4Cl in Kenu1-KO and
Lrre52-KO sperm in the absence and presence of 2 M valinomycin; mean =+ SD (n = 3). (J,K) Ca2* responses evoked by mixing with 1 ZP/ul and K8.6 in
Kenu1-KO (J) and Lirc52-KO (K) sperm; average & 95% confidence interval (n = 3). (L) Relative amplitude of Ca2t evoked by mixing with 1 ZP/ul or K8.6 in
Kenu1-KO and Lrrc52-KO sperm in the absence and presence of 2 M valinomycin; mean + SD (n = 3). Statistical significance between two groups was
determined using two-tailed, unpaired t-test with Welch’s correction; p-values are indicated.

a pH;-signaling pathway (Figure 6): any experimental condition
that abolishes the ZP-induced pH; increase abolishes the Ca?*
influx, and vice versa, conditions that restore the pH; response
also restore the Ca?* influx. This result is consistent with earlier
reports, demonstrating a ZP-evoked increase of pH; and [Ca?T];
in mouse sperm (Bailey and Storey, 1994; Murase and Roldan,
1996). In patch-clamp experiments, ZP proteins did not enhance
monovalent CatSper currents recorded from sperm isolated from

the corpus of the ductus epididymis (Xia and Ren, 2009). Yet,
sperm from this region of the epididymis are unable to undergo
capacitation (Yanagimachi, 1994), which potentiates the Ca?™
response (see Figure 1D). Thus, the use of non-capacitated sperm
might have hampered the detection of a direct ZP protein action
on CatSper. Nevertheless, these results support our model that
in mouse sperm, ZP proteins activate CatSper via intracellular
alkalization (Figure 6). The ZP-induced pH; increase rests on
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FIGURE 6 | Model of the ZP-signaling pathway in mouse sperm. ZP glycoproteins bind to a yet unknown receptor (recognition), which initiates a signaling cascade.
This cascade requires a hyperpolarized membrane potential (Vy;), set by the Slo3/Lrrc52-channel complex, and cAMP synthesis by sAC (priming). Thereby, a pH;
response, resting on Nat/H+ exchange by NHA1, and probably NHA2, is enabled that promotes Ca2* influx through CatSper (signaling). Shaded objects indicate
that the signaling mechanism and function of the molecules has not been established yet.

Nat/H" exchange that is predominantly mediated by NHA1
(Figure 6). The residual pH; response in SIc9b1-KO might be
carried by NHA2; future work needs to address this question
using Sc/9b1/2 knockout mice. The pH; response is only observed
at the negative V,, set by Slo3 (Santi et al., 2010; Zeng et al., 2011,
2015). It remains to be elucidated how the V,, dependence is
integrated into the ZP-signaling pathway. In mouse sperm, K*
currents and, thus, V,, are strongly controlled by pH; (Navarro
etal., 2007; Zeng et al., 2011, 2013). The control of the ZP-induced
pH; response by V,,, the control of V,, by Ca’* and pH;, and
the interplay of CatSper and Slo3 during ZP signaling deserve
further studies.

We identified cAMP as a key player in the ZP-signaling
pathway in mouse sperm: basal cAMP synthesis by sAC is
required for the pH; response and ensuing CatSper activation.
sNHE, which might form a physical or functional complex with
sAC, is however not responsible for the ZP-induced alkalization.
It has been proposed that NHA1l and NHA2 control sAC
expression and, thereby, cAMP synthesis and motility (Chen
et al,, 2016). We also find Slc9b1-KO males are infertile and
feature a significantly reduced number of motile sperm. However,
we show that sAC function is unaffected in NHA1-KO sperm
as the control of the flagellar beat frequency by HCO; remains
unchanged. Thus, the pathomechanism underlying the reduced
number of motile sperm in Slc9b1-KO males remains to be
elucidated. Yet, the loss of NHAI alters the flagellar beat
pattern along the flagellum with the midpiece being stiff and
the rest of the flagellum being more flexible. Although the ZP-
induced alkalization via NHA1 activates CatSper, the exchanger
is not required for the organization of CatSper in quadrilateral
columns. Future studies are required to elucidate whether NHA1
is part of these columns to form nanodomains of pH and Ca?*
signaling. Whether the loss of NHA1 affects other downstream
processes that control the flagellar beat pattern or if the axonemal
structure/dynein function is altered is not known and warrants
further studies.

Sperm must undergo the acrosome reaction to penetrate
through the ZP. Across species, binding of sperm to the native
ZP, to isolated ZPs, as well as to solubilized ZP proteins evokes
the acrosome reaction in sperm (Florman and Storey, 1982; Bleil
and Wassarman, 1983; Cherr et al., 1986; O’'Rand and Fisher,
1987; Cross et al., 1988; Florman and First, 1988; Uto et al., 1988;
Arnoult et al., 1996a; Schroer et al., 2000; Tollner et al., 2003;
Gupta et al,, 2012). This suggested that in vivo, sperm undergo the
acrosome reaction primarily upon binding to the ZP (Hirohashi
and Yanagimachi, 2018). Recent studies utilizied fluorescently-
labeled sperm from transgenic mouse models to determine the
acrosomal status and acrosome reaction in live mouse sperm
upon fertilization in vitro and ex vivo within the oviduct. These
experiments revealed that at least in mice, most sperm undergo
the acrosomal exocytosis during their journey across the oviduct
or within the cumulus cell-matrix rather than upon binding to the
zona pellucida (Jin et al., 2011; Hino et al., 2016; La Spina et al,,
2016; Muro et al., 2016). Moreover, acrosome-reacted mouse
sperm seem to reach the surface of the oocyte more readily
than acrosome-intact sperm (Hildebrand et al., 2010), and mouse
sperm can bind to the ZP without undergoing the acrosome
reaction (Baibakov et al., 2007). Thus, the significance of the
acrosomal exocytosis and signaling events evoked by binding of
sperm to the ZP for fertilization in mice or other mammalian
species still remain to be elucidated.

In summary, our study provides new insights and at the
same time, raises new questions about the action of ZP proteins
on mammalian sperm. The identification of the ZP receptor(s)
and binding site(s) on sperm is certainly essential to delineate
the whole ZP-signaling pathway. However, this question has
remained unanswered since the initial characterization of ZP-
sperm interaction (Bleil and Wassarman, 1980). Our results
present NHA1, sAC, and Slo3/Lrrc52 as new players in the
sperm ZP- signaling pathway. This might be the basis for future
approaches, unraveling the molecular mechanisms underlying
infertility and the design of new contraceptives.
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MATERIALS AND METHODS

Nomenclature
For most of the proteins, we have used the alias in the text. The
official nomenclature is indicated in Table 1.

Generation of SIlc9b1-KO Mice

Slc9b1-KO mice were generated by blastocyst injection of
Slc9b1l mutant embryonic stem (ES) cells (EPD0187_1_D11,
EUCOMM) into albino C57BL/6Tyr females (Transgenic
Service, LIMES institute, University of Bonn) and
backcrossed to C57Bl/6N. The offspring was genotyped
by PCR using Slc9bl-specific primers (wild-type allele:
507 bp using #1: 5-TAGGTTGAGTTCTACTACAATG-3/,
#2:  5-TAGAGTCCATAGTGCAATGAG-3’; floxed allele:
673 bp using #1/2; lacZ allele: 427 bp using #1 and #3: 5'-
AGTCTTCCTGTCCAGG-3'). Mice used in this study were
2-5 months of age. Animal experiments were in accordance
with the relevant guidelines and regulations and approved by
the local authorities (LANUV) AZ 84-02.04.2012.A192 [intern
BCI_10]. Fertility was tested using timed matings (wild-type
females mated with SIc9b1-KO males overnight and separated
after plug check the following morning). All females were plug
positive, but only 2/21 SIc9b1-KO males produced offspring.

Transgenic and Knockout Mice

Catsper]-KO (Ren et al., 2001) and SIc9c1-KO mice (Wang
et al., 2003) were provided by David Clapham (Janelia Research
Campus, United States) and the Jackson laboratory, respectively.
Kcenul-KO and Lrrc52-KO mice were provided by Christopher
Lingle (Yang et al., 2011; Zeng et al., 2015). Prm1-bPAC/SIc9¢cI-
KO mice have been described before (Jansen et al., 2015).

Sperm Preparation

Mouse sperm were isolated as previously described (Raju et al.,
2015). In brief, sperm were isolated by incision of the cauda
epididymis followed by a swim-out in modified TYH medium
(in mM: 135 NaCl, 4.8 KCl, 2 CaCly, 1.2 KH,POy, 1 MgSOy,
5.6 glucose, 0.5 sodium pyruvate, 10 lactic acid, 10 HEPES, pH
7.4 adjusted at 37°C with NaOH). After 15-30 min swim-out
at 37°C, sperm were collected and counted. For capacitation,
sperm were incubated for 90 min in TYH containing 3 mg/ml
BSA and 25 mM NaHCOj substituting 25 mM of the NaCl;
the pH was adjusted to 7.4. Measurements under depolarized
membrane potential were performed in TYH with 135 mM KCl
and 5 mM NaCl at pH 7.4. For experiments in the absence
of extracellular Na®, Na® was substituted by N-methyl-D-
glucamine (M2004, Sigma-Aldrich) and the pH was adjusted with
HCIL. Valinomycin and db-cAMP were added after swim-out and
were present throughout the experiment. Prm1-bPAC/SIc9cI-
KO sperm were isolated under dim red light. Light-activation
of Prm1-bPAC/SIc9c1-KO sperm was performed in a custom-
made rack equipped with blue LEDs during sperm capacitation.
Experiments were performed with capacitated sperm unless
otherwise indicated. The cAMP analogs (db-cAMP) were already
added during the capacitation phase for 90 min.

Isolation of Mouse Zona pellucidae

For ZP isolation, wild-type female mice were super-ovulated
by intraperitoneal injection of 10 L.U. hCG (human Chorionic
Gonadotropin; ProSpec, Rehovot, Israel) 3 days before the
experiment. 14 h before oocyte isolation, mice were injected
with 10 LU. PMSG (Pregnant Mare’s Serum Gonadotropin;
ProSpec). Mice were killed by cervical dislocation and oviducts
were dissected. Cumulus-enclosed oocytes were prepared from
the oviducts in TYH buffer containing 300 jLg/ml hyaluronidase
(Sigma). After 15 min, cumulus-free oocytes were transferred
into fresh buffer and washed twice. Zonae pellucidae and
oocytes were separated by shear forces generated by expulsion
from 50 nm pasteur pipettes. Zona pellucidae were counted,
transferred into fresh buffer, diluted to a concentration of
1 ZP per ul, and solubilized by incubation at 75°C for
15 min (Thaler and Cardullo, 1996). Animal experiments were
performed in accordance with the relevant guidelines and
regulations and approved by the local authorities (LANUV)
AZ84-02.05.40.13.127.

Heterologous Expression of ZP

Glycoproteins

The cDNA sequence of mZP1, mZP2, and mZP3 was amplified
via PCR. A hexa-histidine tag was inserted upstream of the
conserved furin cleavage site, an Agel restriction site was
added to the 5 end, and a Kpnl restriction site to the
3’ end by nested PCR. The PCR product was cloned into
a pHLsec vector (kindly provided by Prof. Yvonne Jones,
Wellcome Trust Center for Human Genetics, University of
Oxford, United Kingdom) using Agel and Kpnl. pHLsec-mZP1,
pHLsec-mZP2 and pHLsec-mZP3 were transiently transfected in
HEK293T cells (ATCC-CRL-3216) using polyethyleneimine (Life
Technologies, Carlsbad, United States).

Western Blot Analysis

Total protein lysates were obtained by homogenizing the cells
in lysis buffer (10 mM Tris/HCl, pH 7.6, 140 mM NaCl,
1 mM EDTA, 1% Triton X-100, mPIC protease inhibitor
cocktail 1:500). Samples were incubated for 30 min on ice
and centrifuged at 10,000 g for 5 min at 4°C. The protein
concentration was determined by BCA assay. Prior to separation
by SDS-PAGE, 50 isolated ZPs, cells, or tissue lysates were
mixed with 4 x SDS loading buffer [200 mM Tris/HCI,
pH 6.8, 8% SDS (w/v), 4% p-mercaptoethanol (vol/vol), 50%
glycerol, 0.04% bromophenol blue] and heated for 5 min at
95°C. For Western blot analysis, proteins were transferred onto
PVDF membranes (Merck Millipore, Billerica, United States),
probed with antibodies, and analyzed using a chemiluminescence
detection system. For deglycosylation, 50 ZPs were incubated
for 1 h with PNGase-F (New England Biolabs) according to the
manufacturer’s instructions.

Primary antibodies: anti-p-galactosidase (1:1000; Molecular
Probes), anti-a-tubulin (1:5000; Sigma-Aldrich), antibodies
against mouse ZP glycoproteins were isolated from the
supernatant of hybridoma cell lines (mZP1: ATCC CRL-2464,
mZP2: ATCC CRL-2463, mZP3: ATCC CRL-2463) and diluted
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1:1000. Secondary antibody: goat-anti-rat, HRP conjugated
(1:5000, Dianova), donkey-anti-rabbit, HRP conjugated
(1:5000, Dianova).

Immunocytochemistry

Sperm smeared on positively charged microscope slides were
dried at room temperature (RT). For antigen retrieval, sperm
were incubated in citrate buffer (10 mM sodium citrate, 0.05%
Tween-20, pH 6) in a steamer at 99°C for 20 min and washed in
PBS for 15 min at RT. Immunocytochemical analysis of CatSper1
expression was performed without antigen retrieval. Transiently
transfected HEK293T cells, oocytes, or sperm were incubated in
4% PFA for 15 min and washed in PBS. To block unspecific
binding sites, samples were incubated for 1 h with blocking buffer
[0.5% Triton X-100 and 5% ChemiBLOCKER (Merck Millipore)
in 0.IM phosphate buffer, pH 7.4]. The primary antibody
was diluted in blocking buffer and incubated overnight. The
fluorescent secondary antibody was diluted in blocking buffer
containing 0.5 mg/ml DAPI (Life Technologies) and incubated
for 1 h. Images were taken on a confocal microscope (FV1000;
Olympus). Primary antibodies: anti-NHA1 (1:100; Biorbyt), anti-
CatSperl (1:250; Santa Cruz, sc-21180) (Chung et al.,, 2014),
anti-His (1:100, Millipore); primary antibodies against mouse ZP
glycoproteins were isolated from the supernatant of hybridoma
cell lines (mZP1: ATCC CRL-2464, mZP2: ATCC CRL-2463,
mZP3: ATCC CRL-2463) and diluted 1:100; anti-HA antibody
(Roche). Secondary antibodies: donkey anti-rat Alexa488 (1:500;
Dianova), donkey anti-rat A647 (1:1000; Life technologies),
donkey anti-mouse Cy5 (1:500; Dianova).

STORM Imaging and Analysis of Sperm

Flagellar Proteins

STORM imaging experiments were performed in an imaging
buffer (50 mM Tris, pH 8, 10 mM NaCl) with an oxygen
scavenging system (0.5 mg/mL glucose oxidase, 40 pg/ml
catalase, 10% glucose, and 10 mM 2-aminoethanethiol). 10.000-
60.000 frames were acquired per data set using 647 nm excitation
at 100 mW. A 405 nm laser was used to maintain an adequate
number of localizations per frame. A cylindrical lens was
introduced in the detection path for astigmatism 3D STORM
acquisition. Perfect focus system from Nikon was used to
minimize axial drift and a vibration isolation table was used
to minimize lateral drift. STORM movies were analyzed as
described previously using the Nikon software package based
on a technology developed by Dr. Xiaowei Zhuang (Huang
et al, 2008). Briefly, fluorescence peaks corresponding to
individual molecules were identified in each frame and fit using
least-squares or maximum-likelihood estimation with a two-
dimensional Gaussian to determine the (x,y) position of each
molecule. For 3D imaging, the ellipticity of the Gaussian fit was
used to assign a z coordinate. Drift correction was applied using
cross-correlation.

STORM images were rendered with each localization plotted
as a Gaussian. Images were filtered to reject molecules with low
photon number (below 500 photons). Molecules with aspect
ratio higher than 1.5 for 2D and 2.5 for 3D datasets were

rejected. Moreover, molecules that appear for > 10 consecutive
frames were rejected. Non-specifically bound antibodies can give
background in the STORM images, which appears as scattered
localizations with low local densities. This background noise was
removed by a local density filter. Low-density localizations were
filtered out by removing a molecule if it was surrounded by fewer
than 10 localizations in the 80 x 80 nm region.

Beta-Galactosidase Staining of Testis

Sections

Testis of adult male mice were isolated, punctured twice with a
cannula and incubated overnight at RT in 4% PFA. After a single
washing step in PBS for 10 min, testis were transferred into a 10%
sucrose solution for 1 h and subsequently incubated overnight in
30% sucrose. On the next day, testis were embedded in Tissue
TEK (Sakura Finetek) and stored at —80°C. The testis was
sectioned in 16 pwm thick cross-sections using a 2800 Frigocut-
E cryostat (Reichert-Jung, NufSloch) at a knive temperature of
—22°C. Sectioned tissue was washed three times for 5 min at RT
with LacZ wash solution (100 mM NaH,POy, 1.25 mM MgCl,,
2 mM EGTA, 0.1% w/v Deoxycholate, 0.2% w/v Nonidet P40,
pH 7.4). Sections were incubated overnight at 37°C in LacZ
substrate solution (100 mM NaH,;POy, 1.25 mM MgCl,, 2 mM
EGTA, 50 mM K3[Fe(CN)g], 50 mM K4 [Fe(CN)g], 8% w/v X-Gal,
pH 7.4) and washed twice with H,O before being mounted on
coverslips using Aqua-Poly/Mount (Polyscience).

Measurement of Changes in Intracellular
Ca?t and pH in Mouse Sperm

Changes in [Ca27]; and pH; in mouse sperm were recorded in
a rapid-mixing device in the stopped-flow mode (SFM400; Bio-
Logic, Claix, France) after loading with the fluorescent Ca?™
indicator Cal-520-AM (AAT Bioquest, Sunnyvale, United States)
or the fluorescent pH indicator BCECF-AM (Thermo Fisher),
respectively. Changes in [Ca?T]; were measured as previously
described (Striinker et al., 2011) with minor modifications. In
brief, sperm were loaded with Cal-520-AM (5 wM) in the
presence of Pluronic F-127 (0.02% v/v) at 37°C for 45 min.
After incubation, excess dye was removed by three centrifugation
steps (700 g, 7 min, RT). The pellet was resuspended in buffer
and equilibrated for 5 min at 37°C. The sperm suspension
(5 x 10° sperm/ml) was rapidly mixed 1:1 (v/v, 100:100 pl) with
the respective stimulant [ZP, K8.6, 2 wM ionomycin (Tocris)]
at a flow rate of 0.5 ml/s. Fluorescence was excited by a
SpectraX Light Engine (Lumencor, Beaverton, United States),
whose intensity was modulated with a frequency of 10 kHz. The
excitation light was passed through a BrightLine 475/28 nm filter
(Semrock, Rochester, United States) onto the cuvette. Emission
light was passed through a BrightLine 536/40 filter (Semrock) and
recorded by photomultiplier modules (H10723-20; Hamamatsu
Photonics). The signal was amplified and filtered through a lock-
in amplifier (7230 DualPhase; Ametek, Paoli, United States). Data
acquisition was performed with a data acquisition pad (PCI-
6221; National Instruments, Austin, United States) and Bio-Kine
software v. 4.49 (Bio-Logic). Ca?* signal traces are depicted as
the percent change in fluorescence (AF) with respect to the
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mean of the first three data points recorded immediately after
mixing (Fp). Mean £ 95% CI are shown to visualize the true
range of the data. The control AF/F; signal observed upon
mixing with buffer (control) was subtracted from K8 6-, ZP-,
or ionomycin-induced signals, setting the control-signal level to
AF/Fy (%) = 0. The K8.6 solution (Babcock and Pfeiffer, 1987)
contained (in mM: 4.8 NaCl, 138 KCl, 2 CaCl,, 1.2 KH,POy,
1 MgSOy, 5.6 glucose, 0.5 sodium pyruvate, 10 lactic acid, 10
HEPES, pH 8.6, adjusted with KOH) to depolarize the V,, and
simultaneously increase pH; to activate CatSper. Bar graphs show
the maximal amplitude of the ZP- or K8.6-evoked Ca®T response
(average of last three data points), normalized to the respective
ionomycin-evoked Ca?* response (average of last three data
points) (relative signal amplitude). To measure pH changes in
the stopped-flow mode, sperm were loaded with BCECF-AM
(10 pM) at 37°C for 15 min. The pellet was resuspended in
TYH and equilibrated for 5 min at 37°C. The excitation light
was passed through a BrightLine 452/45 nm filter (Semrock)
onto the cuvette. Emission light was passed in parallel through a
BrightLine 494/20 filter and a BrightLine 540/10 filter (Semrock).
pH signals are depicted as the percent change in fluorescence
ratio (AR) of 494 nm/540 nm with respect to the mean of the first
three data points recorded immediately after mixing (Ro) when a
stable fluorescence signal was observed. The AR/R signal evoked
by mixing with buffer (control) was subtracted from ZP- or
NH4Cl-induced signals. Bar graphs show the maximal amplitude
of the ZP- or NH4Cl-evoked pH response (average of last three
data points).

In vitro Fertilization

Superovulation in females was induced as described above. HTF
medium (EmbryoMax Human Tubal Fluid; Merck Millipore)
was mixed 1:1 with mineral oil (Sigma-Aldrich) and equilibrated
overnight at 37°C. Sperm were capacitated for 90 min in
TYH medium supplemented as indicated above. On the day
of preparation, 100 pl drops of HTF were covered with the
medium/oil mixture and 10° sperm were added to each drop.
Cumulus-enclosed oocytes were prepared from the oviducts of
superovulated females and added to the drops. After 4 h at 37°C
and 5% CO;, oocytes were transferred to fresh HTF. The number
of 2-cell stages was evaluated after 24 h.

Sperm Motility Analysis

Freely beating sperm were observed in shallow perfusion
chambers with 200 pm depth, which allowed to exchange
the buffer during recordings. Sperm were tethered to the
glass surface by lowering the BSA to 0.3 mg/ml. An inverted
dark-field video microscope (IX71; Olympus) with a 10 x
objective (UPlanFL, NA 0.4; Olympus) and an additional 1.6
x magnification lens (16x final amplification) was combined
with a high-speed camera (Dimax; PCO). Dark-field videos
were recorded with a frame rate of 200 Hz. The temperature
was 37°C (Incubator; Life Imaging Services). The flagellar beat
was analyzed using SpermQ (Hansen et al, 2018). SpermQ
outputs the parameter curvature angle as a measure for flagellar
bending. The curvature angle at a given point on the flagellum
was determined by the angle between the tangential vector at

the given point and the tangential vector at the point 10 um
proximal on the flagellum. The beat frequency at a given point
on the flagellum was determined by the highest peak in the
frequency spectrum obtained by Fast-Fourier-Transformation
of the time-course of the parameter curvature angle at the
given flagellar point. The amplitude of the curvature angle
for a given point was determined as the absolute difference
between the median of the five highest and the median of the
five lowest curvature angle values in the entire time-course at
the given point.

Measuring cAMP Dynamics in Sperm
Population measurements using a  spectrofluorometer
(Quantamaster 40, PTT) were performed as previously described
(Mukherjee et al., 2016) in PMMA cuvettes at 1 x 10° cells/ml
under constant stirring (Spinbar, Bel-art Products, Wayne,
NJ, United States).

Identification of NHA1 by Mass

Spectrometry
Sperm were isolated from wild-type C57Bl/6 mice and subjected
to mass spectrometry as described previously (Raju et al., 2015).

Statistical Analysis

Statistical analyses for graphs shown in figures has been
performed in GraphPad Prism. Statistical significance between
two groups was determined using two-tailed, unpaired ¢-test
with  Welch’s correction, statistical significance between
multiple groups was determined using one-way ANOVA
with Dunnett’s correction. The respective details are indicated in
the figure legends.
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